Contents

Foreword by Andreas Wild XXV
Nanoelectronics for Digital Agenda by Paul Rübig and Livio Baldi XXXVII
Electronics on the EU’s Political Agenda by Carl-Christian Buhr XLI
Preface by Livio Baldi and Marcel H. van de Voorde XLVII

Volume 1

Part One Fundamentals on Nanoelectronics 1

1 A Brief History of the Semiconductor Industry 3
 Paolo A. Gargini

1.1 From Microelectronics to Nanoelectronics and Beyond 3
1.1.1 You Got to Have Science, Genius! 3
1.1.2 What Would Science Be Without Technology? 5
1.1.3 The Magic of Economics 11
1.1.4 Back to the MOS 14
1.1.5 Technology Innovation Must Go On! 15
1.1.6 Bipolar against MOS! 16
1.1.7 Finally It All Comes Together 20
1.2 The Growth of the Semiconductor Industry: An Eyewitness Report 22
1.2.1 The Making of the PC Industry 23
1.2.2 The DRAM Wars 26
1.2.3 The Introduction of New Materials 30
1.2.4 Microprocessors Introduction Cycle Goes from 4 to 2 Year 31
1.2.5 The 300 mm Wafer Size Conversion 31
1.2.6 The 1990s: Scaling, Scaling, Scaling 33
1.2.7 Equivalent Scaling: Designers Will Never Know What We Have Done 34
1.2.8 Is There Life Beyond the Limits of CMOS and of Von Neumann Architecture? 39
1.2.9 Nanoelectronics to the Rescue 41
1.2.10 The New Manhattan Project 45
Contents

1.2.11 System Requirements and Heterogeneous Integration 48
1.2.12 Evolve or Become Irrelevant 49
1.2.13 Bringing It all Together 51
Acknowledgments 52

2 More-than-Moore Technologies and Applications 53
Joachim Pelka and Livio Baldi
2.1 Introduction 53
2.2 "More Moore" and "More-than-Moore" 54
2.3 From Applications to Technology 56
2.4 More-than-Moore Devices 58
2.4.1 Interacting with the Outside World 58
2.4.2 Powering 59
2.4.3 More-than-Moore Technologies 60
2.5 Application Domains 61
2.5.1 Automotive 61
2.5.2 Health Care 62
2.5.2.1 Wearable Health Care 62
2.5.2.2 Biochips and Lab-on-Chips 63
2.5.3 Safety and Security 65
2.5.4 Industrial Applications 67
2.5.4.1 Integrated Power 67
2.5.4.2 Lighting 69
2.6 Conclusions 70
Acknowledgement 71
References 71

3 Logic Devices Challenges and Opportunities in the Nano Era 73
Frédéric Boeuf
3.1 Introduction: Dennard’s Scaling and Moore’s Law Trends and Limits 73
3.2 Power Performance Trade-Off for 10 nm, 7 nm, and Below 75
3.2.1 Electrostatics of Advanced CMOS Devices 75
3.2.2 Speed Performance Metrics of CMOS Technologies 78
3.2.2.1 Switching Delay Formulation 78
3.2.2.2 Effective Current and MOSFET Electrostatics 80
3.2.3 Parasitics Capacitance in Logic Devices 81
3.2.3.1 Effective Capacitance of an Inverter Switch 81
3.2.3.2 Parasitic Capacitance Calculation Method 83
3.2.4 Power Dissipation in Transistor Devices 84
3.2.4.1 Static Power Dissipation 84
3.2.4.2 Dynamic Power Dissipation 85
3.2.4.3 Limitation of the Minimum Voltage Supply: The V_{th} Variability 87
3.2.5 Summary of the Key Points of CMOS Devices 88
3.3 Device Structures and Materials in Advanced CMOS Nodes 89
3.3.1 SCE Immune MOSFET Architectures 89
3.3.1.1 Fully Depleted SOI, UTB, and UTBB Structures 90
3.3.1.2 FinFET and Double-Gate Devices 93
3.3.1.3 Gate-All-Around Transistors and Nanowires 96
3.3.2 Parasitic Capacitances in Advanced Device Structures 97
3.3.3 High-Mobility Materials and Devices 100
3.3.3.1 Transistor Current in Ultrashort Devices 100
3.3.3.2 Material Engineering for Transport Enhancement 101
3.3.3.3 Choice of Materials for Advanced CMOS 103
References 105

4 Memory Technologies 113
Barbara De Salvo and Livio Baldi

4.1 Introduction 113
4.2 Mainstream Memories (DRAM and NAND): Evolution and Scaling Limits 115
4.3 Emerging Memories Technologies 120
4.3.1 Ferroelectric Memories 120
4.3.2 Magnetic Memories 122
4.3.3 Phase Change Memories 124
4.3.4 Resistive RAMs: OxRAM and CBRAM 126
4.3.5 Other Memory Concepts 129
4.4 Emerging Memories Architectures 130
4.4.1 From Cell to Arrays 130
4.4.2 3D RRAM Architectures 132
4.5 Opportunities for Emerging Memories 133
4.5.1 Storage Class Memory 133
4.5.2 Embedded Memories 133
4.6 Conclusions 134
References 135

Part Two Devices in the Nano Era 137

5 Beyond-CMOS Low-Power Devices: Steep-Slope Switches for Computation and Sensing 139
Adrian M. Ionescu

5.1 Digital Computing in Post-Dennard Nanoelectronics Era 139
5.2 Beyond CMOS Steep-Slope Switches 143
5.3 Convergence of Requirements for Energy-Efficient Computing and Sensing Technologies: Enabling Smart Autonomous Systems for IoE 148
5.4 Conclusions and Perspectives 149
References 151
6 RF CMOS 153
Patrick Reynaert, Wouter Steyaert and Marco Vigilante
6.1 Introduction 153
6.2 Toward 5G and Beyond 153
6.3 CMOS @ Millimeter-Wave: Challenges and Opportunities 156
6.4 Terahertz in CMOS 159
6.5 Conclusions 161
References 162

7 Smart Power Devices Nanotechnology 163
Gaudenzio Meneghesso, Peter Moens, Mikael Östling, Jan Sonsky, and Steve Stoffels
7.1 Introduction 163
7.2 Si Power Devices 164
7.2.1 Discrete versus Integrated Power Devices 164
7.2.2 Low-Voltage MOSFETs 166
7.2.3 High-Voltage MOSFETs 170
7.2.4 IGBTs 173
7.2.5 Device versus Application Landscape 175
7.3 SiC Power Semiconductor Devices 176
7.3.1 High-Voltage Blocking 178
7.3.2 SiC Diodes/Rectifiers 179
7.3.3 Switch Devices 180
7.3.4 JFETs and MOSFETs 180
7.3.5 Bipolar Junction Transistors 182
7.3.6 Ultrahigh Voltage–High-Injection Devices 183
7.3.7 Concluding Remarks and Issues of Concerns for SiC Power Devices 183
7.4 Power GaN Device Technology 184
7.4.1 GaN Material and Device Physics 184
7.4.2 Device Architectures 187
7.4.2.1 HEMT (Schottky) 187
7.4.2.2 MISHEMT 188
7.4.2.3 Vertical Devices 188
7.4.3 Ohmic Contacts 190
7.4.4 E-MODE Devices 191
7.4.4.1 Thin AlGaN Gate Barrier 191
7.4.4.2 Charge Incorporation 191
7.4.4.3 P-GaN or P-AlGaN Gate Structure 192
7.4.4.4 HEMT/FET Hybrid 192
7.4.4.5 Cascode 192
7.4.5 Breakdown Voltage Engineering and Limitations 193
7.4.5.1 Buffer Engineering 193
7.4.5.2 Substrate Implantation 194
7.4.5.3 Substrate Removal 194
7.4.6 Dispersion Phenomena 195
7.4.6.1 Surface-Induced Dispersion 195
7.4.6.2 Buffer-Induced Dispersion 197
7.4.7 Conclusion 197
7.5 New Materials and Substrates for WBG Power Devices 198
References 201

8 Integrated Sensors and Actuators: Their Nano-Enabled Evolution into the Twenty-First Century 205
Frederik Ceyssens and Robert Puers
8.1 Introduction 205
8.2 Sensors 208
8.2.1 Mechanical Sensors 208
8.2.1.1 Pressure Sensors and Microphones 208
8.2.1.2 Gyroscopes and Accelerometers 209
8.2.1.3 Resonators 210
8.2.2 Vision/IR 210
8.2.3 Terahertz (Thz) Imaging 211
8.2.4 Radar/Lidar 212
8.2.5 Gas Sensors 212
8.2.6 Biosensors 213
8.3 Actuators 214
8.3.1 Electrostatic, Electromagnetic, and Piezoelectric 214
8.3.2 Pneumatic, Phase Change, and Thermal Actuators 216
8.3.3 Artificial Muscles 216
8.4 Molecular Motors 217
8.5 Transducer Integration and Connectivity 218
8.6 Conclusion 219
References 220

Part Three Advanced Materials and Materials Combinations 223

9 Silicon Wafers as a Foundation for Growth 225
Peter Stallhofer
9.1 Introduction 225
9.2 Si Availability and Technologies to Produce Hyperpure Silicon in Large Quantities 226
9.2.1 Metallurgical Silicon Production 226
9.2.2 Purification of Metallurgical Silicon via Trichlorosilane 227
9.2.3 Production of Electronic Grade Polysilicon 228
9.2.4 Monocrystalline Silicon Production 229
9.2.4.1 CZ Growth Method 229
9.2.4.2 FZ Growth Method 232
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.5 Process Sequence of Silicon Wafer Production</td>
<td>232</td>
</tr>
<tr>
<td>9.2.5.1 Mechanical Treatment</td>
<td>233</td>
</tr>
<tr>
<td>9.2.5.2 Chemical Treatment</td>
<td>234</td>
</tr>
<tr>
<td>9.2.5.3 Chemical–Mechanical Polishing</td>
<td>234</td>
</tr>
<tr>
<td>9.2.5.4 Final Cleaning and Packaging</td>
<td>235</td>
</tr>
<tr>
<td>9.2.5.5 Epitaxy</td>
<td>236</td>
</tr>
<tr>
<td>9.3 The Exceptional Physical and Technological Properties of</td>
<td>237</td>
</tr>
<tr>
<td>Monocrystalline Silicon for Device Manufacturing</td>
<td></td>
</tr>
<tr>
<td>9.3.1 Doping</td>
<td>237</td>
</tr>
<tr>
<td>9.3.2 Crystal Structure</td>
<td>237</td>
</tr>
<tr>
<td>9.3.3 Silicon Dioxide</td>
<td>238</td>
</tr>
<tr>
<td>9.3.4 Intrinsic Defect Categories</td>
<td>239</td>
</tr>
<tr>
<td>9.3.5 Defect Kinetic Behavior</td>
<td>240</td>
</tr>
<tr>
<td>9.4 Silicon and New Materials</td>
<td>241</td>
</tr>
<tr>
<td>9.5 Example of Actual Advanced 300 mm Wafer Specification for Key</td>
<td>242</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>242</td>
</tr>
<tr>
<td>References</td>
<td>242</td>
</tr>
<tr>
<td>10 Nanoanalysis</td>
<td>245</td>
</tr>
<tr>
<td>Narciso Gambacorti</td>
<td></td>
</tr>
<tr>
<td>10.1 Three-Dimensional Analysis</td>
<td>246</td>
</tr>
<tr>
<td>10.1.1 X-Ray Tomography for the Analysis of TSV</td>
<td>247</td>
</tr>
<tr>
<td>10.1.2 Progress in Atom Probe Tomography for Semiconductor Analysis</td>
<td>249</td>
</tr>
<tr>
<td>10.2 Strain Analysis</td>
<td>250</td>
</tr>
<tr>
<td>10.2.1 State-of-the-Art Strain Analysis by Precession Electron Diffraction</td>
<td>252</td>
</tr>
<tr>
<td>10.2.2 X-Ray for Strain Measurements</td>
<td>253</td>
</tr>
<tr>
<td>10.3 Compositional and Chemical Analysis</td>
<td>256</td>
</tr>
<tr>
<td>10.3.1 Advanced Characterization of HKMG Stacks for Sub-14 nm Technology Nodes</td>
<td>256</td>
</tr>
<tr>
<td>10.3.2 TEM Composition Analysis of NMOS Device</td>
<td>259</td>
</tr>
<tr>
<td>10.4 Conclusions</td>
<td>260</td>
</tr>
<tr>
<td>Glossary</td>
<td>261</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>262</td>
</tr>
<tr>
<td>References</td>
<td>262</td>
</tr>
</tbody>
</table>

Part Four Semiconductor Smart Manufacturing 265

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Front-End Processes</td>
<td>267</td>
</tr>
<tr>
<td>Marcello Mariani and Nicolas Possémé</td>
<td></td>
</tr>
<tr>
<td>11.1 A Standard MOS FEOL Process Flow</td>
<td>267</td>
</tr>
<tr>
<td>11.2 Cleaning</td>
<td>268</td>
</tr>
</tbody>
</table>
11.2.1 Wet Cleaning 268
11.2.2 Advanced Aqueous Cleaning 268
11.2.3 Nonaqueous Advanced Cleaning Approaches 269
11.2.4 Advanced Drying Techniques 270
11.3 Silicon Oxidation 271
11.4 Doping and Dopant Activation 272
11.4.1 Coimplantation 273
11.4.2 Defect Engineering and Surface Treatment 273
11.4.3 Flash Anneal, Laser Annealing, and Nonthermal Activation Techniques 274
11.4.4 Plasma Doping 274
11.4.5 Molecular Monolayers Doping 275
11.5 Deposition 275
11.5.1 Thin Film Deposition 275
11.5.2 Atomic Layer Deposition 277
11.5.3 Other Monolayer Deposition Techniques 279
11.6 Etching 279
11.6.1 Wet Etching 279
11.6.2 Dry Etching 280
11.6.3 Limitation of Plasma Etching for Critical Dimension Control at the Atomic Scale 281
11.6.4 Existing Solutions 284
11.6.5 Plasma Etch Challenges for Nanotechnologies: ALE Wishes or Reality? 285
References 285
Bibliography 288

12 Lithography for Nanoelectronics 289
Kurt Ronse
12.1 Historical Perspective of Lithography for Nanoelectronics 289
12.1.1 Traditional “Geometrical Scaling” by Optical Lithography 289
12.1.2 From Lithography to Patterning as Driver for Geometrical Scaling 291
12.1.3 Layout Optimization for Improved Printability 292
12.2 Challenges for Lithography in Future Technology Nodes 292
12.2.1 193 nm Immersion Lithography with Multiple Patterning 292
12.2.2 Insertion of Extreme UV Lithography 294
12.2.2.1 EUVL Progress in Source 295
12.2.2.2 EUVL Progress in Masks 295
12.2.2.3 EUVL Progress in Resist 297
12.2.2.4 EUV Insertion into N7 298
12.2.2.5 EUV Lithography Extendibility toward N5 and Beyond 301
12.2.3 Directed Self-Assembly (DSA) 302
12.2.3.1 DSA Principles and Some DSA Flows 302
12.2.3.2 DSA Challenges and Progress 303
12.2.3.3 DSA Insertion into N7 307
12.2.3.4 DSA Extendibility 309
12.2.4 Alternative Lithographies: E-Beam Maskless, Nanoimprint 309
12.2.4.1 Parallel E-Beam Direct Write Status and Challenges 309
12.2.4.2 Nanoimprint Lithography Status and Challenges 311
12.3 Pattern Roughness: The Biggest Challenge for Geometrical Scaling 311
12.4 Lithography Options in Previous and Future Technology Nodes 313
References 315

13 Reliability of Nanoelectronic Devices 317
Anthony S. Oates and K.P. Cheung
13.1 Introduction 317
13.2 Interconnect Reliability Issues 318
13.2.1 Reliability of Porous Inter-Metal-Level Dielectrics (ILD) 318
13.2.2 Reliability of Cu Conductors 320
13.3 Transistor Reliability Issues 322
13.4 Radiation-Induced Soft Errors in Silicon Circuits 325
13.5 Conclusions 327
Acknowledgments 328
References 328

Volume 2

Part Five Circuit Design in Emerging Nanotechnologies 331

14 Logic Synthesis of CMOS Circuits and Beyond 333
Enrico Macii, Andreas Calimera, Alberto Macii, and Massimo Poncino
14.1 Context and Motivation 333
14.2 The Origin: Area and Delay Optimization 335
14.2.1 Two-Level Optimization 336
14.2.2 Multilevel Optimization 337
14.2.3 Sequential Synthesis 339
14.3 The Power Wall 340
14.3.1 Dynamic Power 340
14.3.2 Leakage Power 343
14.4 Synthesis in the Nanometer Era: Variation-Aware 345
14.4.1 Logic Synthesis for Manufacturability and PV Compensation 346
14.4.2 Thermal-Aware Logic Synthesis 347
14.4.3 Aging-Aware Logic Synthesis 348
14.5 Emerging Trends in Logic Synthesis and Optimization 350
14.5.1 Logic Synthesis for Approximate Computing 351
14.5.2 Approximate Logic Synthesis (ALS) 352
14.5.3 Design of Approximate IPs 353
14.5.4 Post-CMOS and Beyond Silicon 354
14.5.4.1 Emerging Devices 354
14.5.4.2 New Logic Primitive and Possible Implementation Styles 355
14.6 Summary 358
References 358

15 System Design in the Cyber-Physical Era 363
Pierluigi Nuzzo and Alberto Sangiovanni-Vincentelli
15.1 From Nanodevices to Cyber-Physical Systems 363
15.2 Cyber-Physical System Design Challenges 365
15.2.1 Modeling Challenges 365
15.2.2 Specification Challenges 367
15.2.3 Integration Challenges 368
15.3 A Structured Methodology to Address the Design Challenges 370
15.3.1 Coping with Complexity in VLSI Systems: Lessons Learned 370
15.3.2 Platform-Based Design 373
15.3.3 Contracts: An Overview 375
15.3.3.1 Assume-Guarantee Contracts 375
15.3.3.2 Horizontal and Vertical Contracts 378
15.4 Platform-Based Design with Contracts and Related Tools 380
15.4.1 Requirement Formalization and Validation 380
15.4.2 Platform Component-Library Development 384
15.4.3 Mapping Specifications to Implementations 386
15.4.3.1 Architecture Design 387
15.4.3.2 Control Design 388
15.5 Conclusions 390
Acknowledgments 390
References 390

16 Heterogeneous Systems 397
Daniel Lapadatu
16.1 Introduction 397
16.2 Heterogeneous Systems Design 400
16.2.1 Design Considerations 401
16.2.2 Design Analysis 402
16.2.2.1 Mechanical Design 404
16.2.2.2 Electrical Design 405
16.2.2.3 Thermal Design 409
16.2.2.4 Reliability Design 410
16.2.3 Assembly and Testing Design 412
16.3 Heterogeneous Systems Integration 414
16.4 Testing the Performance and Reliability of Heterogeneous Systems 418
16.5 Conclusions 423
Acknowledgments 424
References 424
20 Smart Energy 471
Moritz Loske
20.1 Energy Revolution – Why Energy Does Have to Become Smart? 471
20.1.1 Smart Energy and Systems 473
20.1.2 Smart Energy Effect-Matrix 474
20.1.2.1 Smart Generation 474
20.1.2.2 Smart Storage 475
20.1.2.3 Smart Transmission and Distribution 475
20.1.2.4 Smart Consumption 475
20.1.2.5 Energy Management 475
20.2 Applications of Smart Energy Systems and their Societal Challenges 476
20.2.1 Multi-energy Smart Grid 476
20.2.2 High Voltage Transmission and Distribution Systems 478
20.2.3 Microenergy Grid 480
20.2.4 Energy Harvesting Systems 481
20.2.5 Mobility 482
20.3 Nanoelectronics as Key Enabler for Smart Energy Systems 483
20.3.1 Key Products for Smart Energy systems 483
20.3.2 Technological Requirements and Challenges 484
20.3.2.1 Requirements of Power-Electronics 484
20.3.2.2 Requirements of Micro-/Nanoelectronics 485
20.4 Summary and Outlook 486
References 487

21 Validation of Highly Automated Safe and Secure Vehicles 489
Michael Paulweber
21.1 Introduction 489
21.2 Societal Challenges 490
21.3 Automated Vehicles 491
21.4 Key Requirements to Automated Driving Systems 493
21.5 Validation Challenges 496
21.6 Validation Concepts 497
21.7 Challenges to Electronics Platform for Automated Driving Systems 498
21.8 Conclusion 499
References 499
22 Nanotechnology for Consumer Electronics 501
Hannah M. Gramling, Michail E. Kiziroglou, and Eric M. Yeatman

22.1 Introduction 501

22.1.1 2D Materials and Flexible Electronics 502

22.2 Communications 503

22.3 Energy Storage 506

22.4 Sensors 509

22.4.1 Motion Processing Units 510

22.4.2 Nanosensors for Biomedical Applications 511

22.4.3 Optical Sensors 513

22.5 Internet-of-Things Applications 514

22.6 Display Technologies 515

22.6.1 Self-Illuminating Displays 516

22.6.2 Reflective Displays 517

22.6.3 Transparent Conductors 518

22.7 Conclusions 520

References 520

Part Seven From Device to Systems 527

23 Nanoelectronics for Smart Cities 529
Joachim Pelka

23.1 Why “Smart Cities”? 529

23.2 Infrastructure: All You Need Is Information 531

23.3 Nothing Will Work Without Energy 535

23.4 Application: What Can Be Done with Information 537

23.4.1 Smart Buildings 538

23.4.2 Mobility and Transport 540

23.4.3 Production and Logistics 543

23.5 Trusted Hardware: Not Only for Data Security 546

23.6 Closing Remarks 548

Acknowledgement 548

24 Europe Positioning in Nanoelectronics 553
Andreas Wild

24.1 What is the “European” Industry 553

24.2 European Strategic Initiatives 554

24.2.1 The European Commission 554

24.2.2 ECSEL Joint Undertaking 554
24.2.3 Combining Instruments 555
24.3 Policy Implementation Instruments 556
24.3.1 In The World 556
24.3.2 In Europe 557
24.4 Europe's Market Position 558
24.4.1 European Market Share: Consumption 559
24.4.2 European Market Share: Supply 560
24.4.3 European Manufacturing Capacities 563
24.5 European Perspectives 564

25 Thirty Years of Cooperative Research and Innovation in Europe: The Case for Micro- and Nanoelectronics and Smart Systems Integration 567
Dirk Beernaert and Eric Fribourg-Blanc
25.1 Introduction 567
25.1.1 The European R&D Program in the European R&D Landscape 569
25.2 Nanoelectronics and Micro-Nanotechnology in the European Research Programs 570
25.3 A Bit of History Seen from an ICT: Nanoelectronics Integrated Hardware Perspective 571
25.4 ESPRIT I, II, III, and IV 572
25.5 The 5th Framework (1998–2002) 574
25.7 The 7th Framework (2007–2013) 576
25.8 H2020 (2014–2020) 579
25.9 Some Results of FP7 and H2020 581
25.9.1 At Program Level 581
25.9.2 The ICT Research in FP7 582
25.9.3 Micro/Nanoelectronics and Smart Systems 582
25.10 Results of the JTI ENIAC and ARTEMIS 583
25.11 An Analysis of Beyond CMOS in FP7 and H2020 584
25.12 MEMS, Smart Sensors, and Devices Related to Internet of Things 586
25.13 From FP6 to FP7: An integrated approach for micro-nanoelectronics and micro-nanosystems 587
25.13.1 Research cooperation between the Framework and Eureka initiatives 587
25.14 Enabling the EU 2050+ Future: Superintelligence, Humanity, and the "Singularity" 589
25.15 EU 2050±: Driven by a Superintelligence Ambient 590
25.16 Conclusion 592

26 The Education Challenge in Nanoelectronics 595
Susanna M. Thon, Sean L. Evans, and Annastasiah Mudiwa Mhaka
26.1 Introduction 595
26.2 Traditional Programs in Nanoelectronics Education 596
26.2.1 Fields of Study 596
26.2.2 Topics of Study 596
26.2.3 Example Programs 598
26.3 Challenges in Nanoelectronics Education 600
26.3.1 Bridging the Disciplines 600
26.3.2 Theory versus Practice in Classwork 601
26.3.3 Resource Availability 601
26.3.4 New Applications 602
26.3.5 Industry and Translation 602
26.3.6 Degree Levels 603
26.3.7 Cultural Challenges 604
26.4 New Cross-Discipline Applications 604
26.5 Future Education Programs 605
26.5.1 Scenario A: Modification of Current University Approach 608
26.5.2 Scenario B: Comprehensive Nanoelectronics Education System 608
Acknowledgments 610
References 610

27 Conclusions 613
Robert Puers, Livio Baldi, and Marcel Van de Voorde 613

Index 617