CONTENTS

CHAPTER 1 PRECALCULUS REVIEW 1

1.1 What is Calculus? 1
1.2 Review of Elementary Mathematics 3
1.3 Review of Inequalities 11
1.4 Coordinate Plane; Analytic Geometry 17
1.5 Functions 24
1.6 The Elementary Functions 32
1.7 Combinations of Functions 41
1.8 A Note on Mathematical Proof; Mathematical Induction 47

CHAPTER 2 LIMITS AND CONTINUITY 53

2.1 The Limit Process (An Intuitive Introduction) 53
2.2 Definition of Limit 64
2.3 Some Limit Theorems 73
2.4 Continuity 82
2.5 The Pinching Theorem; Trigonometric Limits 91
2.6 Two Basic Theorems 97

Project 2.6 The Bisection Method for Finding the Roots of \(f(x) = 0 \) 102
CHAPTER 3 THE DERIVATIVE; THE PROCESS OF DIFFERENTIATION 105

3.1 The Derivative 105
3.2 Some Differentiation Formulas 115
3.3 The d/dx Notation; Derivatives of Higher Order 124
3.4 The Derivative As A Rate of Change 130
3.5 The Chain Rule 133
3.6 Differentiating The Trigonometric Functions 142
3.7 Implicit Differentiation, Rational Powers 147

CHAPTER 4 THE MEAN-VALUE THEOREM; APPLICATIONS OF THE FIRST AND SECOND DERIVATIVES 154

4.1 The Mean-Value Theorem 154
4.2 Increasing and Decreasing Functions 160
4.3 Local Extreme Values 167
4.4 Endpoint Extreme Values; Absolute Extreme Values 174
4.5 Some Max-Min Problems 182
4.6 Concavity and Points of Inflection 190
4.7 Vertical and Horizontal Asymptotes; Vertical Tangents and Cusps 195
4.8 Some Curve Sketching 201
4.9 Velocity and Acceleration; Speed 209
 Project 4.9A Angular Velocity; Uniform Circular Motion 217
 Project 4.9B Energy of a Falling Body (Near the Surface of the Earth) 217
4.10 Related Rates of Change per Unit Time 218
4.11 Differentials 223
 Project 4.11 Marginal Cost, Marginal Revenue, Marginal Profit 228
4.12 Newton-Raphson Approximations 229

CHAPTER 5 INTEGRATION 234

5.1 An Area Problem, a Speed-Distance Problem 234
5.2 The Definite Integral of a Continuous Function 237
5.3 The Function \(f(x) = \int_a^x f(t) \, dt \) 246
5.4 The Fundamental Theorem of Integral Calculus 254
5.5 Some Area Problems 260
 Project 5.5 Integrability; Integrating Discontinuous Functions 266
5.6 Indefinite Integrals 268
5.7 Working Back from the Chain Rule; the u-Substitution 274
5.8 Additional Properties of the Definite Integral 281
5.9 Mean-Value Theorems for Integrals, Average Value of a Function 285
CHAPTER 6
SOME APPLICATIONS OF THE INTEGRAL

6.1 More on Area 292
6.2 Volume by Parallel Cross Sections; Disks and Washers 296
6.3 Volume by the Shell Method 306
6.4 The Centroid of a Region; Pappus’s Theorem on Volumes 312
Project 6.4 Centroid of a Solid of Revolution 319
6.5 The Notion of Work 319
*6.6 Fluid Force 327

CHAPTER 7
THE TRANSCENDENTAL FUNCTIONS

7.1 One-to-One Functions; Inverses 333
7.2 The Logarithm Function, Part I 342
7.3 The Logarithm Function, Part II 347
7.4 The Exponential Function 356
Project 7.4 Some Rational Bounds for the Number e 364
7.5 Arbitrary Powers; Other Bases 364
7.6 Exponential Growth and Decay 370
7.7 The Inverse Trigonometric Functions 378
Project 7.7 Refraction 387
7.8 The Hyperbolic Sine and Cosine 388
*7.9 The Other Hyperbolic Functions 392

CHAPTER 8
TECHNIQUES OF INTEGRATION

8.1 Integral Tables and Review 398
8.2 Integration by Parts 402
Project 8.2 Sine Waves $y = \sin nx$ and Cosine Waves $y = \cos nx$ 410
8.3 Powers and Products of Trigonometric Functions 411
8.4 Integrals Featuring $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$, $\sqrt{x^2 - a^2}$ 417
8.5 Rational Functions, Partial Fractions 422
*8.6 Some Rationalizing Substitutions 430
8.7 Numerical Integration 433

CHAPTER 9
SOME DIFFERENTIAL EQUATIONS

9.1 First-Order Linear Equations 444
9.2 Integral Curves; Separable Equations 451
Project 9.2 Orthogonal Trajectories 458
9.3 The Equation $y'' + ay' + by = 0$ 459

*Denotes optional section.
CHAPTER 10
THE CONIC SECTIONS; POLAR COORDINATES;
PARAMETRIC EQUATIONS 469

10.1 Geometry of Parabola, Ellipse, Hyperbola 469
10.2 Polar Coordinates 478
10.3 Sketching Curves in Polar Coordinates 484
 Project 10.3 Parabola, Ellipse, Hyperbola in Polar Coordinates 491
10.4 Area in Polar Coordinates 492
10.5 Curves Given Parametrically 496
 Project 10.5 Parabolic Trajectories 503
10.6 Tangents to Curves Given Parametrically 503
10.7 Arc Length and Speed 509
10.8 The Area of A Surface of Revolution; The Centroid of a Curve; Pappus’s Theorem
on Surface Area 517
 Project 10.8 The Cycloid 525

CHAPTER 11
SEQUENCES; INDETERMINATE FORMS;
IMPROPER INTEGRALS 528

11.1 The Least Upper Bound Axiom 528
11.2 Sequences of Real Numbers 532
11.3 Limit of a Sequence 538
 Project 11.3 Sequences and the Newton-Raphson Method 547
11.4 Some Important Limits 550
11.5 The Indeterminate Form (0/0) 554
11.6 The Indeterminate Form (∞/∞); Other Indeterminate Forms 560
11.7 Improper Integrals 565

CHAPTER 12
INFINITE SERIES 575

12.1 Sigma Notation 575
12.2 Infinite Series 577
12.3 The Integral Test; Basic Comparison, Limit Comparison 585
12.4 The Root Test; the Ratio Test 593
12.5 Absolute Convergence and Conditional Convergence; Alternating Series 597
12.6 Taylor Polynomials in x; Taylor Series in x 602
12.7 Taylor Polynomials and Taylor Series in x − a 613
12.8 Power Series 616
12.9 Differentiation and Integration of Power Series 623
 Project 12.9A The Binomial Series 633
 Project 12.9B Estimating π 634
CHAPTER 13 VECTORS IN THREE-DIMENSIONAL SPACE 638

13.1 Rectangular Space Coordinates 638
13.2 Vectors in Three-Dimensional Space 644
13.3 The Dot Product 653
 Project 13.3 Work 663
13.4 The Cross Product 663
13.5 Lines 671
13.6 Planes 679
 Project 13.6 Some Geometry by Vector Methods 688
13.7 Higher Dimensions 689

CHAPTER 14 VECTOR CALCULUS 692

14.1 Limit, Continuity, Vector Derivative 694
14.2 The Rules of Differentiation 701
14.3 Curves 705
14.4 Arc Length 714
 Project 14.4 More General Changes of Parameter 721
14.5 Curvilinear Motion, Curvature 723
 Project 14.5A Transition Curves 732
 Project 14.5B The Frenet Formulas 733
14.6 Vector Calculus in Mechanics 733
 *14.7 Planetary Motion 741

CHAPTER 15 FUNCTIONS OF SEVERAL VARIABLES 748

15.1 Elementary Examples 748
15.2 A Brief Catalogue of the Quadric Surfaces; Projections 751
15.3 Graphs, Level Curves and Level Surfaces 758
 Project 15.3 Level Curves and Surfaces 766
15.4 Partial Derivatives 767
15.5 Open and Closed Sets 774
15.6 Limits and Continuity, Equality of Mixed Partialis 777
 Project 15.6 Partial Differential Equations 785
Contents

Chapter 16: Gradients; Extreme Values; Differentials
- 16.1 Differentiability and Gradient 788
- 16.2 Gradients and Directional Derivatives 796
- 16.3 The Mean-Value Theorem; the Chain Rule 805
- 16.4 The Gradient as a Normal; Tangent Lines and Tangent Planes 818
- 16.5 Local Extreme Values 828
- 16.6 Absolute Extreme Values 836
- 16.7 Maxima and Minima with Side Conditions 841
 - Project 16.7 Maxima and Minima with Two Side Conditions 849
- 16.8 Differentials 849
- 16.9 Reconstructing a Function from Its Gradient 855

Chapter 17: Double and Triple Integrals
- 17.1 Multiple-Sigma Notation 864
- 17.2 Double Integrals 867
- 17.3 The Evaluation of Double Integrals by Repeated Integrals 878
- 17.4 The Double Integral as the Limit of Riemann Sums; Polar Coordinates 888
- 17.5 Further Applications of the Double Integral 895
- 17.6 Triple Integrals 902
- 17.7 Reduction to Repeated Integrals 907
- 17.8 Cylindrical Coordinates 916
- 17.9 The Triple Integral as the Limit of Riemann Sums; Spherical Coordinates 922
- 17.10 Jacobians; Changing Variables in Multiple Integration 930
 - Project 17.10 Generalized Polar Coordinates 935

Chapter 18: Line Integrals and Surface Integrals
- 18.1 Line Integrals 938
- 18.2 The Fundamental Theorem for Line Integrals 946
- 18.3 Work-Energy Formula; Conservation of Mechanical Energy 951
- 18.4 Another Notation for Line Integrals; Line Integrals with Respect to Arc Length 954
- 18.5 Green’s Theorem 959
- 18.6 Parametrized Surfaces; Surface Area 969
- 18.7 Surface Integrals 980
- 18.8 The Vector Differential Operator 989
- 18.9 The Divergence Theorem 995
 - Project 18.9 Static Charges 1000
- 18.10 Stokes’s Theorem 1001