INDEX

b = boxed section; f = figure; t = table.

acetylation 190–1
adiponectin 126
adults
care of 206–7
diagnosis of RTT in 25, 33–4
affective disorders 188–9
Aicardi, Jean xvii, xix
alternative feeding methods 139
Alzheimer disease 44, 190
amines, biogenic 184, 185, 199
amino acids 148
aminoglycoside molecules 178
Amir, Ruthie xx
Amos, Pat xxii
AMPA receptor 186
anaemia 201, 204
Angelman syndrome 28t, 29, 108
ankle–foot orthoses (AFOs) 202
anticonvulsants 176
antidepressants 99, 185–6
Apartopoulos, Flora xxiii
apnea 116, 117, 119–20
defined 119
see also sleep apnea
apraxia 52, 71
Archer, Hayley xxiii, xxiv
Arnold-Chiari malformation 78
ASOs (antisense oligonucleotides) 188
astrocytes 161, 162f, 166, 185, 192
atonia 94
atypical RTT
diagnosis 6–7
and epilepsy 111–12
pathogenesis 30
severity 45
variant forms 6–7, 7f, 30–1, 45–7
see also congenital variant; early seizure variant;
encephalopathy; preserved speech variant
Australia, RTT studies 45, 63–4, 65–6, 67, 71,
76–8, 82, 92–3, 134, 212
Australian Rett Syndrome Database 64, 76–8, 82, 93
autism 2, 18t
RTT distinguished from 16, 25
B-endorphins 199
Bailey, Mark xxiii
Banerjee, Abishek 165
Barnes, Katherine 56
Bayley Scales of Infant Development 50
BDNF gene 31, 34, 71, 149, 178
and breathing abnormalities 121
and epilepsy 103, 106, 110–12
genetic manipulation 44
levels of expression 164
recombinant 181–2
regulation 188
research targeting 44–5, 180, 181–2
behaviour 56–7, 199–200
range of abnormalities 199
studies 56, 57
treatment 57, 199–200
Ben Zeev, Bruria 174
benzodiazepines 98, 110, 112, 123,
165, 186
Bettelheim, Bruno xix
Bird, Adrian xxiii, 120, 163, 211–12
bolus formula feeding 134
bone marrow transplants 192–3
bone(s)
biomarkers 135
cortical thickness 134, 136–7
disorders 2, 134–8
mass 134
mineral assessment 137–8
mineral deficits 134, 135
morphology 135
see also fractures; low bone mass

217
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>botulinum neurotoxin type A (BoNT-A)</td>
<td>85</td>
</tr>
<tr>
<td>brain</td>
<td></td>
</tr>
<tr>
<td>metabolic properties</td>
<td>190–1</td>
</tr>
<tr>
<td>neurotransmitters</td>
<td>159–61</td>
</tr>
<tr>
<td>size 153–4, 156f, 183</td>
<td></td>
</tr>
<tr>
<td>see also grey matter; hippocampus</td>
<td></td>
</tr>
<tr>
<td>breath-holding see apnea</td>
<td></td>
</tr>
<tr>
<td>breathing abnormalities</td>
<td>19, 95, 116–23</td>
</tr>
<tr>
<td>as diagnostic factor</td>
<td>27, 28t</td>
</tr>
<tr>
<td>in males 185</td>
<td></td>
</tr>
<tr>
<td>need for further studies</td>
<td>123, 184–5</td>
</tr>
<tr>
<td>neuroanatomic origins</td>
<td>121–3</td>
</tr>
<tr>
<td>neuronal mechanisms</td>
<td>117</td>
</tr>
<tr>
<td>phenotype 117, 121</td>
<td></td>
</tr>
<tr>
<td>progressive acquisition</td>
<td>120–1</td>
</tr>
<tr>
<td>relationship with emotional state 116–17, 123</td>
<td></td>
</tr>
<tr>
<td>studies 116, 117–18, 120–3</td>
<td></td>
</tr>
<tr>
<td>treatments 123, 165–6; potential 184–6</td>
<td></td>
</tr>
<tr>
<td>types 116, 117–18</td>
<td></td>
</tr>
<tr>
<td>variability 116–17</td>
<td></td>
</tr>
<tr>
<td>see also apnea; hyperventilation</td>
<td></td>
</tr>
<tr>
<td>Burford, Bronwen</td>
<td>xxiv</td>
</tr>
<tr>
<td>Byiers, Brianne</td>
<td>55</td>
</tr>
<tr>
<td>C-terminal</td>
<td></td>
</tr>
<tr>
<td>deletions 30, 64, 66, 70, 76–8, 93, 105–6</td>
<td></td>
</tr>
<tr>
<td>domains 143–4, 145</td>
<td></td>
</tr>
<tr>
<td>telopeptide crosslinks</td>
<td>135</td>
</tr>
<tr>
<td>truncations 41–2, 105, 128</td>
<td></td>
</tr>
<tr>
<td>calcium, intake/absorption</td>
<td>136</td>
</tr>
<tr>
<td>carbamazepine 109, 110</td>
<td></td>
</tr>
<tr>
<td>casein-free diet 132</td>
<td></td>
</tr>
<tr>
<td>CDKL5 gene 6–7, 10, 30, 47, 148, 211</td>
<td></td>
</tr>
<tr>
<td>and epilepsy 29, 103, 104, 111</td>
<td></td>
</tr>
<tr>
<td>and recurrence 36, 37</td>
<td></td>
</tr>
<tr>
<td>cerebral folate deficiency</td>
<td>190</td>
</tr>
<tr>
<td>cerebral palsy 75, 84</td>
<td></td>
</tr>
<tr>
<td>cerebrolysin 183</td>
<td></td>
</tr>
<tr>
<td>choline 190</td>
<td></td>
</tr>
<tr>
<td>supplementation 129</td>
<td></td>
</tr>
<tr>
<td>Christiansen syndrome</td>
<td>29</td>
</tr>
<tr>
<td>Cianfaglione, Rina</td>
<td>56</td>
</tr>
<tr>
<td>citalopram 185</td>
<td></td>
</tr>
<tr>
<td>Clarke, Angus xxiii</td>
<td></td>
</tr>
<tr>
<td>clonidine 98</td>
<td></td>
</tr>
<tr>
<td>CNTNAP2 gene 28t, 45</td>
<td></td>
</tr>
<tr>
<td>cognition 50–3, 57</td>
<td></td>
</tr>
<tr>
<td>studies 51–2</td>
<td></td>
</tr>
<tr>
<td>Coleman, Mary xix</td>
<td></td>
</tr>
<tr>
<td>communication 53–6, 57, 204–5</td>
<td></td>
</tr>
<tr>
<td>augmentative 205</td>
<td></td>
</tr>
<tr>
<td>intervention/management 54–6, 205</td>
<td></td>
</tr>
<tr>
<td>skills 53–4</td>
<td></td>
</tr>
<tr>
<td>studies 54–5</td>
<td></td>
</tr>
<tr>
<td>congenital variant 6, 30, 45, 46–7</td>
<td></td>
</tr>
<tr>
<td>creatine 190</td>
<td></td>
</tr>
<tr>
<td>CSF (cerebrospinal fluid) 28t, 159–60</td>
<td></td>
</tr>
<tr>
<td>curriculum 205–6</td>
<td></td>
</tr>
<tr>
<td>de Lima Veloso, Renata</td>
<td>51–2</td>
</tr>
<tr>
<td>Demeter, K 50–1</td>
<td></td>
</tr>
<tr>
<td>dendrites 154, 162f, 165, 183</td>
<td></td>
</tr>
<tr>
<td>Derecki, Noël C. 192</td>
<td></td>
</tr>
<tr>
<td>desipramine 175, 185–6</td>
<td></td>
</tr>
<tr>
<td>dextromethorphan 186</td>
<td></td>
</tr>
<tr>
<td>Diagnostic and Statistical Manual of Mental Disorders 25</td>
<td></td>
</tr>
<tr>
<td>diagnostic criteria (for RTT) xi–xii, 1–10, 50, 62, 198</td>
<td></td>
</tr>
<tr>
<td>Abnormal muscle tone 2, 5t</td>
<td></td>
</tr>
<tr>
<td>atypical 6–7</td>
<td></td>
</tr>
<tr>
<td>Breathing disturbances when awake 5t</td>
<td></td>
</tr>
<tr>
<td>Bruxism when awake 5t</td>
<td></td>
</tr>
<tr>
<td>current consensus 3–4</td>
<td></td>
</tr>
<tr>
<td>Diminished response to pain 2, 5t</td>
<td></td>
</tr>
<tr>
<td>evolution 3, 22</td>
<td></td>
</tr>
<tr>
<td>Growth retardation 5t</td>
<td>24, 126</td>
</tr>
<tr>
<td>Impaired sleep pattern 5t</td>
<td></td>
</tr>
<tr>
<td>Inappropriate laughing/screaming spells 2, 5t</td>
<td></td>
</tr>
<tr>
<td>Intense eye communication - “eye pointing” 5t</td>
<td></td>
</tr>
<tr>
<td>Peripheral vasomotor disturbances 5t, 7f</td>
<td></td>
</tr>
<tr>
<td>Scoliosis/kyphosis 5t</td>
<td></td>
</tr>
<tr>
<td>Small cold hands and feet 5t, 7f</td>
<td></td>
</tr>
<tr>
<td>summarised 1–3, 14</td>
<td></td>
</tr>
<tr>
<td>typical 4–5</td>
<td></td>
</tr>
<tr>
<td>see also growth abnormalities; hand movements; laughter/screaming</td>
<td></td>
</tr>
<tr>
<td>Diaz, Karin xvii</td>
<td></td>
</tr>
<tr>
<td>diazepam 200</td>
<td></td>
</tr>
<tr>
<td>diet(s)</td>
<td></td>
</tr>
<tr>
<td>inappropriate 127</td>
<td></td>
</tr>
<tr>
<td>specialized 132</td>
<td></td>
</tr>
<tr>
<td>see also nutrition</td>
<td></td>
</tr>
<tr>
<td>diphenhydramine 99</td>
<td></td>
</tr>
<tr>
<td>Djukic, Alexandra 174</td>
<td></td>
</tr>
<tr>
<td>DNA (deoxyribonucleic acid) 142–3</td>
<td></td>
</tr>
</tbody>
</table>
Index

deletions/arrangements 43
MeCP2 interactions with 142–4, 145
methyltransferases 189–90
testing 37
dopamine 184, 200
dronabinol 200
DXA (dual-energy X-ray absorptiometry) 134, 137, 139
dyspraxia 51, 67
dysrhythmia, awake-breathing 19
dystonia 75
eye gaze 54, 204
Eyre, Janet xxiv

early seizure variant 6, 29, 111
pathogenesis 30
severity 45, 46–7
education 205–6
EEG (electroencephalograph) readings 29, 52, 94–5, 157
and epilepsy 20, 103–4, 106–8, 107–8ff, 112
spikes 186
studies 106–8
EGR2 gene 149
Einspieler, Christa xxiv, 63
elbow extensions 203
emesis 128–9
emotional responses 56–7, 188–9, 199–200, 203, 205
encephalopathy 6–7, 27, 30
endocrine dysfunction 126
energy requirements 129
enteral formulae 133
environmental enrichment 188–9, 206–7
epilepsy 19–20, 103–12, 212
age at onset 103, 105
and EEG 20, 103–4, 106–8, 112
genotype/phenotype relationships 105–6
pathophysiology 110–11
prevalence 103, 105, 112
in RTT variants 111–12
severity 104–5
studies 105–8
treatment 108–10, 112
see also seizures
eye gaze 54, 204
Families
extended 36–7
Genetic counselling 32–7
Impact of sleep disorders 93, 99–100
Partnerships centred on 198
reproductive issues 35
risk of recurrence 35–6
Transmission of syndrome 35–7
feeding problems 18, 127–9, 189, 204
alternative feeding methods 133–4, 139, 204
nutrient losses 128–9
pathophysiology 128
prevalence 127–8
therapies 132–3, 138, 204
females, predominance among RTT sufferers 2, 24, 25–6, 170, 211
fingolimod 175, 181–2
food preparation 127–8
foot deformities 84–6, 200
altered muscle tone 85
management 85–6
soft tissue contracture 85
surgery 86
forme fruste variant 45, 47
FOXP1 gene 7, 27–8, 30, 32, 36, 47
fractures 77b, 86–7
assessment/treatment 87, 201, 202
association with low bone mass 136–7
pathophysiology 137
prevalence/risk factors 86, 136–7
prevention 86–7, 201
studies 137
Fragile X Syndrome 190
France, RTT studies 45, 175
Francis of Assisi, St xx
Friedrich ataxia 190
GABA (gamma aminobutyric acid)/GABAergic function 8, 157, 161, 180, 186
and breathing abnormalities 121–2, 123, 165–6
and epilepsy 111
gastrointestinal dysfunction 20–1
gastrostomy 133, 204
gene sequencing 9–10, 30, 45
dosage 179, 193
pitfalls 179–80, 192, 193
positive results 180
dosage 179, 193
pitfalls 179–80, 192, 193
positive results 180
families
extended 36–7
Genetic counselling 32–7
framing 32–3
Index

prenatal testing 35, 37
reproductive issues 35
testing procedure 33–5
wider family 36–7
genetics 24–38, 41–7
history 25–6
modifiers 31–2
molecular 30–1, 38
new technologies 30
unsuccessful areas of research 26
see also genetic counselling
genome 146–7
genotype(s)
 classification 42
 relationship with phenotype 7–8, 41, 64, 70, 71, 76–7, 210–11
 studies 41, 43, 105–6
gentamicin 178
ghrelin 126, 128, 189
glatiramer acetate 174, 181–2
glial cells 192
 glutamate 186
 gluten-free diet 132
Goutières, Franoise xvii
grey matter, reductions 66, 154
gross motor function 68–71
 longitudinal course 71
 predictors 70–1
 studies 68–9
growth abnormalities 2–3, 16, 125–39
 bone health 134–8
 divergence from mean 125–6
 history 130
 measurements 131
 pathophysiology 126–7
 prevalence 126
 relationship with nutrition 127–34
 studies 131–2, 139
 see also bone abnormalities; nutrition; overweight; underweight
Guy, Jacky 163, 211–12
Hagberg, Bengt xxii, 3, 14–15, 22, 56, 62, 153, 210
Hagne, Ingrid 107
hand function 51, 66–7, 202–3
 changing patterns 202–3
 longitudinal course 67
medical aids 203
predictors 67
tapping 104
see also stereotypies
Hanefeld variant see early seizure variant
Hansen, Stig xxiii
HATs (histone acetyltransferases) 190
HDACs (histone deacetylases) 190–1
heterochromatins see HP1 proteins
Hetzroni, Orit E. 54
hip dysplasia 82–4
 assessment 84
 case studies 77b
 early diagnosis 84
 prevalence/risk factors 83
 radiographic measurement 82f, 84
 support shorts 202
 surgical intervention 84
hippocampus 110, 154, 155–7, 158f, 164, 181
homeostasis 161, 166
horse riding 202
Hoyer, Steny xx
HP1 proteins 147
Hunter, Kathy xviii, 22, 210
Hunter, Stacie xix–xx, xxi
Huntington disease 190, 191
hyperventilation 117–19
hypotonia 200, 201–2
hypoxemia 118
ID genes 149
IGF-1 (insulin-like growth factor 1) 57, 164–5
 research targeting 180–1, 182–3
immunization 24
infants
 behaviour 199
 developmental assessment 50–1
 developmental stages 17t
 feeding 18
 mobility 200, 202
 motor skills 63–4
 scoliosis 77b
 seizures 20
 sleeping patterns 92
 stereotypies 64
 testing for RTT 7, 33–4
 typical vs. RTT development 63–4
 insomnia 19
Index

International Classification of Functioning, Disability and Health (WHO 2001) 63
International Rett Syndrome Association (IRSA) xx, International Rett Syndrome Foundation 16, 22
International Rett Syndrome Phenotype Database 64
iPSCs (induced pluripotent stem cells) 153, 155–7
Israel, RTT studies 45, 174
Janisch, Rudolph 120
Jian, Le 105
Joubert spectrum 28, 29
Julu, Peter xxiii
Kappos, Ludwig 175
Katz, David M. 166
Kaufmann, Walter E 56, 166
Kerr, Alison 22, 210
ketamine 175
ketogenic diet 132
Kolliker-Fuse region 122
kyphosis 76–82
language skills 16
laughing/screaming
as diagnostic behaviour 2
nocturnal 92, 93
legs, unequal length 200
leptin 125, 126
life expectancy 22, 176, 198
lovastatin 175–6
low bone mass
clinical features 134
and fractures 136–7
mineral assessment 137–8
pathophysiology 135
prevalence 134
risk factors 135–6
studies 134, 137–8
support 138
treatment 138
lung function 76
MECP2 gene/MeCP2 protein
3’ UTR 44, 187–8
binding to DNA 145
domains/isoforms 142–4, 143f, 161
dosage 179, 193
downstream targets 180–7, 189
function 142, 146–7, 161; conflicting models 147
interacting partners 147–8
as modulator of diseases (other than RTT) 150–1
mutations see MECP2 mutations
phosphorylation 148–9, 180
proteolysis 143–4, 180
read-through 178
regulating genes 150
replacement 178–80, 185, 191–3, 211–12; dosage 179
research targeting 176–80
structure 144–5
studies 57, 153–5, 163–4
target genes 149–50
MECP2 mutations
and breathing abnormalities 121–3
carrying 35–7
as cause of RTT 1, 27–8, 30, 41, 45–6, 47, 62, 211
correlation with phenotype 7–9, 27
downstream consequences 186–7
duplications 112
as genetic modifiers 31–2
impact on interactions between MECP2 and cofactors 148
isoform-specific 144
non-correlation with epilepsy 103, 105, 111
non-identical with RTT 4, 6–7, 210
nonsense mutations 42, 163–4
significant research 26–7
spectrum 9–10
studies 41–2, 163–4, 176–80
tests for 9–10
variants 41–2, 62–3, 105, 142–3, 177 (see also specific variants at p.Arg...)
mbd (methyl-CpG binding domain) 142–3, 144
males
breathing abnormalities 185
conditions analogous to RTT 27, 29
MECP2 duplications 112
(minority of) RTT sufferers 2
life expectancy 22, 176, 198
lovastatin 175–6
ketamine 175
low bone mass
clinical features 134
and fractures 136–7
mineral assessment 137–8
pathophysiology 135
prevalence 134
risk factors 135–6
studies 134, 137–8
support 138
treatment 138
lung function 76
Index

medication see therapies; treatment; specific symptoms and medications
melatonin 98, 1006
menstruation 21, 87
methylation 129, 189–90
microglia 161, 166, 192–3
micronutrients 129–30
microRNAs (miRNAs) 44, 149–50, 187–8
milk formulae 136, 139
Mironov, S.L. 122
mitochondria 187
abnormalities 25, 26
mobility see motor abnormalities
mood swings 2
mortality 22
Moser, Hugo xviii, xx
Motil, Kay 212
motor abnormalities 62–72, 200–3
improvements 198
in infancy 63–4, 200
late deterioration phase 75
physical therapy 71–2
treatment 200, 201–2
see also gross motor function; hand function; stereotypies
MRI (magnetic resonance imaging) 154
Mullen Scales of Early Learning 52, 55
muscle tone 85
musculoskeletal system 75
see also orthopedics
music therapy 205
myoclonus 104

Naidu, SakkuBai 175
nasogastric tube feeding 133
Natural History Study 16, 19, 21, 64, 91–2
Netherlands, RTT studies 55
Neul, Jeffrey L 50
neurobiology 153–66
studies 153, 155–7, 156f, 158f, 159
treatment bases 161–6
neurodegeneration, absence of 153–4
neurons
abnormalities 155–7, 156f
activity/functions 117, 148, 150
appearance 154, 156f
development 180
repression 180
transduced 179–80
neuropeptides 183, 184
neurotransmitters 159–61, 165–6, 199
research targeting 183–6
NGF (nerve growth factor) 180–1
NMDA (N-methyl-D-aspartate) receptors 159–60, 160f, 174–5, 186
Nomura, Yoshiko xxiii
non-coding RNAs (ncRNAs) 149–50
nonsense mutations 163–4
noradrenaline 199
norepinephrine 184–6
North American Database 22
NTD (N-terminal domain) 143–4
nutrition 127–34
alternative feeding methods 133–4, 139
assessment 130–1, 138, 204
and bone mass 136
energy requirements 129, 138
expert advice 204
feeding problems 127–9
growth measurements 131
inappropriate 127
meal observation 131
medical history 130
micronutrients 129–30
nutrient losses 128–9
nutritional history 130
physical examination 131
positioning/oral therapy 132–3
requirements 132, 138–9
social history 130
specialized diets 132
studies 131–2, 139
support 132–4

occupational therapy 132–3, 204
Omega-3 acids 129–30
oral motor dysfunction see feeding problems
orthopedics 75–87
areas for further study 87
see also foot deformities; fractures;
hip dysplasia; scoliosis
osteoporosis 2, 201
Index

overweight
(low) levels of occurrence 125–6
risks of 18

pain, reduced sensitivity to 87
p.Arg106Trp mutation 20, 42–3, 64, 112, 142–3
p.Arg133Cys mutation 42, 46–7, 54, 56–7, 62, 64,
67, 70, 76, 100b, 105, 128, 142–3, 145
p.Arg168X mutation 31, 42–3, 45, 62, 64, 67, 70,
86, 105, 106, 126, 135, 137, 178
p.Arg255X mutation 20, 42–3, 56, 62, 64, 93, 105,
112, 126, 178
p.Arg270X mutation 42–3, 56, 62, 63, 64, 67, 70,
86, 93, 126, 137, 178
p.Arg294X mutation 20, 42, 46–7, 56, 62, 64, 66,
67, 70, 76, 93, 105, 112
p.Arg294X mutation 20, 42, 46–7, 56–7, 63, 64,
70, 76, 93, 105, 112
p.Thr158Ala mutation 46–7
p.Thr158Met mutation 20, 42–3, 46–7, 66, 93, 105,
112, 126, 135, 212
Parkinson disease 178, 179, 190, 200
partnerships, creation of 198
Peters, Sarika U. 52
pharyngeal dysfunction see feeding problems
phenotype 7–9, 26
breathing abnormalities 117, 121, 165–6
epilepsy 105–6
hand functions 67
modification 44–5
restoration 192–3
scoliosis 76–8
severity 42–3
studies 41, 43, 105–6, 210–11
Philippart, Michel 203
phospholipids 186–7
phosphorylation 148–9
physical therapy 71–2, 138
studies 72
physiotherapy 78
polyunsaturated fatty acids 129–30, 186–7
Portugal, RTT studies 64
Prechtl, Heinz xxiv
pregnancy 24
advance decision-making 35
Prescott, Robin xxiv
preserved speech variant 6, 45–6, 111–12
prognosis, long-term 34
proteolysis 143–4, 180
psychosocial support 206
puberty 21, 1006
quality of life 21
radiography 137–8
Ramos, Ovidio xvii
Rare Disease Clinical Research Consortium 19
reactive oxygen species 186–7
read-through 178
recovery (of lost skills) 1–2, 16
recurrence, risks of 35–6, 37
regression
age at onset 64
development pre- and post- 15–16
as diagnostic factor xi, 3–4, 6, 24
lack of clear evidence of 34
motor skills 64
seizures subsequent to 103–4
testing for 7
rehabilitation 198–207
REM sleep 93–4
reproductive issues (for parents) 35
Rett, Andreas xi, xvii–xviii, xx, xxii, 16, 18, 22, 57,
62, 106, 111, 170
Rett Syndrome (RTT)
clinical features 16–22
clinical studies 16, 19, 21, 64, 87, 91, 170–6,
172–4r, 210–13 (see also specific areas of study)
complexity 1–2, 22, 161, 170–1
developmental features 15–16
diagnostic procedure/counselling 33–5
differential diagnoses 27–30, 28r
discovery xi
early diagnosis 7
future prospects 210–14
medical classification 1–3, 153–4, 161,
191, 193, 198
non-progressive development 1–2, 198
quality of life 21
reversibility 191–3
severity 3, 4, 42–3, 45, 47, 155
social symptoms/side-effects 188–9
spectrum 9–10
stages 15, 75
as synaptic disorder 155–8, 156r, 158r
temporal profile 14–15, 14b

223
Index

types 4–7, 27–30
see also atypical RTT; diagnostic criteria; treatment; typical RTT
rigidity 200
RNAs 149–50, 187–8
Robertson, Laila 56
Rubin, Corinne 54
Rubinstein-Taybi Syndrome 190
sarizotan 171
Schedule for Oral Motor Assessment 127–8
scoliosis 20, 42, 69–70, 76–82, 201
assessment 78
case studies 77b
epidemiology/risk factors 76–8
growing systems 79–81
management 78, 201
origins 76
physiotherapy 78
severe 81
surgical care 80b
surgical intervention 77b, 79–81
surgical outcomes 77b, 81–2, 81f
Segawa, Masaya xxiii
seizures 2, 19–20, 103–12
age at onset 103–4
and bone mass deficit 136
nocturnal 93
reduction 183
severity/frequency 104, 183
treatment 108–10, 112
types 104
see also early seizure variant; epilepsy
serotonin 57, 184, 199
Sessler, Daniel 175
sex (of sufferers) 4, 24
sexual maturation 21
Sigafoos, Jeff 55
Simacek, Jessica 55
Sin3a co-repressor 146, 147, 189
sleep
age-dependent changes 93
components 93–4
pathophysiology 93–4
see also REM sleep; sleep dysfunction
sleep apnea 92, 95, 117
sleep dysfunction 19, 91–100
adult vs. child remedies 98
age of onset 92, 95
bedtime routine 97, 97b
breathing abnormalities 95, 96, 116–17, 118–19
case studies 100b
co-existing medical problems 96, 96b, 99
daytime sleeping 92, 93
diagnostic testing 96
diary 94, 96b
and epilepsy 106–7
evaluation 94–5, 96b
impact 93, 99–100
management 95–9, 96–7bb
medication 98–9, 100b
need for further studies 99–100
non-medical management 97, 97b
pathophysiology 94
prevalence 91, 93, 99
studies 91–3, 94–5, 99, 212
therapy 19
soft tissue contracture 85
Southall, David xxii
speech, late onset 204
spinal fusion 77b, 79–81
outcomes 81–2
splints 203
SSRIs (selective serotonin reuptake inhibitors) 57
standing, need to encourage 202
Stasolla, Fabrizio 55
Stauder, Johannes E.A. 52
Stephenson, John xxii
stereotypies xix–xx, 2, 18, 52, 203
age at onset 64
decrease with age 65–6
examples 64–5, 65f
mechanism 66
medical aids 203
predictors 65–6
sulthiame 109
surgery
foot deformities 86
hip dysplasia 84
scoliosis 77b, 79–82
Sweden, RTT studies 55, 67, 82
Switzerland, RTT studies 175
synaptic abnormalities 155–8, 156f, 158f, 164, 165
long-term potentiation/depression 157, 188
studies 184–6
synaptic plasticity 148, 157, 159, 184, 188
Index

tamoxifen 192
Tarquinio, Daniel 175
testing 33–4
 in infancy 7
 prenatal 35, 37
thalamus 159
therapies
 aquatic 202
 clinical trials 171–6
 communicative 205
 current 176
 epigenetic 189–91
 future, potential 176–91
 musical 205
 oral 132–3, 138, 204
 research into 34–5
 sleep dysfunction 19
 symptomatic 188–9
 transnational research 176–7
see also gene therapy; occupational therapy; physical therapy; physiotherapy
Thomas, G.H. 26
topiramate 109–10
Townend, Gillian S. 55
transgene expression 179–80
TRD (transcriptional repression domain) 142–3, 144–5
treatment (of RTT) 161–6, 170–93
 clinical trials 170–6, 172–4tr; current 171–6; previous 171
 future directions 212–14
 genetic 163–4
 pharmacological interventions 164–5
see also under specific symptoms
triheptanoin 175
Tropea, Daniela 164–5
typical RTT
 association with MECP2 mutation 8, 30
 diagnosis 4–5, 5f
United States
 clinical trials 174–6, 181–2
 educational system 205–6
 Food and Drug Administration 181–2
RTT studies 16, 19, 21, 51–2, 64, 68–9, 69f, 91–2, 134, 210–11
Urbinowicz, Anna 54
valproic acid 109, 112
Valsalva maneuver 116, 119
variants of unknown significance 30–1
Vertical Expandable Prosthetic Titanium Rib (VEPTR) 79
VGLUT1 (vesicular glutamate transporter) 192
Vignoli, Aglaia 52
Vineland Adaptive Behaviour Scales 50
Vitamin D
 deficiency 136, 138
 supplements 136, 201
ω-3 PUFA acids 186–7
 pilot studies 187
walking 68–71
 inability 77b, 81, 103, 200
 late development 202
 post-operative improvements 77b, 81f
 studies 68–9, 69f
Wandin, Helena 55
Webb, Peter xxiv
Weese-Mayer, D.E. 95, 117–18
weight
 insufficient/excessive 125–6
 measurement 131
see also overweight
weight bearing, development of 202
West syndrome 30
Witt-Engerström, Ingegerd 15
working heart-brainstem preparation (WHBP) 122
wrist weights 203
X-chromosome inactivation 31, 34, 43–5, 135–6, 3178
 genetic modifiers 44–5
 other potential modifiers 44
X-rays 77b, 82f
Zappella variant see preserved speech variant
Zoghbi, Huda xx, xxiii