Contents

Preface xiii

1 **The Stability of Metal–Organic Frameworks** 1
 Georges Mouchaham, Sujing Wang, and Christian Serre
 1.1 Introduction 1
 1.2 Chemical Stability 2
 1.2.1 Strengthening the Coordination Bond 4
 1.2.1.1 High-Valence Cations and Carboxylate-Based Ligands 4
 1.2.1.2 Low-Valence Cations and High-Complexing Ligands 9
 1.2.1.3 High-Valence Cations and Highly Complexing Ligands 11
 1.2.2 Protecting the Coordination Bond 12
 1.2.2.1 Introducing Bulky and/or Hydrophobic Groups 12
 1.2.2.2 Coating MOFs with Hydrophobic Matrices 13
 1.3 Thermal Stability 14
 1.4 Mechanical Stability 17
 1.5 Concluding Remarks 19
 Acknowledgments 20
 References 20

2 **Tuning the Properties of Metal–Organic Frameworks by Post-synthetic Modification** 29
 Andrew D. Burrows, Laura K. Cadman, William J. Gee, Harina Amer Hamzah, Jane V. Knichal, and Sébastien Rochat
 2.1 Introduction 29
 2.2 Post-synthetic Modification Reactions 30
 2.2.1 Covalent Post-synthetic Modification 31
 2.2.2 Inorganic Post-synthetic Modification 32
 2.2.3 Extent of the Reaction 33
 2.3 PSM for Enhanced Gas Adsorption and Separation 34
 2.3.1 PSM for Carbon Dioxide Capture and Separation 34
 2.3.2 PSM for Hydrogen Storage 35
 2.4 PSM for Catalysis 37
 2.4.1 Catalysis with MOFs Possessing Metal Active Sites 37
 2.4.2 Catalysis with MOFs containing Reactive Organic Functional Groups 39
 2.4.3 Catalysis with MOFs as Host Matrices 41
Contents

2.5 PSM for Sequestration and Solution Phase Separations 42
2.5.1 Metal Ion Sequestration 42
2.5.2 Anion Sequestration 43
2.5.3 Removal of Organic Molecules from Solution 43
2.6 PSM for Biomedical Applications 44
2.6.1 Therapeutic MOFs and Biosensors 44
2.6.2 PSM by Change of Physical Properties 46
2.7 Post-synthetic Cross-Linking of Ligands in MOF Materials 46
2.7.1 Pre-synthetically Cross-Linked Ligands 47
2.7.2 Post-synthetic Cross-Linking of MOF Linkers 47
2.7.3 Post-synthetically Modifying the Nature of Cross-Linked MOFs 49
2.8 Conclusions 51

References 51

3 Synthesis of MOFs at the Industrial Scale 57
Ana D. G. Firmino, Ricardo F. Mendes, João P. C. Tomé, and Filipe A. Almeida Paz

3.1 Introduction 57
3.2 MOF Patents from Academia versus the Industrial Approach 58
3.3 Industrial Approach to MOF Scale-up 64
3.4 Examples of Scaled-up MOFs 66
3.5 Industrial Synthetic Routes toward MOFs 69
3.5.1 Electrochemical Synthesis 69
3.5.2 Continuous Flow 70
3.5.3 Mechanochemistry and Extrusion 72
3.6 Concluding Remarks 74
Acknowledgments 75
List of Abbreviations 75
References 76

4 From Layered MOFs to Structuring at the Meso-/Macroscopic Scale 81
David Rodríguez-San-Miguel, Pilar Amo-Ochoa, and Félix Zamora

4.1 Introduction 81
4.2 Designing Bidimensional Networks 82
4.3 Methodological Notes Regarding Characterization of 2D Materials 84
4.3.1 Morphological and Structural Characterization 84
4.3.2 Spectroscopic and Diffractometric Characterization 88
4.4 Preparation and Characterization 92
4.4.1 Bottom-Up Approaches 92
4.4.1.1 On-Surface Synthesis 92
4.4.1.2 Synthesis at Water/Air or Solvent-to-Solvent Interface 92
4.4.1.3 Synthesis at the Liquid–Liquid Interface 100
4.4.2 Miscellaneous 104
4.4.2.1 Direct Colloidal Formation 104
4.4.2.2 Surfactant Mediated 104
4.4.3 Top-Down Approaches 105
4.4.3.1 Liquid Phase Exfoliation (LPE) 106
5 Application of Metal–Organic Frameworks (MOFs) for CO₂ Separation
Mohanned Mohamedali, Hussameldin Ibrahim, and Amr Henni
5.1 Introduction 123
5.2 Factors Influencing the Applicability of MOFs for CO₂ Capture 124
5.2.1 Open Metal Sites 125
5.2.2 Amine Grafting on MOFs 132
5.2.3 Effects of Organic Ligand 138
5.3 Current Trends in CO₂ Separation Using MOFs 139
5.3.1 Ionic Liquids/MOF Composites 139
5.3.2 MOF Composites for CO₂ Separation 143
5.3.3 Water Stability of MOFs 144
5.3.3.1 Effect of Water on MOFs with Open Metal Sites 146
5.3.3.2 Effects of the Organic Ligand on Water Stability of MOFs 147
5.4 Conclusion and Perspective 150
References 151

6 Current Status of Porous Metal–Organic Frameworks for Methane Storage
Yabing He, Wei Zhou, and Banglin Chen
6.1 Introduction 163
6.2 Requirements for MOFs as ANG Adsorbents 165
6.3 Brief History of MOF Materials for Methane Storage 167
6.4 The Factors Influencing Methane Adsorption 168
6.4.1 Surface Area 169
6.4.2 Pore Size 170
6.4.3 Adsorption Heat 170
6.4.4 Open Metal Sites 170
6.4.5 Ligand Functionalization 171
6.5 Several Classes of MOFs for Methane Storage 171
6.5.1 Dicopper Paddlewheel-Based MOFs 171
6.5.2 Zn₄O-Cluster Based MOFs 180
6.5.3 Zr-Based MOFs 182
6.5.4 Al-Based MOFs 186
6.5.5 MAF Series 189
6.5.6 Flexible MOFs for Methane Storage 190
6.6 Conclusion and Outlook 192
References 195
11.4.1.3 Post-crystallization Cleavage 345
11.4.2 Intentionally Implanted Defects via Defect Engineering 346
11.4.2.1 Defects Introduced during De Novo Synthesis 347
11.4.2.2 Defects Formed by Post-synthetic Treatment 351
11.5 Characterization of Defects 352
11.5.1 Experimental Methods for Analyzing Defects 352
11.5.1.1 Assessing Presence of Defects 352
11.5.1.2 Imaging Defects 355
11.5.1.3 Probing Chemical and Physical Environment of Defects 357
11.5.2 Theoretical Methods 359
11.6 The Role of Defect in Catalysis 363
11.6.1 External Surface Linker Vacancy 363
11.6.2 Inherent Linker Vacancy of Framework Interior 366
11.6.3 Intentionally Implanted Defects 367
11.6.3.1 Implanted Linker Vacancy by TML Strategy 367
11.6.3.2 Implanted Linker Vacancy by LML Strategy 368
11.6.3.3 Implanted Linker Vacancy by Post-synthetic Treatment 369
11.6.3.4 Implanted Linker Vacancy by Fast Precipitation 370
11.6.3.5 Implanted Linker Vacancy by MOF Partial Decomposition 370
11.7 Conclusions and Perspectives 372
Acknowledgment 372
References 372

12 MOFs as Heterogeneous Catalysts in Liquid Phase Reactions 379
Maksym Opanasenko, Petr Nachtigall, and Jiří Čejka
12.1 Introduction 379
12.2 Synthesis of Different Classes of Organic Compounds over MOFs 380
12.2.1 Alcohols 380
12.2.2 Carbonyl and Hydroxy Carbonyl Compounds 383
12.2.3 Carboxylic Acid Derivatives 385
12.2.4 Acetals and Ethers 389
12.2.5 Terpenoids 390
12.3 Specific Aspects of Catalysis by MOFs 392
12.3.1 Concept of Concerted Effect of MOF’s Active Sites: Friedländer Reaction 392
12.3.2 Dynamically Formed Defects as Active Sites: Knoevenagel Condensation 394
12.4 Concluding Remarks and Future Prospects 395
References 396

13 Encapsulated Metallic Nanoparticles in Metal–Organic Frameworks: Toward Their Use in Catalysis 399
Karen Leus, Himanshu Sekhar Jena, and Pascal Van Der Voort
13.1 Introduction 399
13.1.1 Impregnation Methods 400
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1.1.1 Liquid Phase Impregnation</td>
<td>400</td>
</tr>
<tr>
<td>13.1.1.2 Solid Phase Impregnation</td>
<td>401</td>
</tr>
<tr>
<td>13.1.1.3 Gas Phase Impregnation</td>
<td>401</td>
</tr>
<tr>
<td>13.1.2 Assembly Methods</td>
<td>402</td>
</tr>
<tr>
<td>13.2 Nanoparticles in MOFs for Gas and Liquid Phase Oxidation Catalysis</td>
<td>405</td>
</tr>
<tr>
<td>13.3 Nanoparticles in MOFs in Hydrogenation Reactions</td>
<td>411</td>
</tr>
<tr>
<td>13.4 Nanoparticles in MOFs in Dehydrogenation Reactions</td>
<td>424</td>
</tr>
<tr>
<td>13.5 Nanoparticles in MOFs in C–C Cross-Coupling Reactions</td>
<td>430</td>
</tr>
<tr>
<td>13.6 The Use of Nanoparticles in MOFs in Tandem Reactions</td>
<td>433</td>
</tr>
<tr>
<td>13.7 Conclusions and Outlook</td>
<td>437</td>
</tr>
<tr>
<td>References</td>
<td>438</td>
</tr>
<tr>
<td>14 MOFs as Supports of Enzymes in Biocatalysis</td>
<td>447</td>
</tr>
<tr>
<td>Sérgio M. F. Vilela and Patricia Horcajada</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>447</td>
</tr>
<tr>
<td>14.2 MOFs as Biomimetic Catalysts</td>
<td>449</td>
</tr>
<tr>
<td>14.3 Enzyme Immobilization Strategies</td>
<td>454</td>
</tr>
<tr>
<td>14.3.1 Surface Immobilization</td>
<td>455</td>
</tr>
<tr>
<td>14.3.2 Diffusion into the MOF Porosity</td>
<td>456</td>
</tr>
<tr>
<td>14.3.3 In Situ Encapsulation/Entrapment</td>
<td>457</td>
</tr>
<tr>
<td>14.4 Biocatalytic Reactions Using Enzyme–MOFs</td>
<td>459</td>
</tr>
<tr>
<td>14.4.1 Esterification and Transesterification</td>
<td>463</td>
</tr>
<tr>
<td>14.4.2 Hydrolysis</td>
<td>464</td>
</tr>
<tr>
<td>14.4.3 Oxidation</td>
<td>466</td>
</tr>
<tr>
<td>14.4.4 Synthesis of Warfarin</td>
<td>468</td>
</tr>
<tr>
<td>14.4.5 Other Applications Based on the Catalytic Properties of Enzyme–MOFs</td>
<td>468</td>
</tr>
<tr>
<td>14.5 Conclusions and Perspectives</td>
<td>469</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>470</td>
</tr>
<tr>
<td>References</td>
<td>471</td>
</tr>
<tr>
<td>15 MOFs as Photocatalysts</td>
<td>477</td>
</tr>
<tr>
<td>Sergio Navalón and Hermenegildo García</td>
<td></td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>477</td>
</tr>
<tr>
<td>15.2 Properties of MOFs</td>
<td>482</td>
</tr>
<tr>
<td>15.3 Photophysical Pathways</td>
<td>483</td>
</tr>
<tr>
<td>15.4 Photocatalytic H₂ Evolution</td>
<td>490</td>
</tr>
<tr>
<td>15.5 Photocatalytic CO₂ Reduction</td>
<td>493</td>
</tr>
<tr>
<td>15.6 Photooxidation Reactions</td>
<td>494</td>
</tr>
<tr>
<td>15.7 Photocatalysis for Pollutant Degradation</td>
<td>496</td>
</tr>
<tr>
<td>15.8 Summary and Future Prospects</td>
<td>497</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>498</td>
</tr>
<tr>
<td>References</td>
<td>498</td>
</tr>
<tr>
<td>Index</td>
<td>503</td>
</tr>
</tbody>
</table>