Contents at a Glance

Introduction ...1

Part I: Focusing on First Order Differential Equations.......5
Chapter 1: Welcome to the World of Differential Equations ...7
Chapter 2: Looking at Linear First Order Differential Equations23
Chapter 3: Sorting Out Separable First Order Differential Equations41
Chapter 4: Exploring Exact First Order Differential Equations
and Euler’s Method ..63

Part II: Surveying Second and Higher Order
Differential Equations ...89
Chapter 5: Examining Second Order Linear Homogeneous
Differential Equations ...91
Chapter 6: Studying Second Order Linear Nonhomogeneous
Differential Equations ...123
Chapter 7: Handling Higher Order Linear Homogeneous Differential
Equations ..151
Chapter 8: Taking On Higher Order Linear Nonhomogeneous
Differential Equations ...173

Part III: The Power Stuff: Advanced Techniques189
Chapter 9: Getting Serious with Power Series and Ordinary Points........................191
Chapter 10: Powering through Singular Points ..213
Chapter 11: Working with Laplace Transforms ..239
Chapter 12: Tackling Systems of First Order Linear Differential Equations265
Chapter 13: Discovering Three Fail-Proof Numerical Methods293

Part IV: The Part of Tens ...315
Chapter 14: Ten Super-Helpful Online Differential Equation Tutorials....................317
Chapter 15: Ten Really Cool Online Differential Equation Solving Tools321

Index ..325
Table of Contents

Introduction .. 1
- About This Book .. 1
- Conventions Used in This Book .. 1
- What You’re Not to Read .. 2
- Foolish Assumptions ... 2
- How This Book Is Organized .. 2
 - Part I: Focusing on First Order Differential Equations 3
 - Part II: Surveying Second and Higher Order
 Differential Equations ... 3
 - Part III: The Power Stuff: Advanced Techniques 3
 - Part IV: The Part of Tens ... 3
- Icons Used in This Book .. 4
- Where to Go from Here ... 4

Part I: Focusing on First Order Differential Equations 5

Chapter 1: Welcome to the World of Differential Equations 7
- The Essence of Differential Equations 8
- Derivatives: The Foundation of Differential Equations 11
 - Derivatives that are constants 11
 - Derivatives that are powers 12
 - Derivatives involving trigonometry 12
 - Derivatives involving multiple functions 12
- Seeing the Big Picture with Direction Fields 13
 - Plotting a direction field ... 13
 - Connecting slopes into an integral curve 14
 - Recognizing the equilibrium value 16
- Classifying Differential Equations 17
 - Classifying equations by order 17
 - Classifying ordinary versus partial equations 17
 - Classifying linear versus nonlinear equations 18
- Solving First Order Differential Equations 19
- Tackling Second Order and Higher Order Differential Equations 20
- Having Fun with Advanced Techniques 21
Chapter 2: Looking at Linear First Order Differential Equations23

First Things First: The Basics of Solving Linear First Order
Differential Equations ...24
Applying initial conditions from the start.................................24
Stepping up to solving differential
 equations involving functions ..25
Adding a couple of constants to the mix.................................26
Solving Linear First Order Differential Equations
with Integrating Factors ...26
Solving for an integrating factor ...27
Using an integrating factor to solve a differential equation28
Moving on up: Using integrating factors in differential
 equations with functions ...29
Trying a special shortcut ..30
Solving an advanced example ..32
Determining Whether a Solution for a Linear First Order
Equation Exists ...35
 Spelling out the existence and uniqueness theorem
 for linear differential equations ...35
 Finding the general solution ..36
 Checking out some existence and uniqueness examples37
Figuring Out Whether a Solution for a Nonlinear
Differential Equation Exists ...38
 The existence and uniqueness theorem for
 nonlinear differential equations39
 A couple of nonlinear existence and uniqueness examples39

Chapter 3: Sorting Out Separable First Order
Differential Equations ..41

Beginning with the Basics of Separable Differential Equations42
Starting easy: Linear separable equations43
Introducing implicit solutions ...43
Finding explicit solutions from implicit solutions45
Tough to crack: When you can’t find an explicit solution48
A neat trick: Turning nonlinear separable equations into
 linear separable equations ...49
Trying Out Some Real World Separable Equations52
 Getting in control with a sample flow problem52
 Striking it rich with a sample monetary problem55
Break It Up! Using Partial Fractions in Separable Equations59
Chapter 4: Exploring Exact First Order Differential Equations and Euler’s Method

Exploring the Basics of Exact Differential Equations
Defining exact differential equations
Working out a typical exact differential equation
Determining Whether a Differential Equation Is Exact
Checking out a useful theorem
Applying the theorem
Conquering Nonexact Differential Equations with Integrating Factors
Finding an integrating factor
Using an integrating factor to get an exact equation
The finishing touch: Solving the exact equation
Getting Numerical with Euler’s Method
Understanding the method
Checking the method’s accuracy on a computer
Delving into Difference Equations
Some handy terminology
Iterative solutions
Equilibrium solutions

Part II: Surveying Second and Higher Order Differential Equations

Chapter 5: Examining Second Order Linear Homogeneous Differential Equations
The Basics of Second Order Differential Equations
Linear equations
Homogeneous equations
Second Order Linear Homogeneous Equations with Constant Coefficients
Elementary solutions
Initial conditions
Checking Out Characteristic Equations
Real and distinct roots
Complex roots
Identical real roots
Getting a Second Solution by Reduction of Order
Seeing how reduction of order works
Trying out an example
Putting Everything Together with Some Handy Theorems114
Superposition..114
Linear independence ...115
The Wronskian..117

Chapter 6: Studying Second Order Linear Nonhomogeneous Differential Equations123
The General Solution of Second Order Linear Nonhomogeneous Equations ..124
Understanding an important theorem...124
Putting the theorem to work...125
Finding Particular Solutions with the Method of
Undetermined Coefficients...127
When \(g(x) \) is in the form of \(e^{rx} \) ..127
When \(g(x) \) is a polynomial of order \(n \) ..128
When \(g(x) \) is a combination of sines and cosines131
When \(g(x) \) is a product of two different forms133
Breaking Down Equations with the Variation of Parameters Method ...135
Nailing down the basics of the method ...136
Solving a typical example...137
Applying the method to any linear equation138
What a pair! The variation of parameters method

meets the Wronskian...142
Bouncing Around with Springs ’n Things ..143
A mass without friction ..144
A mass with drag force ..148

Chapter 7: Handling Higher Order Linear Homogeneous Differential Equations151
The Write Stuff: The Notation of Higher Order
Differential Equations ..152
Introducing the Basics of Higher Order Linear Homogeneous Equations ..153
The format, solutions, and initial conditions153
A couple of cool theorems ..155
Tackling Different Types of Higher Order Linear Homogeneous Equations156
Real and distinct roots...156
Real and imaginary roots ...161
Complex roots...164
Duplicate roots ..166
Chapter 8: Taking On Higher Order Linear Nonhomogeneous Differential Equations ... 173

Mastering the Method of Undetermined Coefficients
 for Higher Order Equations .. 174
 When \(g(x) \) is in the form \(e^{rx} \) .. 176
 When \(g(x) \) is a polynomial of order \(n \) 179
 When \(g(x) \) is a combination of sines and cosines 182
Solving Higher Order Equations with Variation of Parameters 185
 The basics of the method .. 185
 Working through an example ... 186

Part III: The Power Stuff: Advanced Techniques 189

Chapter 9: Getting Serious with Power Series and Ordinary Points .. 191

Perusing the Basics of Power Series ... 191
Determining Whether a Power Series Converges
 with the Ratio Test ... 192
 The fundamentals of the ratio test .. 192
 Plugging in some numbers ... 193
Shifting the Series Index .. 195
Taking a Look at the Taylor Series .. 195
Solving Second Order Differential Equations with Power Series 196
 When you already know the solution 198
 When you don’t know the solution beforehand 204
 A famous problem: Airy’s equation ... 207

Chapter 10: Powering through Singular Points 213

Pointing Out the Basics of Singular Points 213
 Finding singular points ... 214
 The behavior of singular points ... 214
 Regular versus irregular singular points 215
Exploring Exciting Euler Equations ... 219
 Real and distinct roots ... 220
 Real and equal roots .. 222
 Complex roots ... 223
 Putting it all together with a theorem 224
Figuring Series Solutions Near Regular Singular Points 225
 Identifying the general solution ... 225
 The basics of solving equations near singular points 227
 A numerical example of solving an equation near singular points .. 230
 Taking a closer look at indicial equations 235
Chapter 11: Working with Laplace Transforms 239

Breaking Down a Typical Laplace Transform 239
Deciding Whether a Laplace Transform Converges 240
Calculating Basic Laplace Transforms 241
 The transform of 1 242
 The transform of e^{at} 242
 The transform of $\sin at$ 242
Consulting a handy table for some relief 244
Solving Differential Equations with Laplace Transforms 245
 A few theorems to send you on your way 246
 Solving a second order homogeneous equation 247
 Solving a second order nonhomogeneous equation 251
 Solving a higher order equation 255
Factoring Laplace Transforms and Convolution Integrals 258
 Factoring a Laplace transform into fractions 258
 Checking out convolution integrals 259
Surveying Step Functions 261
 Defining the step function 261
 Figuring the Laplace transform of the step function 262

Chapter 12: Tackling Systems of First Order Linear Differential Equations 265

Introducing the Basics of Matrices 266
 Setting up a matrix 266
 Working through the algebra 267
 Examining matrices 268
Mastering Matrix Operations 269
 Equality 269
 Addition 270
 Subtraction 270
 Multiplication of a matrix and a number 270
 Multiplication of two matrices 270
 Multiplication of a matrix and a vector 271
 Identity 272
 The inverse of a matrix 272
Having Fun with Eigenvectors ’n’ Things 278
 Linear independence 278
 Eigenvalues and eigenvectors 281
Solving Systems of First-Order Linear Homogeneous Differential Equations 283
 Understanding the basics 284
 Making your way through an example 285
Solving Systems of First Order Linear Nonhomogeneous Equations 288
 Assuming the correct form of the particular solution 289
 Crunching the numbers 290
 Winding up your work 292
Chapter 13: Discovering Three Fail-Proof Numerical Methods 293
 Number Crunching with Euler’s Method .. 294
 The fundamentals of the method .. 294
 Using code to see the method in action 295
 Moving On Up with the Improved Euler’s Method 299
 Understanding the improvements .. 300
 Coming up with new code ... 300
 Plugging a steep slope into the new code 304
 Adding Even More Precision with the Runge-Kutta Method 308
 The method’s recurrence relation .. 308
 Working with the method in code .. 309

Part IV: The Part of Tens .. 315

Chapter 14: Ten Super-Helpful Online Differential
Equation Tutorials ... 317
 AnalyzeMath.com’s Introduction to Differential Equations 317
 Harvey Mudd College Mathematics Online Tutorial 318
 John Appleby’s Introduction to Differential Equations 318
 Kardi Teknomo’s Page .. 318
 Martin J. Osborne’s Differential Equation Tutorial 318
 Midnight Tutor’s Video Tutorial ... 318
 The Ohio State University Physics Department’s
 Introduction to Differential Equations 318
 Paul’s Online Math Notes .. 319
 S.O.S. Math ... 319
 University of Surrey Tutorial .. 320

Chapter 15: Ten Really Cool Online Differential
Equation Solving Tools ... 321
 AnalyzeMath.com’s Runge-Kutta Method Applet 321
 Coolmath.com’s Graphing Calculator ... 321
 Direction Field Plotter .. 322
 An Equation Solver from QuickMath Automatic Math Solutions .. 322
 First Order Differential Equation Solver 322
 GCalc Online Graphing Calculator .. 322
 JavaView Ode Solver ... 323
 Math @ CowPi’s System Solver ... 323
 A Matrix Inverter from QuickMath Automatic Math Solutions 323
 Visual Differential Equation Solving Applet 323

Index ... 325