Contents

Preface xvii
Contributors xix

Chapter 1. Newton, Fizeau, and Haidinger Interferometers 1
M. V. Mantravadi and D. Malacara

1.1. Introduction 1
1.2. Newton Interferometer 1
 1.2.1. Source and Observer’s Pupil Size Considerations 9
 1.2.2. Some Suitable Light Sources 11
 1.2.3. Materials for the Optical Flats 12
 1.2.4. Simple Procedure for Estimating Peak Error 12
 1.2.5. Measurement of Spherical Surfaces 13
 1.2.6. Measurement of Aspheric Surfaces 15
 1.2.7. Measurement of Flatness of Opaque Surfaces 17
1.3. Fizeau Interferometer 17
 1.3.1. The Basic Fizeau Interferometer 18
 1.3.2. Coherence Requirements for the Light Source 20
 1.3.3. Quality of Collimation Lens Required 22
 1.3.4. Liquid Reference Flats 23
 1.3.5. Fizeau Interferometer with Laser Source 23
 1.3.6. Multiple-Beam Fizeau Setup 24
 1.3.7. Testing Nearly Parallel Plates 26
 1.3.8. Testing the Inhomogeneity of Large Glass or Fused Quartz Samples 27
 1.3.9. Testing the Parallelism and Flatness of the Faces of Rods, Bars and Plates 28
 1.3.10. Testing Cube Corner and Right-Angle Prisms 28
 1.3.11. Fizeau Interferometer for Curved Surfaces 30
 1.3.12. Testing Concave and Convex Surfaces 32
1.4. Haidinger Interferometer 33
 1.4.1. Applications of Haidinger Fringes 35
 1.4.2. Use of Laser Source for Haidinger Interferometer 36
 1.4.3. Other Applications of Haidinger Fringes 39
1.5. Absolute Testing of Flats 40
Chapter 2. Twyman–Green Interferometer

D. Malacara

2.1. Introduction
2.2. Beam-Splitter
 2.2.1. Optical Path Difference Introduced by the Beam Splitter Plate
 2.2.2. Required Accuracy in the Beam Splitter Plate
 2.2.3. Polarizing Cube Beam Splitter
 2.2.4. Nonpolarizing Cube Beam Splitter
2.3. Coherence Requirements
 2.3.1. Spatial Coherence
 2.3.2. Temporal Coherence
2.4. Uses of a Twyman–Green Interferometer
 2.4.1. Testing of Prisms and Diffraction Rulings
 2.4.2. Testing of Lenses
 2.4.3. Testing of Microscope Objectives
2.5. Compensation of Intrinsic Aberrations in the Interferometer
2.6. Unequal-Path Interferometer
 2.6.1. Some Special Designs
 2.6.2. Improving the Fringe Stability
2.7. Open Path Interferometers
 2.7.1. Mach-Zehnder Interferometers
 2.7.2. Oblique Incidence Interferometers
2.8. Variations from the Twyman–Green Configuration
 2.8.1. Multiple Image Interferometers
 2.8.2. Interferometers with Diffractive Beam Splitters
 2.8.3. Phase Conjugating Interferometer
2.9. Twyman–Green Interferograms and their Analysis
 2.9.1. Analysis of Interferograms of Arbitrary Wavefronts

Chapter 3. Common-Path Interferometers

S. Mallick and D. Malacara

3.1. Introduction
3.2. Burch’s Interferometer Employing Two Matched Scatter Plates
 3.2.1. Fresnel Zone Plate Interferometer
 3.2.2. Burch and Fresnel Zone Plate Interferometers for Aspheric Surfaces
 3.2.3. Burch and Fresnel Zone Plate Interferometers for Phase Shifting
3.3. Birefringent Beam Splitters
 3.3.1. Savart Polariscope
 3.3.2. Wollaston Prism
 3.3.3. Double-Focus Systems
3.4. Lateral Shearing Interferometers
 3.4.1. Use of a Savart Polariscope
 3.4.2. Use of a Wollaston Prism
3.5. Double-Focus Interferometer 112
3.6. Saunders’s Prism Interferometer 114
3.7. Point Diffraction Interferometer 116
3.8. Zernike Tests with Common-Path Interferometers 118

Chapter 4. Lateral Shear Interferometers 122
M. Strojnik, G. Paez, and M. Mantravadi

4.1. Introduction 122
4.2. Coherence Properties of the Light Source 123
4.3. Brief Theory of Lateral Shearing Interferometry 124
 4.3.1. Interferograms of Spherical and Flat Wavefronts 126
 4.3.2. Interferograms of Primary Aberrations upon Lateral Shear 128
4.4. Evaluation of an Unknown Wavefront 134
4.5. Lateral Shearing Interferometers in Collimated Light
 (White Light Compensated) 137
 4.5.1. Arrangements Based on the Jamin Interferometer 137
 4.5.2. Arrangements Based on the Michelson Interferometer 139
 4.5.3. Arrangements Based on a Cyclic Interferometer 140
 4.5.4. Arrangements Based on the Mach–Zehnder Interferometer 142
4.6. Lateral Shearing Interferometers in Convergent Light
 (White Light Compensated) 143
 4.6.1. Arrangements Based on the Michelson Interferometer 143
 4.6.2. Arrangements Based on the Mach–Zehnder Interferometer 146
4.7. Lateral Shearing Interferometers Using Lasers 149
 4.7.1. Other Applications of the Plane Parallel Plate Interferometer 152
4.8. Other Types of Lateral Shearing Interferometers 157
 4.8.1. Lateral Shearing Interferometers Based on Diffraction 158
 4.8.2. Lateral Shearing Interferometers Based on Polarization 162
4.9. Vectorial Shearing Interferometer 164
 4.9.1. Shearing Interferometry 165
 4.9.2. Directional Shearing Interferometer 166
 4.9.3. Simulated Interferometric Patterns 168
 4.9.4. Experimental Results 173
 4.9.5. Similarities and Differences With Other Interferometers 176

Chapter 5. Radial, Rotational, and Reversal Shear Interferometer 185
D. Malacara

5.1. Introduction 185
5.2. Radial Shear Interferometers 187
 5.2.1. Wavefront Evaluation from Radial Shear Interferograms 189
 5.2.2. Single-Pass Radial Shear Interferometers 190
 5.2.3. Double-Pass Radial Shear Interferometers 195
 5.2.4. Laser Radial Shear Interferometers 197
 5.2.5. Thick-Lens Radial Shear Interferometers 202
Chapter 6. Multiple-Beam Interferometers

C. Roychoudhuri

6.1. Brief Historical Introduction 219
6.2. Precision in Multiple-Beam Interferometry 221
6.3. Multiple-Beam Fizeau Interferometer
 6.3.1. Conditions for Fringe Formation 224
 6.3.2. Fizeau Interferometry 229
6.4. Fringes of Equal Chromatic Order 232
6.5. Reduction of Fringe Interval in Multiple-Beam Interferometry 235
6.6. Plane Parallel Fabry–Perot Interferometer
 6.6.1. Measurement of Thin-Film Thickness 236
 6.6.2. Surface Deviation from Planeness 237
6.7. Tolansky Fringes with Fabry–Perot Interferometer 241
6.8. Multiple-Beam Interferometer for Curved Surfaces 243
6.9. Coupled and Series Interferometers
 6.9.1. Coupled Interferometer 245
 6.9.2. Series Interferometer 246
6.10. Holographic Multiple-Beam Interferometers 247
6.11. Temporal Evolution of FP Fringes and Its Modern Applications 247
6.12. Final Comments 250

Chapter 7. Multiple-Pass Interferometers

P. Hariharan

7.1. Double-Pass Interferometers
 7.1.1. Separation of Aberrations 259
 7.1.2. Reduction of Coherence Requirements 262
 7.1.3. Double Passing for Increased Accuracy 264
7.2. Multipass Interferometry 266

Chapter 8. Foucault, Wire, and Phase Modulation Tests

J. Ojeda-Castañeda

8.1. Introduction 275
8.2. Foucault or Knife-Edge Test
 8.2.1. Description 275
 8.2.2. Geometrical Theory 280
 8.2.3. Physical Theory 289
8.3. Wire Test 293
 8.3.1. Geometrical Theory 297
8.4. Platzeck–Gaviola Test 298
8.4.1. Geometrical Theory 299
8.5. Phase Modulation Tests 302
8.5.1. Zernike Test and its Relation to the Smart Interferometer 302
8.5.2. Lyot Test 305
8.5.3. Wolter Test 307
8.6. Ritchey–Common Test 310
8.7. Conclusions 313

Chapter 9. Ronchi Test 317
A. Cornejo-Rodriguez

9.1. Introduction 317
9.1.1. Historical Introduction 317
9.2. Geometrical Theory 318
9.2.1. Ronchi Patterns for Primary Aberrations 320
9.2.2. Ronchi Patterns for Aspherical Surfaces 327
9.2.3. Null Ronchi Rulings 328
9.3. Wavefront Shape Determination 331
9.3.1. General Case 333
9.3.2. Surfaces with Rotational Symmetry 335
9.4. Physical Theory 337
9.4.1. Mathematical Treatment 337
9.4.2. Fringe Contrast and Sharpness 340
9.4.3. Physical versus Geometrical Theory 343
9.5. Practical Aspects of the Ronchi Test 344
9.6. Some Related Tests 347
9.6.1. Concentric Circular Grid 347
9.6.2. Phase Shifting Ronchi Test 348
9.6.3. Sideband Ronchi Test 348
9.6.4. Lower Test 349
9.6.5. Ronchi–Hartmann and Null Hartmann Tests 350

Chapter 10. Hartmann, Hartmann–Shack, and Other Screen Tests 361
D. Malacara-Doblado and I. Ghozeil

10.1. Introduction 361
10.2. Some Practical Aspects 363
10.3. Hartmann Test Using a Rectangular Screen 366
10.4. Wavefront Retrieval 368
10.4.1. Tilt and Defocus Removal 368
10.4.2. Trapezoidal Integration 370
10.4.3. Southwell Algorithm 373
10.4.4. Polynomial Fitting 374
10.4.5. Other Methods 375
Chapter 11. Star Tests

D. Malacara and W. T. Welford

11.1. Introduction 398

11.2. Star Test with Small Aberrations 399

11.2.1. The Aberration Free Airy Pattern 400
11.2.2. The Defocused Airy Pattern 403
11.2.3. Polychromatic Light 405
11.2.4. Systems with Central Obstructions 407
11.2.5. Effects of Small Aberrations 408
11.2.6. Gaussian Beams 409
11.2.7. Very Small Convergence Angles (Low Fresnel Numbers) 409

11.3. Practical Aspects with Small Aberrations 410

11.3.1. Effects of Visual Star Testing 410
11.3.2. The Light Source for Star Testing 412
11.3.3. The Arrangement of the Optical System for Star Testing 413
11.3.4. Microscope Objectives 415

11.4. The Star Test with Large Aberrations 416

11.4.1. Spherical Aberration 417
11.4.2. Longitudinal Chromatic Aberration 418
11.4.3. Axial Symmetry 418
11.4.4. Astigmatism and Coma 419
11.4.5. Distortion 419
11.4.6. Non-Null Tests 420

11.5. Wavefront Retrieval with Slope and Curvature Measurements 421

11.5.1. The Laplacian and Local Average Curvatures 421
11.5.2. Wavefront Determination with Iterative Fourier Transforms 422
11.5.3. Irradiance Transport Equation 425
11.6. Wavefront Determination with Two Images Using the Irradiance Transport Equation 426
11.7. Wavefront Determination with a Single Defocused Image Using Fourier Transform Iterations 429
11.8. Wavefront Determination with Two or Three Defocused Images Using Fresnel Transform Iterations 430

Chapter 12. Testing of Aspheric Wavefronts and Surfaces 435
D. Malacara, K. Creath, J. Schmit and J. C. Wyant

12.1. Introduction 435
12.2. Some Methods to Test Aspheric Wavefronts 437
12.3. Imaging of the Interference Pattern in Non-Null Tests 439
12.4. Some Null Testing Configurations 442
12.4.1. Flat and Concave Spherical Surfaces 442
12.4.2. Telescope Refracting Objectives 442
12.4.3. Concave Paraboloidal Surfaces 443
12.4.4. Concave Ellipsoidal or Spheroidal Surfaces 444
12.5. Testing of Convex Hyperboloidal Surfaces 445
12.5.1. Hindle Type Tests 445
12.5.2. Testing by Refraction 449
12.6. Testing of Cylindrical Surfaces 453
12.7. Early Compensators 454
12.7.1. Couder, Burch, and Ross Compensators 456
12.7.2. Dall Compensator 458
12.8. Refractive Compensators 461
12.8.1. Refractive Offner Compensator 462
12.8.2. Shafer Compensator 464
12.8.3. General Comments about Refracting Compensators 465
12.9. Reflecting Compensators 466
12.9.1. Reflective Offner Compensators 468
12.9.2. Reflective Adaptive Compensator 471
12.10. Other Compensators for Concave Conicoids 471
12.11. Interferometers Using Real Holograms 474
12.11.1. Holographic Wavefront Storage 476
12.11.2. Holographic Test Plate 476
12.12. Interferometers Using Synthetic Holograms 477
12.12.1. Fabrication of Computer-Generated Holograms (CGHs) 478
12.12.2. Using a CGH in an Interferometer 480
12.12.3. Off-Axis CGH Aspheric Compensator 483
12.12.4. In-Line CGH Aspheric Compensator 485
12.12.5. Combination of CGH with Null Optics 486
12.13. Aspheric Testing with Two-Wavelength Holography 488
12.14. Wavefront Stitching 491
Chapter 13. Zernike Polynomial and Wavefront Fitting

13.1. Introduction

13.2. Aberrations of a Rotationally Symmetric System with a Circular Pupil
 13.2.1. Power Series Expansion
 13.2.2. Primary or Seidel Aberration Function
 13.2.3. Secondary or Schwarzschild Aberration Function
 13.2.4. Zernike Circle Polynomial Expansion
 13.2.5. Zernike Circle Polynomials as Balanced Aberrations for Minimum Wave Aberration Variance
 13.2.6. Relationships Between Coefficients of Power-Series and Zernike-Polynomial Expansions
 13.2.7. Conversion of Seidel Aberrations into Zernike Aberrations
 13.2.8. Conversion of Zernike Aberrations into Seidel Aberrations

13.3. Aberration Function of a System with a Circular Pupil, but Without an Axis of Rotational Symmetry
 13.3.1. Zernike Circle Polynomial Expansion
 13.3.2. Relationships Among the Indices n, m, and j
 13.3.3. Isometric, Interferometric, and PSF Plots for a Zernike Circle Polynomial Aberration
 13.3.4. Primary Zernike Aberrations and Their Relationships with Seidel Aberrations

13.4. Zernike Annular Polynomials as Balanced Aberrations for Systems with Annular Pupils
 13.4.1. Balanced Aberrations
 13.4.2. Zernike Annular Polynomials
 13.4.3. Isometric, Interferometric, and PSF Plots for a Zernike Annular Polynomial Aberration

13.5. Determination of Zernike Coefficients From Discrete Wavefront Error Data
 13.5.1. Introduction
 13.5.2. Orthonormal Coefficients and Aberration Variance
 13.5.3. Orthonormal Polynomials
 13.5.4. Zernike Coefficients
 13.5.5. Numerical Example

13.6. Summary
Chapter 14. Phase Shifting Interferometry

Horst Schreiber and John H. Bruning

14.1. Introduction 547
14.2. Fundamental Concepts 548
14.3. Advantages of PSI 550
14.4. Methods of Phase Shifting 552
14.5. Detecting the Wavefront Phase 557
14.6. Data Collection
 14.6.1. Temporal Methods 560
 14.6.2. Spatial Methods 564
14.7. PSI Algorithms
 14.7.1. Three Step Algorithms 569
 14.7.2. Least-Squares Algorithms 571
 14.7.3. Carré Algorithm 574
 14.7.4. Family of Averaging Algorithms 576
 14.7.5. Hariharan Algorithm 577
 14.7.6. 2 + 1 Algorithm 580
 14.7.7. Methods to Generate Algorithms 582
 14.7.8. Methods to Evaluate Algorithms 586
 14.7.9. Summary of Algorithms 591
14.8. Phase Shift Calibration 596
14.9. Error Sources
 14.9.1. Phase Shift Errors 600
 14.9.2. Detector Nonlinearities 602
 14.9.3. Source Stability 605
 14.9.4. Quantization Errors 606
 14.9.5. Vibration Errors 607
 14.9.6. Air Turbulence 610
 14.9.7. Extraneous Fringes and Other Coherent Effects 610
 14.9.8. Interferometer Optical Errors 611
14.10. Detectors and Spatial Sampling
 14.10.1. Solid State Sensors 613
 14.10.2. Spatial Sampling 614
14.11. Quality Functions
 14.11.1. Modulation 617
 14.11.2. Residues 619
 14.11.3. Filtering 622
14.12. Phase Unwrapping
 14.12.1. Unwrapping in One Dimension 623
 14.12.2. 2-D Phase Unwrapping 625
 14.12.3. Path-Following Algorithms 626
 14.12.4. Path Independent Methods 628
14.13. Aspheres and Extended Range PSI Techniques
 14.13.1. Aliasing 629
14.13.2. Sub-Nyquist Interferometry 631
14.13.3. Two Wavelength PSI 635
14.13.4. Subaperture Stitching 637
14.14. Other Analysis Methods 638
14.14.2. Synchronous Detection 639
14.14.3. Heterodyne Interferometry 640
14.14.4. Phase Lock Interferometry 641
14.14.5. Spatial Synchronous and Fourier Methods 642
14.15. Computer Processing and Output 644
14.16. Implementation and Applications 647
14.16.1. Commercial Instrumentation 647
14.16.2. Interferometer Configurations 650
14.16.3. Absolute Calibration 651
14.16.4. Sources 654
14.16.5. Alignment Fiducials 655
14.17. Future Trends for PSI 655

Chapter 15. Surface Profilers, Multiple Wavelength, and White Light Interferometry 667

J. Schmit, K. Creath, and J. C. Wyant

15.1. Introduction to Surface Profilers 667
15.1.1. Contact Profilometers 668
15.1.2. Optical Profilometers 668
15.1.3. Interferometric Optical Profilometers 668
15.1.4. Terms and Issues in Determining System Performance 669
15.2. Contact Profilometers 670
15.2.1. Stylus Profilers 670
15.2.2. Scanning Probe Microscopes 674
15.2.3. Comparison of AFM and Stylus Profiler 683
15.3. Optical Profilometers 685
15.3.1. Optical Focus Sensors 687
15.3.2. Confocal Microscopy 689
15.4. Interferometric Optical Profilometers 695
15.4.1. Common Features 696
15.5. Two Wavelength and Multiple Wavelength Techniques 702
15.5.1. Two-wavelengths Phase Measurement 704
15.5.2. Multiple-wavelength Phase Measurement 707
15.5.3. Reducing Measurement Time 710
15.6. White Light Interference Optical Profilometers 711
15.6.1. White Light Interference 711
15.6.2. Image Buildup 712
15.6.3. Signal Processing of White Light Interferograms 713
15.6.4. Light Sources 716
15.6.5. Dispersion in White Light Fringes 716
15.6.6. Other Names for Interferometric Optical Profilers 723
15.7. Wavelength Scanning Interferometer 724
15.7.1. Wavelength Tunable Light Sources 724
15.7.2. Image Buildup 725
15.7.3. Signal Analysis 728
15.7.4. Film and Plate Thickness Measurement 729
15.8. Spectrally Resolved White Light Interferometry (SRWLI) 731
15.8.1. Image Buildup 731
15.8.2. Signal Analysis 732
15.8.3. Other Names for Spectral Interferometry 735
15.9. Polarization Interferometers 735
15.9.1. Differential Interference Contrast Microscope (Nomarski) 736
15.9.2. Geometric Phase Shifting 738
15.10. Optical Ranging Methods 741
15.10.1. Interferometric Ranging 741
15.10.2. Optical Triangulation 742
15.10.3. Time of Flight (TOF) 742
15.11. Summary 742

Chapter 16. Optical Metrology of Diffuse Surfaces 756
K. Creath, J. Schmit, and J. C Wyant

16.1. Moiré and Fringe Projection Techniques 756
16.1.1. Introduction 756
16.1.2. What is Moiré? 757
16.1.3. Moiré and Interferograms 762
16.1.4. Historical Review 768
16.1.5. Fringe Projection 769
16.1.6. Shadow Moiré 773
16.1.7. Projection Moiré 777
16.1.8. Two-angle Moiré 778
16.1.9. Common Features 779
16.1.10. Comparison to Conventional Interferometry 779
16.1.11. Coded and Structured Light Projection 780
16.1.12. Applications 781
16.1.13. Summary 783
16.2. Holographic and Speckle Tests 783
16.2.1. Introduction 783
16.2.2. Holographic Interferometry for Nondestructive Testing 784
16.2.3. Speckle Interferometry and Digital Holography 791
Chapter 17. Angle, Prisms, Curvature, and Focal Length Measurements 808

Z. Malacara

17.1. Introduction 808
17.2. Angle Measurements 808
 17.2.1. Divided Circles and Goniometers 808
 17.2.2. Autocollimator 810
 17.2.3. Interferometric Measurements of Angles 812
17.3. Testing of Prisms 812
17.4. Radius of Curvature Measurements 817
 17.4.1. Mechanical Measurement of Radius of Curvature 817
 17.4.2. Optical Measurement of Radius of Curvature 820
17.5. Focal Length Measurements 823
 17.5.1. Nodal Slide Bench 823
 17.5.2. Focimeters 824
 17.5.3. Other Focal Length Measurements 825

Chapter 18. Mathematical Representation of an Optical Surface and Its Characteristics 832

D. Malacara

18.1. Definition of an Optical Surface 832
 18.1.1. Parameters for Conic Surfaces 835
 18.1.2. Some Useful Expansions of \(z \) 835
 18.1.3. Aberration of the Normals to the Surface 836
18.2. Caustic Produced by an Aspheric Surface 837
18.3. Primary Aberrations of Spherical Surfaces 839
 18.3.1. Spherical Aberration of and Aspherical Surface 839
 18.3.2. Coma of a Concave Mirror 840
 18.3.3. Astigmatism of a Concave Mirror 841
18.4. Astigmatic Surfaces 841
 18.4.1. Toroidal Surface 842
 18.4.2. Astigmatic Ellipsoidal and Oblate Spheroidal Surfaces 842
 18.4.3. Sphero-Cylindrical Surface 844
 18.4.4. Testing Astigmatic Surfaces and Reference Astigmatic Surface 846
 18.4.5. Comparison Between Astigmatic Surfaces 847
18.5. Off-Axis Conicoids 849
 18.5.1. Off-Axis Paraboloids 850

Appendix. Optical Testing Programs 852

Index 855