Contents

Contributors ix
Foreword xii
David Botstein
Introduction xiii
Nina V. Fedoroff

Chapter 1 The Discovery of Transposition 3
Nina V. Fedoroff
Introduction 3
Studies on Variegation 3
Mutable Genes 5
McClintock’s Studies on Chromosome Breakage 6
Recognition that \(Ds \) Transposes 8
Explaining Mutable Genes 9
Molecular Endnote 12
References 12

Chapter 2 A Field Guide to Transposable Elements 15
Alan H. Schulman and Thomas Wicker
The C-value Paradox 15
The Quantity of Transposable Elements Determines Genome Size 16
General Classification Scheme for Transposable Elements 17
Class II Elements 19
Class I: The Non-LTR and LTR Retrotransposons 20
Evolutionary Origins of Transposable Elements 25
Non-autonomous Transposable Elements 28
Transposable Element Demography and Genome Ecology 30
Conclusions: Rehabilitation of Transposable Elements 32
Acknowledgments 34
References 34
Chapter 3 The Mechanism of Ac/Ds Transposition
Thomas Peterson and Jianbo Zhang

Transposition of Ac/Ds Elements 41
The Enigmatic Ac Dosage Effect 42
cis and trans Effects on Ac/Ds Transposition 43
Molecular Characterization of Transposable Elements 44
The Excision and Insertion Reactions 45
Formation of Ds from Ac 48
Standard versus Alternative Transposition 48
Sister Chromatid Transposition 48
Reversed-ends Transposition 51
How Does Ds Break Chromosomes? 53
Alternative Transposition, DNA Methylation, and the Sequence of Transposition Reactions 54
Potential Applications of Alternative Transposition 55
Perspective 56
References 56

Chapter 4 McClintock and Epigenetics
Nina V. Fedoroff

Introduction 61
Spm-suppressible Alleles 61
Spm-dependent Alleles 64
Cryptic Spm 66
Presetting 66
Molecular Machinery of Epigenetic Regulation 67
Summary 68
References 69

Chapter 5 Molecular Mechanisms of Transposon Epigenetic Regulation
Robert A. Martienssen and Vicki L. Chandler

Introduction 71
Chromatin Remodeling, DNA and Histone Modification 73
RNA Interference (RNAi) and RNA-Directed DNA Methylation (RdDM) 75
Heterochromatin Reprogramming and Germ Cell Fate 79
Transgenerational Inheritance of Transposon Silencing 82
Paramutation 83
Conclusions 85
References 85

Chapter 6 Transposons in Plant Gene Regulation
Damon R. Lisch

Introduction 93
New Regulatory Functions 94
TE-Induced Down-Regulation 97
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deletions and Rearrangements</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Suppressible Alleles</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>TEs and Plant Domestication</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>The Dynamic Genome</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>110</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Imprinted Gene Expression and the Contribution of Transposable Elements</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Mary A. Gehring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Why are Genes Imprinted?</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>The Developmental Origin of Endosperm</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Selection for Imprinted Expression</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Principles Derived from the First Imprinted Gene</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Gene Imprinting and Parent-of-Origin Effects on Seed Development</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>What Genes are Imprinted?</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Epigenome Dynamics during Seed Development</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Epigenetic Landscape in Vegetative Tissues</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Cytological Observations of Chromatin in Seeds</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Epigenomic Profiling in Seeds</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Mechanisms of Gene Imprinting and the Relation to TEs</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>TEs and Allele-Specific Imprinting</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Insights from Whole Genome Studies</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Outstanding Questions</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>138</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Transposons and Gene Creation</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Hugo K. Dooner and Clifford F. Weil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Capture of Gene Fragments by TEs and Formation of Chimeric Genes</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Co-Option of a TE Gene by the Host</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Fusion of TE and Host Genes</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Alterations of Host Gene Sequences by TE Excisions</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Alterations of Host Coding Sequences by TE Insertions</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Acquisition by Host Genes of New Regulatory Sequences from TEs</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Interaction of TEs with Target Gene mRNA Splicing and Structure</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Reshuffling of Host Sequences by Alternative Transpositions</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>158</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Transposons in Plant Speciation</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Avraham A. Levy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Genetic Models of Speciation</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Speciation – a Gradual or a Rapid Process?</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Speciation Through Accumulation of Mutations</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>DNA Cut-and-Paste TEs and Speciation</td>
<td>167</td>
</tr>
</tbody>
</table>
CONTENTS

Copy-and-Paste TEs and Speciation 168
TE-Mediated Speciation – a Likely Scenario? 169
Plant Speciation Through Hybridization and Allopolyploidization 169
Induction of Transposition upon Hybridization and Polyploidization 170
Epigenetic Alteration of TEs upon Hybridization and Polyploidization 170
Transcriptional Activation of TEs upon Hybridization and Polyploidization 171
Alterations in Small RNAs upon Hybridization and Polyploidization 171
A Mechanistic Model for Responses to Genome Shock 172
Dysregulation of Gene Expression by Novel Interactions Between Regulatory Factors 173
Altered Protein Complexes 174
Why TEs Become Activated when Cellular Processes are Dysregulated 174
Conclusions 175
Acknowledgments 176
References 176

Chapter 10 Transposons, Genomic Shock, and Genome Evolution 181
Nina V. Fedoroff and Jeffrey L. Bennetzen

How Transposons Came to be Called “Selfish” DNA 181
The “Selfish DNA” Label Stuck to Transposons 182
Transposons Coevolved with Eukarotic Genomes 182
Sequence Duplication: The Real Innovation 183
The Facilitator: Epigenetic Control of Homologous Recombination 183
Epigenetic Mechanisms, Duplication and Genome Evolution 185
Plant Genome Organization: Gene Islands in a Sea of Repetitive DNA 186
Transposon Neighborhoods and Insertion Site Selection 187
Genome Evolution: Colinearity and Its Erosion 189
Genome Contraction and Divergence of Intergenic Sequences 191
Transposases Sculpt Genomes 192
Small Regulatory RNAs from Transposons 193
Genome Shocks 194
Genome Evolvability 195
References 196

Index 203

Color plate is located between pages 142 and 143.