# Contents

Preface ........................................................................................................ xiii

Acknowledgments ..................................................................................... xiv

Nomenclature ............................................................................................. xv

Chapter 1  Introduction to Power Electronic Converters .......................... 1

1.1 Basic Converter Topologies ............................................................. 2
   1.1.1 Switch Constraints ............................................................... 2
   1.1.2 Bidirectional Chopper ......................................................... 4
   1.1.3 Single-Phase Full-Bridge (H-Bridge) Inverter .................... 5

1.2 Voltage Source/Stiff Inverters ....................................................... 7
   1.2.1 Two-Phase Inverter Structure ........................................... 7
   1.2.2 Three-Phase Inverter Structure ....................................... 8
   1.2.3 Voltage and Current Waveforms in Square-Wave Mode .... 9

1.3 Switching Function Representation of Three-Phase Converters 14

1.4 Output Voltage Control ............................................................... 17
   1.4.1 Volts/Hertz Criterion ......................................................... 17
   1.4.2 Phase Shift Modulation for Single-Phase Inverter .......... 17
   1.4.3 Voltage Control with a Double Bridge ......................... 19

1.5 Current Source/Stiff Inverters ....................................................... 21

1.6 Concept of a Space Vector ............................................................ 24
   1.6.1 $d-q-0$ Components for Three-Phase Sine Wave Source/ Load ................................................................. 27
   1.6.2 $d-q-0$ Components for Voltage Source Inverter Operated in Square-Wave Mode ........................................... 30
   1.6.3 Synchronously Rotating Reference Frame .................. 35

1.7 Three-Level Inverters ................................................................. 38

1.8 Multilevel Inverter Topologies ..................................................... 42
   1.8.1 Diode-Clamped Multilevel Inverter ................................. 42
   1.8.2 Capacitor-Clamped Multilevel Inverter ......................... 49
   1.8.3 Cascaded Voltage Source Multilevel Inverter ............... 51
3.6 Regular Sampled Pulse Width Modulation
3.6.1 Sawtooth Carrier Regular Sampled PWM
3.6.2 Symmetrical Regular Sampled PWM
3.6.3 Asymmetrical Regular Sampled PWM

3.7 “Direct” Modulation

3.8 Integer versus Non-Integer Frequency Ratios

3.9 Review of PWM Variations

3.10 Summary

Chapter 4 Modulation of Single-Phase Voltage Source Inverters

4.1 Topology of a Single-Phase Inverter

4.2 Three-Level Modulation of a Single-Phase Inverter

4.3 Analytic Calculation of Harmonic Losses

4.4 Sideband Modulation

4.5 Switched Pulse Position
4.5.1 Continuous Modulation
4.5.2 Discontinuous Modulation

4.6 Switched Pulse Sequence
4.6.1 Discontinuous PWM — Single-Phase Leg Switched
4.6.2 Two-Level Single-Phase PWM

4.7 Summary

Chapter 5 Modulation of Three-Phase Voltage Source Inverters

5.1 Topology of a Three-Phase Inverter (VSI)

5.2 Three-Phase Modulation with Sinusoidal References

5.3 Third-Harmonic Reference Injection
5.3.1 Optimum Injection Level
5.3.2 Analytical Solution for Third-Harmonic Injection

5.4 Analytic Calculation of Harmonic Losses

5.5 Discontinuous Modulation Strategies

5.6 Triplen Carrier Ratios and Subharmonics
5.6.1 Triplen Carrier Ratios
5.6.2 Subharmonics
5.7 Summary .................................................................................................................. 257

Chapter 6 Zero Space Vector Placement Modulation Strategies ........259
  6.1 Space Vector Modulation .................................................................................. 259
  6.1.1 Principles of Space Vector Modulation ..................................................... 259
  6.1.2 SVM Compared to Regular Sampled PWM ....... 265
  6.2 Phase Leg References for Space Vector Modulation ..................... 267
  6.3 Naturally Sampled SVM ................................................................................. 270
  6.4 Analytical Solution for SVM ................................................................. 272
  6.5 Harmonic Losses for SVM ......................................................................... 291
  6.6 Placement of the Zero Space Vector ......................................................... 294
  6.7 Discontinuous Modulation ......................................................................... 299
     6.7.1 120° Discontinuous Modulation .................................................. 299
     6.7.2 60° and 30° Discontinuous Modulation ..................................... 302
  6.8 Phase Leg References for Discontinuous PWM ................................ 307
  6.9 Analytical Solutions for Discontinuous PWM ..................................... 311
  6.10 Comparison of Harmonic Performance .................................................... 322
  6.11 Harmonic Losses for Discontinuous PWM ........................................... 326
  6.12 Single-Edge SVM ..................................................................................... 330
  6.13 Switched Pulse Sequence ................................................................. 331
  6.14 Summary ...................................................................................................... 333

Chapter 7 Modulation of Current Source Inverters ........................................ 337
  7.1 Three-Phase Modulators as State Machines ......................................... 338
  7.2 Naturally Sampled CSI Space Vector Modulator .................................. 343
  7.3 Experimental Confirmation ............................................................... 343
  7.4 Summary ...................................................................................................... 345

Chapter 8 Overmodulation of an Inverter ................................................. 349
  8.1 The Overmodulation Region ............................................................... 350
  8.2 Naturally Sampled Overmodulation of One Phase Leg of an Inverter ............ 351
Contents ix

8.3 Regular Sampled Overmodulation of One Phase Leg of an Inverter .................................................................356
8.4 Naturally Sampled Overmodulation of Single- and Three-Phase Inverters ..........................................................360
8.5 PWM Controller Gain during Overmodulation ......................364
  8.5.1 Gain with Sinusoidal Reference ..................................364
  8.5.2 Gain with Space Vector Reference ..............................367
  8.5.3 Gain with 60° Discontinuous Reference ......................371
  8.5.4 Compensated Modulation ........................................373
8.6 Space Vector Approach to Overmodulation ........................376
8.7 Summary .....................................................................382

Chapter 9 Programmed Modulation Strategies ..........................383
  9.1 Optimized Space Vector Modulation ................................384
  9.2 Harmonic Elimination PWM .........................................396
  9.3 Performance Index for Optimality ..................................411
  9.4 Optimum PWM ..........................................................416
  9.5 Minimum-Loss PWM ..................................................421
  9.6 Summary .....................................................................430

Chapter 10 Programmed Modulation of Multilevel Converters .......433
  10.1 Multilevel Converter Alternatives .................................433
  10.2 Block Switching Approaches to Voltage Control ..............436
  10.3 Harmonic Elimination Applied to Multilevel Inverters ........440
    10.3.1 Switching Angles for Harmonic Elimination Assuming Equal Voltage Levels ..........................440
    10.3.2 Equalization of Voltage and Current Stresses ............441
    10.3.3 Switching Angles for Harmonic Elimination Assuming Unequal Voltage Levels ......................443
  10.4 Minimum Harmonic Distortion ......................................447
  10.5 Summary .....................................................................449

Chapter 11 Carrier-Based PWM of Multilevel Inverters ...............453
  11.1 PWM of Cascaded Single-Phase H-Bridges ......................453
Chapter 11 Overmodulation of Cascaded H-Briges

11.2 Overmodulation of Cascaded H-Briges .............................................465
11.3 PWM Alternatives for Diode-Clamped Multilevel Inverters ..................467
11.4 Three-Level Naturally Sampled PD PWM ...........................................469
  11.4.1 Contour Plot for Three-Level PD PWM ........................................469
  11.4.2 Double Fourier Series Harmonic Coefficients ..............................473
  11.4.3 Evaluation of the Harmonic Coefficients ......................................475
  11.4.4 Spectral Performance of Three-Level PD PWM .............................479
11.5 Three-Level Naturally Sampled APOD or POD PWM .............................481
11.6 Overmodulation of Three-Level Inverters ........................................484
11.7 Five-Level PWM for Diode-Clamped Inverters ....................................489
  11.7.1 Five-level Naturally Sampled PD PWM ........................................489
  11.7.2 Five-Level Naturally Sampled APOD PWM ....................................492
  11.7.3 Five-Level POD PWM ..............................................................497
11.8 PWM of Higher Level Inverters .....................................................499
11.9 Equivalent PD PWM for Cascaded Inverters .......................................504
11.10 Hybrid Multilevel Inverter .............................................................507
11.11 Equivalent PD PWM for a Hybrid Inverter .......................................517
11.12 Third-Harmonic Injection for Multilevel Inverters ..............................519
11.13 Operation of a Multilevel Inverter with a Variable Modulation Index ....526
11.14 Summary .........................................................................................528

Chapter 12 Space Vector PWM for Multilevel Converters .........................531
12.1 Optimized Space Vector Sequences ..................................................531
12.2 Modulator for Selecting Switching States ..........................................534
12.3 Decomposition Method ......................................................................535
12.4 Hexagonal Coordinate System .........................................................538
12.5 Optimal Space Vector Position within a Switching Period .................543
12.6 Comparison of Space Vector PWM to Carrier-Based PWM ...............545
12.7 Discontinuous Modulation in Multilevel Inverters ..............................548
12.8 Summary .........................................................................................550
Chapter 13 Implementation of a Modulation Controller..............555
13.1 Overview of a Power Electronic Conversion System............556
13.2 Elements of a PWM Converter System .........................557
  13.2.1 VSI Power Conversion Stage.............................563
  13.2.2 Gate Driver Interface ..................................565
  13.2.3 Controller Power Supply .................................567
  13.2.4 I/O Conditioning Circuitry ...............................568
  13.2.5 PWM Controller ......................................569
13.3 Hardware Implementation of the PWM Process ..................572
  13.3.1 Analog versus Digital Implementation ......................572
  13.3.2 Digital Timer Logic Structures ...........................574
13.4 PWM Software Implementation ..................................579
  13.4.1 Background Software ...................................580
  13.4.2 Calculation of the PWM Timing Intervals..................581
13.5 Summary ................................................................584

Chapter 14 Continuing Developments in Modulation .............585
14.1 Random Pulse Width Modulation ................................586
14.2 PWM Rectifier with Voltage Unbalance .........................590
14.3 Common Mode Elimination .......................................598
14.4 Four Phase Leg Inverter Modulation ............................603
14.5 Effect of Minimum Pulse Width ................................607
14.6 PWM Dead-Time Compensation ................................612
14.7 Summary ................................................................619

Appendix 1 Fourier Series Representation of a Double Variable Controlled Waveform ..............................................623

Appendix 2 Jacobi–Anger and Bessel Function Relationships ....629
  A2.1 Jacobi–Anger Expansions .................................629
  A2.2 Bessel Function Integral Relationships ..................631

Appendix 3 Three-Phase and Half-Cycle Symmetry Relationships ......635
Appendix 4 Overmodulation of a Single-Phase Leg..............................637
A4.1 Naturally Sampled Double-Edge PWM ..................................637
   A4.1.1 Evaluation of Double Fourier Integral for Overmodulated
         Naturally Sampled PWM...........................................638
   A4.1.2 Harmonic Solution for Overmodulated Single-Phase Leg
         under Naturally Sampled PWM.................................646
   A4.1.3 Linear Modulation Solution Obtained from
         Overmodulation Solution........................................647
   A4.1.4 Square-Wave Solution Obtained from Overmodulation
         Solution..................................................................647
A4.2 Symmetric Regular Sampled Double-Edge PWM .................649
   A4.2.1 Evaluation of Double Fourier Integral for Overmodulated
         Symmetric Regular Sampled PWM..............................650
   A4.2.2 Harmonic Solution for Overmodulated Single-Phase Leg
         under Symmetric Regular Sampled PWM.....................652
   A4.2.3 Linear Modulation Solution Obtained from
         Overmodulation Solution............................................653
A4.3 Asymmetric Regular Sampled Double-Edge PWM..............654
   A4.3.1 Evaluation of Double Fourier Integral for Overmodulated
         Asymmetric Regular Sampled PWM............................655
   A4.3.2 Harmonic Solution for Overmodulated Single-Phase Leg
         under Asymmetric Regular Sampled PWM....................660
   A4.3.3 Linear Modulation Solution Obtained from
         Overmodulation Solution............................................661

Appendix 5 Numeric Integration of a Double Fourier Series Representa-
trion of a Switched Waveform...........................................663
A5.1 Formulation of the Double Fourier Integral .......................663
A5.2 Analytical Solution of the Inner Integral..........................666
A5.3 Numeric Integration of the Outer Integral..........................668

Bibliography .............................................................................671

Index .......................................................................................715