Contents

List of Contributors, xv
Foreword, xix

1 Acute cyanide toxicity, 1
   Andrea R. Allen, Lamont Booker, and Gary A. Rockwood
   1.1 Introduction, 1
   1.2 Pharmacokinetic properties of cyanide, 2
      1.2.1 Absorption, 2
      1.2.2 Distribution, 3
      1.2.3 Metabolism, 3
      1.2.4 Elimination, 4
      1.2.5 Other Determinants of Toxicity, 4
   1.3 Pharmacodynamic properties of cyanide, 4
   1.4 Acute cyanide toxicity – routes of administration, 5
      1.4.1 Inhalation toxicity, 7
      1.4.2 Oral cyanide toxicity, 8
      1.4.3 Dermal toxicity, 10
      1.4.4 Subcutaneous toxicity, 11
      1.4.5 Intravenous toxicity, 11
      1.4.6 Intraperitoneal toxicity, 11
      1.4.7 Antidotes for acute cyanide poisoning, 11
   1.5 Neurological and behavioral effects following acute cyanide exposure, 12
      1.5.1 Neurodegenerative effects and implications, 13
      1.5.2 Behavioral abnormality assessments in animal models, 13
   1.6 Summary, 14
      References, 14

2 Chronic cyanide exposure, 21
   Jason D. Downey, Kelly A. Basi, Margaret R. DeFreytas, and Gary A. Rockwood
   2.1 Introduction, 21
   2.2 Sources of chronic cyanide exposure, 21
   2.3 Chronic cyanide exposure in human disease, 23
   2.4 Experimental models of chronic cyanide exposure, 30
      2.4.1 Chronic cyanide exposure in pregnancy and development, 30
      2.4.2 Damage to the central nervous system by chronic cyanide exposure, 32
      2.4.3 Other pathologies in animal models of chronic cyanide exposure, 34
   2.5 Conclusion, 35
      References, 36

3 Physicochemical properties, synthesis, applications, and transport, 41
   David E. Thompson and Ilona Petrikovics
   3.1 Introduction, 41
   3.2 Natural sources of cyanide, 41
      3.2.1 Natural abiotic synthesis of cyanide, 41
      3.2.2 Biosynthesis of cyanide (Plant, fungi, bacteria, and animal synthesis of cyanogenic glycosides and lipids, and cyanide), 42
   3.3 Isolation and characterization of cyanide, 43
      3.3.1 Early human encounters with cyanide from plant sources, 43
      3.3.2 Scientific discovery and structure determination of cyanide, 43
      3.3.3 Physicochemical properties of cyanide and cyanogenic compounds, 44
   3.4 Industrial production of cyanide, 44
      3.4.1 Hydrocyanic acid synthesis, 44
4 Cyanide metabolism and physiological disposition, 54

Gary E. Isom, Joseph L. Borowitz, and Alan H. Hall

4.1 Introduction, 54

4.2 Metabolism and toxicokinetics, 55

4.2.1 Toxicokinetics of cyanide, 56

4.2.2 Toxicodynamics of cyanide, 56

4.2.3 Enzyme-mediated cyanide biotransformation, 57

4.2.4 Sulfurtransferase substrate pool, 57

4.2.5 Cyanide metabolism by rhodanese, 58

4.2.6 Biochemical characterization of rhodanese, 59

4.2.7 Exogenously administered rhodanese as a cyanide antidote, 60

4.2.8 Cyanide metabolism by 3-mercaptopyruvate sulfurtransferase, 61

4.2.9 MST substrates as cyanide antidotes, 61

4.2.10 Minor enzymatic pathways of cyanide metabolism, 61

4.2.11 Thiosulfate reductase, 62

4.2.12 Cystathionase $\gamma$-lyase, 62

4.2.13 Albumin, 62

4.3 Non-enzymatic detoxification of cyanide, 63

4.4 Diseases associated with altered cyanide metabolism, 64

4.5 Metabolism and endogenous generation of cyanide, 65

References, 65

5 Biochemical mechanisms of cyanide toxicity, 70

Gary E. Isom and Joseph L. Borowitz

5.1 Introduction, 70

5.2 Cytochrome oxidase inhibition and mitochondrial dysfunction, 72

5.3 Oxidative stress and inhibition of cellular oxidative defense, 75

5.4 Cyanide-induced changes in cellular $Ca^{2+}$ regulation, 76

5.5 Cyanide-induced cell death and post-intoxication lesions, 77

5.6 Alteration of intermediary metabolism and lactic acidosis, 78

5.7 Conclusion, 78

References, 79

6 Environmental toxicology of cyanide, 82

Samantha L. Malone, Linda L. Pearce, and Jim Peterson

6.1 Introduction, 82

6.2 Environmentally relevant chemistry of cyanides, 83

6.3 Occupational concerns, 87

6.4 Ground/surface water, 87

6.5 Exposure to cyanogens through diet, 89

6.6 Dietary health hazards, 89

6.7 Cassava consumption, 90

6.8 Fires and smoke, 91

6.8.1 Fire smoke, 91

6.8.2 Cigarette smoke, 92

6.9 Conclusion, 92

References, 93

7 Cyanide in the production of long-term adverse health effects in humans, 98

Julie Cliff, Hipolito Nzwalo, and Humberto Muquingue

7.1 Introduction, 98

7.1.1 Sources of cyanide exposure, 98

7.1.2 Detoxification in the body, 100

7.2 Long-term adverse health effects, 100

7.2.1 Introduction, 100

7.2.2 Tropical ataxic neuropathy, 100

7.2.3 Konzo, 101

7.2.4 Pathogenesis and etiological role of cassava in TAN and konzo, 101

7.2.5 Prevention of TAN and konzo, 104

7.2.6 Treatment of TAN and konzo, 104

7.2.7 Tobacco amblyopia, 104

7.2.8 Subacute combined degeneration of the spinal cord, 105
12.3.3 Allylnitrile, 175
12.3.4 Butyronitrile, 175
12.3.5 Isobutyronitrile, 175
12.3.6 Glycolonitrile, 176
12.3.7 Lactonitrile, 176
12.3.8 Malononitrile, 176
12.3.9 Propionitrile, 177
12.3.10 Succinonitrile, 177
12.3.11 Acetone cyanohydrin, 178

12.4 Antidotal treatment, 178
12.4.1 Animal studies, 178
12.4.2 Human case reports, 178

12.5 Summary, 179
Acknowledgments, 179
References, 179

13 The special case of acrylonitrile (CH$_2$=CH–C≡N), 181
Dana B. Mirkin
13.1 Introduction – clinical vignettes, 181
13.2 Physical and chemical properties, 182
13.3 History – preparation – manufacture, 182
13.4 Occurrence, 183
13.5 Compounds and uses, 183
13.6 Hazardous exposures, 184
13.7 Toxicokinetics, 184
13.7.1 Absorption, 184
13.7.2 Metabolism, 185
13.8 Mode of action, 185
13.9 Clinical effects, 186
13.9.1 Acute, 186
13.9.2 Chronic, 187
13.9.3 Cancer, 188
13.9.4 Reproduction and development, 189
13.10 Diagnosis – toxicity, 189
13.11 Treatment – antidote, 190
13.12 Biological monitoring, 191
13.13 Exposure limits, 191
References, 192

14 Cyanide in chemical warfare and terrorism, 195
René Pita
14.1 Cyanides as chemical warfare agents, 195
14.1.1 World War I, 196
14.1.2 The interwar period, 197
14.1.3 World War II, 198
14.1.4 The Cold War, 199
14.2 Cyanide and chemical terrorism, 200
14.2.1 Extortion activities, 200
14.2.2 State terrorism, 200
14.2.3 Nationalist and separatist terrorist groups, 201
14.2.4 Left-wing terrorist groups, 201
14.2.5 Right-wing terrorist groups and “lone wolves”, 201
14.2.6 Apocalyptic cults, 202
14.2.7 Jihadi terrorism: al-Qaeda, 202
14.3 Conclusions, 206
References, 206

15 Cyanide-induced neural dysfunction and neurodegeneration, 209
Gary E. Isom and Joseph L. Borowitz
15.1 Introduction, 209
15.2 Cyanide exposure and manifestations of toxicity, 210
15.3 Cyanide-induced histotoxic hypoxia and metabolic dysfunction, 210
15.3.1 Cyanide distribution to brain, 210
15.3.2 Inhibition of brain cytochrome oxidase and aerobic metabolism, 211
15.3.3 Actions independent of histotoxic hypoxia, 211
15.4 Neurochemical actions of cyanide in the nervous system, 212
15.4.1 Mobilization of cytosolic calcium and neuronal injury, 212
15.4.2 NMDA receptor activation, 213
15.4.3 Role of oxidative stress in cyanide-induced neurotoxicity, 213
15.4.4 Interaction of cyanide with central neurotransmitters, 213
15.5 Cyanide-induced brain injury and neurodegeneration, 214
15.5.1 Mechanism of cyanide-induced brain injury, 214
15.5.2 Cyanide-induced cell death and selective vulnerability of the brain, 215
15.6 Endogenous cyanide generation in CNS, 215
15.7 Cyanide-induced neurological disorders, 216
  15.7.1 Delayed neurologic sequelae of acute intoxication: Parkinson-like syndrome, 216
  15.7.2 Neurologic disorders associated with chronic cyanide exposure, 217
15.8 Conclusion, 220
References, 220

16 Cyanides and cardiotoxicity, 224
  J.-L. Fortin, T. Desmettre, P. Luporsi and G. Capellier
  16.1 Introduction, 224
  16.2 Physiopathology, 224
  16.3 Clinical aspects, 226
  16.4 Treatment, 228
  16.5 Conclusion, 230
  References, 230

17 Respiratory effects of cyanide, 232
  A. Eisenkraft A. Falk and Y. Bentur
  17.1 Background, 232
  17.2 Mechanisms of the respiratory effects of cyanide, 233
    17.2.1 General, 233
    17.2.2 The carotid body, 233
    17.2.3 The nucleus tractus solitarius, 235
    17.2.4 Brainstem respiratory control centers, 235
    17.2.5 The respiratory control in cyanide poisoning – the paradigm of hypoxia, 237
  17.3 Clinical manifestations and animal studies, 238
    17.3.1 Acute exposure, 238
    17.3.2 Subchronic/repeated exposure, 240
  17.4 Management of cyanide poisoning and its respiratory effects, 241
    17.4.1 General, 241
    17.4.2 Diagnosis of cyanide poisoning, 242
    17.4.3 Supportive treatment, 242
    17.4.4 Antidotes, 242
    17.4.5 Respiratory beneficial effects of cyanide antidotes, 243
  17.4.6 Respiratory and related adverse effects of cyanide antidotes, 243
  17.4.7 Hyperbaric oxygen, 244
  17.5 Conclusion, 245
  References, 245

18 The analysis of cyanide in biological samples, 249
  Brian A. Logue and Brendan L. Mitchell
  18.1 Introduction, 249
  18.2 Biological matrices, 249
  18.3 Sample storage, 251
  18.4 Sample preparation, 251
  18.5 Spectroscopy, 252
  18.6 Gas chromatography, 254
  18.7 High-performance liquid chromatography, 256
  18.8 Capillary electrophoresis, 257
  18.9 Electrochemical methods, 258
  18.10 Sensors, 258
  18.11 Cyanide metabolites, 260
  18.12 Insights on cyanide analysis, 260
  References, 260

19 Postmortem pathological and biochemical diagnosis of cyanide poisoning, 268
  Daniel Lugassy and Lewis Nelson
  19.1 Introduction, 268
  19.2 Cyanide pathology and antemortem presentation, 268
  19.3 Exposures, 269
    19.3.1 Occupational, 269
    19.3.2 Homicide/suicide, 269
    19.3.3 Combustion, 269
  19.4 Autopsy features, 269
  19.5 Biochemical analysis, 271
  19.6 Risk to autopsy staff, 273
  References, 274
  Further reading, 275

20 Medicolegal and forensic factors in cyanide poisoning, 276
  Jorn Chi-Chung Yu and Ashraf Mozayani
  20.1 Introduction, 276
  20.2 Forensic practice for the investigation of cyanide poisoning, 277
    20.2.1 Crime scene investigation, 277
    20.2.2 Medical examination, 277
20.2.3 Toxicological analysis, 278
20.3 Discussion, 278
20.3.1 Forensic factors associated with cyanide poisoning cases, 278
20.3.2 Cyanide salt and hydrogen cyanide gas, 278
20.3.3 The bitter almond odor and livor mortis, 278
20.3.4 Gastric burns and cherry red blood, 278
20.3.5 Elevated cyanide concentration from toxicological samples, 279
20.3.6 Alternative biomarkers for cyanide poisoning, 279
20.3.7 Requirement to confirm a cyanide poisoning case, 280
20.4 Conclusion, 280
References, 280

21 Brief overview of mechanisms of cyanide antagonism and cyanide antidotes in current clinical use, 283
 Alan H. Hall
21.1 Introduction, 283
21.2 Methemoglobin inducers, 283
  21.2.1 Amyl nitrite/sodium nitrite, 283
  21.2.2 4-DMAP (4-Dimethylaminophenol), 284
21.3 Sulfur donors, 285
  21.3.1 Sodium thiosulfate, 285
21.4 Direct cyanide chelating agents, 285
  21.4.1 Hydroxocobalamin, 285
  21.4.2 Dicobalt EDTA (Kelocyanor®), 286
21.5 Conclusion, 286
References, 286

22 Cyanide antidotes in clinical use: 4-dimethylaminophenol (4-DMAP), 288
 Alan H. Hall
22.1 Introduction, 288
22.2 Mechanism of action, 288
22.3 Experimental data, 289
22.4 Published clinical data, 289
22.5 Adverse/side effects, 290
22.6 Conclusions, 291
References, 291

23 Cyanide antidotes in clinical use: dicobalt EDTA (Kelocyanor®), 292
 Alan H. Hall
23.1 Introduction, 292
23.2 Mechanism of action, 292
23.3 Experimental data, 293
23.4 Published clinical data, 293
23.5 Adverse/side effects, 294
23.6 Conclusions, 294
References, 294

24 Amyl nitrite, sodium nitrite, and sodium thiosulfate, 296
 Richard J. Geller
24.1 History and chemistry, 296
24.2 Theoretical bases for use/mechanism of action, 297
  24.2.1 Amyl nitrite and sodium nitrite, 298
  24.2.2 Sodium thiosulfate, 299
24.3 Pharmacokinetics, 299
24.4 How supplied, 299
24.5 Indication and dosing of intravenous antidotes, 300
  24.5.1 Cyanide poisoning, 300
24.6 Adverse effects, 301
24.7 Conclusions, 301
References, 301

25 Cyanide antidotes in current clinical use: hydroxocobalamin, 304
 Alan H. Hall and Stephen W. Borron
25.1 Background and historical perspective, 304
25.2 Pharmacology, 305
  25.2.1 Structure, 305
  25.2.2 Mechanisms of action, 305
  25.2.3 Pharmacokinetics, 305
25.3 Experimental animal studies, 306
25.4 Human experience, 306
25.5 Dosage and route of administration, 306
  25.5.1 Adult, 306
  25.5.2 Children, 306
  25.5.3 Elderly, 306
  25.5.4 Pregnancy, 306
25.6 Adverse effects, 306
25.7 Laboratory interferences, 307
25.8 Comparison with other antidotes, 307
25.9 Conclusion, 307
    References, 307

26 Cyanide antidotes in development and new methods to monitor cyanide toxicity, 309
    Matthew Brenner, Sari Mahon-Brenner, Steven E. Patterson, Gary A. Rockwood and Gerry R. Boss
26.1 Introduction, 309
26.2 Cobinamide and sulfanegen, 310
    26.2.1 Cobinamide, 310
    26.2.2 Sulfanegen, 312
26.3 Other cyanide antidotes in development, 313
26.4 New research methods to diagnose and monitor cyanide poisoning and therapy, 313
    26.4.1 Laboratory diagnosis of cyanide poisoning, 313
    26.4.2 In vivo methods to assess cyanide poisoning, 314
26.5 Conclusions, 316
    References, 316

27 Recent perspectives on alpha-ketoglutarate, 317
    R. Bhattacharya
27.1 Introduction, 317
27.2 Cyanide toxicity and its treatment, 318
27.3 A-KG as a cyanide antidote, 318
27.4 The need for an oral antidote, 321
27.5 A-KG as an oral antidote, 321
    27.5.1 Protection Studies, 321
    27.5.2 Pharmacokinetics, 322
    27.5.3 Stability analysis, 322
    27.5.4 Toxicity studies, 323
27.6 Some key functions of A-KG, 323
27.7 Efficacy of A-KG against other toxins, 324
27.8 Role of A-KG as a nutritional supplement, 324
27.9 Conclusion, 325
    Acknowledgments, 325
    References, 325

28 Azide poisonings, 330
    Thomas L. Kurt and Wendy Klein-Schwartz
28.1 Introduction, 330
28.2 Lack of cyanide antidote efficacy, 331
28.3 Uses of sodium azide, 331
28.4 Review of reported sodium azide human poisoning cases, 331
28.5 Human experimental exposures to sodium azide and hydrazoic acid, 332
28.6 Signs and symptoms, 332
28.7 Fatal cases, 332
28.8 Historical perspective, 333
28.9 Mechanism(s) of action, 333
28.10 Autopsy findings, 333
28.11 Other outcomes, 333
28.12 Occupational health issues, 333
28.13 Occupational/environmental exposure limits/recommendations, 334
28.14 Laboratory evaluation, 334
28.15 Conclusion, 334
    Acknowledgments, 334
    Conflict of interest, 334
    References, 334

Index, 337