Index

A
acousto-optic modulator (AOM) 137
aliphatic polyaminocarboxylate and carboxylate probes 154–63
lab-on-a-chip technology 162–3
molecular probes and conjugates 155–60
nanoparticle probes 160–163
alkali/alkaline earth metal ion sensors 237–40
ancillary components 67
angular overlap model (AOM) 25–7
angular wave functions 7
anion binding affinities 235–6
antenna effect 40–44
chemosensors 232, 236
energy transfer 40–44
heterometallic complexes 347–8
intersystem crossing 40–42
singlet and triplet states 40–42
spectroscopic techniques 53, 55
two-photon absorption 207–14, 220–221, 224–5
anti-epidermal growth factor 223
AOM see acousto-optic modulator; angular overlap model
aromatic carboxylate anions 255–6
arteriovenous malformation (AVM) 147
autofluorescence 131, 200
AVM see arteriovenous malformation
aza crown ethers 237–9, 255
azamacrocyclic probes 163–5

B
Bacillus spp. 134, 171
back energy transfer 40–41, 45, 310
barium 239–40
Bethe’s notation 29–31
β-cell autoantibodies 159
β-diketonate probes 144–54
inorganic–organic hybrid probes 154
metal-enhanced luminescent probes 152–4
molecular probes and conjugates 146–51
multi-photon excitation imaging 154
nanoscopic probes 151–2
bioimaging 125–96
aliphatic polyaminocarboxylate and carboxylate probes 154–63
animal studies 287–90
β-diketonate probes 144–54
cell studies 283–7
chemosensors 245, 247–9, 260–264
circularly polarised luminescence 109–14
classical optical microscopy 127–8
commercial instruments 143–4
concepts and definitions 125–7, 283
deep-tissue optical imaging 291–3
dendrimers 178–81
direct excitation Ln(III) luminescence spectroscopy 318–20
eyearly instrumental developments 134–40
heterometallic complexes 348
hydrogen peroxide assays 178–9
inorganic–organic hybrid probes 154
lab-on-a-chip technology 162–3
lanthanide luminescent bioprobes and bioconjugates 127, 133, 134–40, 144–82
luminescence microscopy 127–44
macrocyclic probes 163–71
metal-enhanced luminescent probes 152–4
molecular β-diketonate probes and conjugates 146–51
molecular polyaminocarboxylate and carboxylate probes and conjugates 146–51
multi-photon excitation imaging 154

Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials, First Edition.
Edited by Ana de Bettencourt-Dias.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
bioimaging (Continued)
nanoparticle polyaminocarboxylate and carboxylate probes 160–163
nanoprobes for single-object imaging 222–3
nanoscopic β-diketone probes 151–2
optical sectioning 271, 283, 291–2
optimization of instrumentation 140–144
optimised bioprobe design considerations 217–21
principle of luminescence microscopy 128–31
principle of time-resolved luminescence microscopy 131–4
self-assembled triple helix bioprobe 171–7
spectroscopic techniques 67–8
time-resolved luminescence microscopy 127, 131–44
two-photon absorption 200–201, 203–5, 217–23
up-converting nanoparticles 127, 180–181, 271, 283–93
biotinylated concanavalin A 138
biphotonic microscopy imaging 215–25
bioimaging 200–201, 203–5, 217–23
nanoprobes for single-object imaging 222–3
NIR-to-NIR imaging 223–5
optimised bioprobe design considerations 217–21
proof of concept 215–17
bipyridine-based ligands 156
bis(benzimidazole)pyridines 171
bis-bipyridine-phosphineoxide ligands 250–251
bis-carboxylate anions 258
bis-pyrazolyl-triazine ligands 210, 213
Bohr Magneton 20
branching ratios 37–8
bridging ligands 335–6, 342–7, 349
bright field microscopy 128, 171
bromide 253, 259

C
cadmium 246
calcium 237–40
cationic chelates 177
CCDs see charge-coupled devices
CD see circular dichroism
central field approximation 4–9
cerium 289, 294, 322
CEST see chemical exchange saturation transfer
charge-coupled devices (CCDs) 57, 63, 66, 127–8, 136–8, 141–3, 149
charge transfer state mediated sensitization 209–11
chemical exchange saturation transfer (CEST) 322–6
chemosensors 231–67
alkali metal ions 237–40
bioimaging 245, 247–9, 260–264
covalent versus self-assembled receptor design 235–7
d-block metal ions 240–247
design principles 233–60
emission based sensors 231–2
halides and pH 250–260
hypersensitivity 233
interactions with DNA and biological systems 260–264
luminescence lifetime 232–3
luminescent labels and molecular beacons 247–9
photophysical properties of Ln(III) sensors 231–3
ratiometric peaks 233
receptor site and antenna component design 234–5
sensors for anions 249–60
sensors for cations 237–49
spectral form 233
chirality
biological relevant systems 109–14
circularly polarised luminescence 77–8, 93–115
concepts and definitions 77–8
lanthanide(III) complexes with achiral ligands 94–8
lanthanide(III) complexes with chiral ligands 99–109
chitosan 150–151
chloride 251, 253, 259
chopper wheels 141
chromium 336, 340, 349–50
circular dichroism (CD) 78–9, 84
circularly polarised luminescence (CPL) 77–123
applications 93–109
artifacts in CPL measurements 90–91
biological relevant systems 109–14
calibration and standards 88–91
chirality 77–8, 93–115
chiroptical tools 78–9
concepts and definitions 77–9
DPA-based achiral ligands 95–8
general theory 79–82
1,2-HOPO and IAM-based chiral
ligands 99–100
instrumentation 84–8
lanthanide(III) complexes with achiral
ligands 94–8
lanthanide(III) complexes with chiral
ligands 99–109
lanthanide(III)-containing systems 93–4
macrocycle-type chiral ligands 106–9
measurements 84–93
phosphineoxide or phosphate-based chiral
ligands 102–4
pinene-bipyridine based chiral ligands 104
proposed instrumental improvements 91–3
Pybox-derived chiral ligands 100–102
2,6-pyridinedicarboxamide-based chiral
ligands 102–4
racemic mixtures: following circularly
polarised excitation 94–5
racemic mixtures: perturbation of the
equilibrium 95–8
sensing through coordination to antenna/
receptor groups 112–14
sensing through coordination to metal
centre 109–12
spectral characteristics and interpretation
82–4
theoretical principles 79–84
clathrin/caveolae-independent cytosis 168
clathrin/caveolae-independent cytosis 168
click chemistry 344–6
cobalt 242, 336, 340
cobalt 242, 336, 340
computed tomography (CT) 293–5
confocal microscopy 130–131, 168
conformational isomerism 340–341
continuous-wave excitation 54, 65, 85–7
copper 240–242, 244–6, 334, 336, 341
core nanoparticles 277–8
core–shell nanoparticles 277–9, 282–3
Coulomb interactions 9–10
coumarins 209–10
covalently linked chemosensors 235–7
CPL see circularly polarised luminescence
cross-polarised light illumination 128
cryptates
chemosensors 239–40
macrocyclic probes 169–71
Cryptosporidium spp. 133, 143, 148–9
crystal field parameters
angular overlap model 25–6
estimation of 21–7
point charge electrostatic model 21–5
simple overlap model 26–7
symmetry 14–18
see also Stark effect
CT see computed tomography
cyclams 237–9
cyclens
chemosensors 237–9, 255–60, 262
macrocyclic probes 165–9
cytotoxicity 165, 170–171, 174, 284, 290
Czerny–Turner optical design 64
D
dark-field illumination 128
Daturainnoxia 135
d-block metals
heterometallic complexes 334–7,
340–341, 344–9
ion sensors 240–247
deep-tissue optical imaging 291–3
dendrimers 178–80, 181
deoxyribose nucleic acid (DNA) 205, 260–264
Dexter energy transfer 43, 348, 350
diabetes mellitus 159
diastereomeric isomers 311–12
Dictyostelium discoideum 138, 155
differential photon counter (DPC) 86
differential transition probability 80–81
diffraction gratings 64
diffuse reflectance 71–2
dipicamides 210
dipicolinates (DPA)
bioimaging 171
two-photon absorption 207–8, 210–214,
218–20, 223–5
dipole–dipole energy transfer 42–4
direct excitation Ln(III) luminescence
spectroscopy 303–30
anion binding in catalysis and sensing
317–20
bioimaging 318–20
defining the Ln(III) coordination
sphere 303–4, 311–17
Index

direct excitation Ln(III) luminescence spectroscopy (Continued)
Eu(III) complex speciation in solution 311
excitation spectra of geometric isomers 311–12
inner-sphere coordination of anions 312–14, 319–20, 322–3, 326
ligand ionization 314–17
 Ln(III) catalysts 303–4, 317–18
 Ln(III) emission spectroscopy 307–8
 Ln(III) excitation spectroscopy 306–7
 luminescence properties of lanthanide ions 304–6
 luminescence resonance energy transfer 310, 316, 318
 MRI contrast agents 303–4, 320–326
 number of excitation peaks 311
 optical sensors 303–4, 318–20
 phosphate ester binding and cleavage 317–18
time-resolved Ln(III) luminescence spectroscopy 308–10, 317
displacement assays 257
DNA see deoxyribose nucleic acid
DPA see dipicolinates
DPC see differential photon counter
dysprosium
 circularly polarised luminescence 83, 93, 99
direct excitation Ln(III) luminescence spectroscopy 306–10, 322
 heterometallic complexes 335
 up-converting nanoparticles 295

E
ECD see electronic circular dichroism
ED see electric dipole
EDCD see emission detected circular dichroism
EDS see energy-dispersive X-ray spectroscopy
EELS see electron energy-loss spectroscopy
effective brightness 218
efficient magnetic moment 20
Einstein’s coefficient of spontaneous emission 38
electric dipole (ED) transitions 27–32, 34–9
electron energy-loss spectroscopy (EELS) 279–80, 283
electronic circular dichroism (ECD) 78
electron-multiplying charge-coupled devices (EMCCDs) 141–3, 149
electron transfer 237–8, 310, 348–9
electrostatic repulsion energy 8
EMCCDs see electron-multiplying charge-coupled devices
emission-based sensors 231–2
emission detected circular dichroism (EDCD) 93
emission efficiency 39–42, 70–72
endocytosis 167–8, 174
energy-dispersive X-ray spectroscopy (EDS) 279–81
energy transfer
antenna effect 40–41, 42–4
back energy transfer 40–41, 45, 310
bioimaging 169
Dexter energy transfer 43, 348, 350
fluorescence resonance energy transfer 248, 289
Förster resonant energy transfer 42–4,
126–7, 131, 348, 350
heterometallic complexes 347–51
luminescence resonance energy transfer 289, 310, 316, 318
non-radiative quenching 45
two-photon absorption 209
energy transfer up-conversion (ETU) 207
environmental samples 133
eosinophils 155–7
epifluorescence microscope 128–9,
137–8
erbium
bioimaging 181
direct excitation Ln(III) luminescence spectroscopy 306
heterometallic complexes 349
spin–orbit coupling 11–12
two-photon absorption 209
up-converting nanoparticles 270–277, 283–91
ESA see excited state absorption
Escherichia coli 134–5, 158
ETU see energy transfer up-conversion
europium
allowed and forbidden f–f transitions 33
antenna effect 41
bioimaging 134–6, 138, 146–80
chemosensors 233, 237, 241–5, 247, 249–60
circularly polarised luminescence 83, 88–93, 95, 99–115
crystal field parameters 27
direct excitation Ln(III) luminescence spectroscopy 304–26
emission efficiency and rate constants 40
heterometallic complexes 332, 334, 336, 341–2, 344, 347
Judd–Ofelt theory 36
non-radiative quenching 44–5
sensitised emission 2
spectroscopic techniques 53–4, 56, 73
Stark effect 16–17
transition probabilities and branching ratios 38
two-photon absorption 198, 206–14, 216, 218–23
EXAFS see extended X-ray absorption fine structure
excitation light source 65–6, 140–141
excited state absorption (ESA) 207
excited state lifetimes 73
expectation values 14
extended X-ray absorption fine structure (EXAFS) 282
F
ferrocenes 344, 351–2
ferro-electric liquid crystal (FLC) 138–9
field programmable gate array (FPGA) design 87
figure of merit (FOM) for brightness 291, 295
FLC see ferro-electric liquid crystal
FLIM see fluorescence lifetime imaging
fluorescence 40–42
fluorescence lifetime imaging (FLIM) 131
fluorescence resonance energy transfer (FRET) 248, 289
fluoride 251, 253
FOM see figure of merit
 Förster resonant energy transfer (FRET) 42–4, 126–7, 131, 348, 350
frequency-upconverted pulsed Nd:YAG lasers 66
FRET see fluorescence resonance energy transfer; Förster resonant energy transfer
G
gadolinium
bioimaging 165–7
chemosensors 244–5
circularly polarised luminescence 83
direct excitation Ln(III) luminescence spectroscopy 306, 320–322
heterometallic complexes 332–5, 346–7
two-photon absorption 209–10
up-converting nanoparticles 290, 293–4
gated autosynchronous luminescence detector (GALD) 142–3
gene silencing 284
geometric isomers 311–12
Giardia lamblia 133, 140, 143, 148–9, 153, 161
GM see Göppert-Mayer
gold nanoparticles 161–2, 257–8
Göppert-Mayer (GM) parameter 198–9
H
HAADF see high-angle annular dark field
halide ion sensors 250–260
Hamiltonian operator
central field approximation 4–9
circularly polarised luminescence 80
Judd–Ofelt theory 34
Stark effect 13, 16, 18–19
Zeeman effect 20–21
head to head to head (HHH) isomer 340–341
HEK cells 170–171
HeLa cells
lanthanide luminescent bioprobes and bioconjugates 159–60, 168–9, 174–5
two-photon absorption 216–17, 220, 224
up-converting nanoparticles 284–7, 289–90
helicates 338–41
Her2/neu see human epidermal growth factor receptor 2
heterometallic complexes 331–58
antenna effect 347–8
bioimaging 348
bridging ligands 335–6, 342–7, 349
concepts and definitions 331
energy transfer in assembled systems 347–51
helicates 338–41
kinetic stability 332–4
multi-compartmental ligands 342–7
non-helicate structures 341–2
properties of heteromultimetallic complexes 332–5
responsive multimetallic systems 351–3
Index

heterometallic complexes (Continued)
solid state lanthanide assemblies 335–7
solution state lanthanide assemblies 338–42
thermodynamic stability 332
transmetallation reactions 333–4
two-photon absorption 348–9
HHH see head to head to head
high-angle annular dark field (HAADF) imaging 279–281
high-resolution transmission electron microscopy (HR-TEM) 278–81
HNL see human neutrophil lipocalin
holmium
direct excitation Ln(III) luminescence spectroscopy 306
heterometallic complexes 332
up-converting nanoparticles 284, 289, 295
holographic gratings 64
HPV see human papillomavirus
HR-TEM see high-resolution transmission electron microscopy
human epidermal growth factor receptor 2 (Her2/neu) 162, 3, 176, 249
human neutrophil lipocalin (HNL) 157
human papilloma virus (HPV) 138
hydrogen bonding 314, 318–20, 324–6
hydrogen peroxide assays 178–9
hyperpolarizability 201–2
hypersensitivity 38–9, 233, 237
I
ICCDs see image-intensifier charge-coupled devices
ILCT see intra-ligand charge transfer state image-intensifier charge-coupled devices (ICCDs) 141
immunocytochemical applications 134–5, 155–7
indirect excitation 85
induced electric dipole transitions 1–2
InGaAs diodes 66–7
Inner-sphere coordination of anions 312–14, 319–20, 322–3, 326
inorganic–organic hybrid probes 154
integrating sphere 72–3
intersystem crossing (ISC) 40–41, 209
intra-ligand charge transfer state (ILCT) 209–11
intrinsic emission efficiency 40
iodide 259
iron 242, 247, 336, 341
ISC see intersystem crossing
islet cell autoantibodies 159
J
Jablonski diagram 40
Judd–Ofelt theory 34–7, 39
K
Kramers’ ions
allowed and forbidden f/f transitions 32
Coulomb interactions 9
Stark effect 16
Zeeman effect 19–20
Kronecker delta symbol 12
L
lab-on-a-chip technology 162–3, 248–9
Laguerre polynomials 6–7
Landé’s interval rule 12–13, 20
Langmuir–Blodgett films 105–6
lanthanide luminescent bioprobes and bioconjugates (LLBs)
aliphatic polyaminocarboxylate and carboxylate probes 154–63
β-diketonate probes 144–54
bioimaging 127, 133, 134–40, 144–80
dendrimers 178–80
hydrogen peroxide assays 178–9
inorganic–organic hybrid probes 154
lab-on-a-chip technology 162–3
luminescence microscopy 133, 134–40
macrocyclic probes 163–71
metal-enhanced luminescent probes 152–4
molecular β-diketonate probes and conjugates 146–51
molecular polyaminocarboxylate and carboxylate probes and conjugates 146–51
multi-photon excitation imaging 154
nanoparticle polyaminocarboxylate and carboxylate probes 160–163
nanoscopic β-diketonate probes 151–2
self-assembled triple helix bioprobes 171–7
lanthanum
allowed and forbidden f/f transitions 28–9
bioimaging 160, 175
circularly polarised luminescence 102
crystal field parameters 26–7
heterometallic complexes 332, 341
Laplace operator 4
Laporte rule 29–30, 34, 206
laser diodes 65–6
LED see light-emitting diode
Legendre functions 7, 8
leukocytes 155–7
ligand ionization 314–17
light-emitting diode (LED) 65–6, 140
liquid-nitrogen temperature emission spectra 57
lithium 237–40
LLBs see lanthanide luminescent bioprobes and bioconjugates
LRET see luminescence resonance energy transfer
luminescence emission spectra 49–51, 58, 307–8
luminescence excitation spectra 49–51, 58–9
see also direct excitation Ln(III) luminescence spectroscopy
luminescence lifetime measurements 59–60, 232–3
luminescence microscopy 127–44
classical optical microscopy 127–8
commercial instruments 143–4
eyearly instrumental developments 134–40
lanthanide luminescent bioprobes and bioconjugates 133, 134–40
optimization of instrumentation 140–144
principles 128–34
time-resolved luminescence microscopy 127, 131–44
luminescence principles
4f orbitals 2
allowed and forbidden f/f transitions 27–33
angular overlap model 25–6, 27
angular wave functions 7
antenna effect 40–44
common emissive f/f transitions 6
Coulomb interactions 9–10
crystal field parameters and symmetry 14–18
electronic configuration of +III oxidation state 2–4
emission efficiency and rate constants 39–42, 45
empirical parameters describing optical transitions 28–9
energies of crystal field split terms 18–20
energy levels for Ln(III) ions 5
energy level term symbols 2–4
estimation of crystal field parameters 21–7
ground state term symbols for Ln(III) ions 4
Hamiltonian in central field approximation 4–9
historical development 1–2
hypersensitive transitions 38–9
intensity of induced electric dipole transitions 34–7
intensity of magnetic dipole transitions 32–3
Judd–Ofelt theory 34–7, 39
nature of f/f transitions 4–40
non-radiative quenching 40–41, 44–5
one-electron wave functions 5–7
parity rule 29–30, 34
point charge electrostatic model 21–5, 27
sensitization mechanism 40–45
simple overlap model 26–7
spin rule 29
spin–orbit coupling 9–13
Stark effect 9–10, 13–20
symmetries of the terms 30–32
transition probabilities and branching ratios 37–8
Zeeman effect 9–10, 19–21
magnetic field effect see Zeeman effect
magnetic dipole (MD) transitions 27–33, 38, 40
magnetic field effect see Zeeman effect
magnetic resonance imaging (MRI) bioimaging 181
contrast agents 303–4, 320–326
direct excitation Ln(III) luminescence spectroscopy 303–4, 320–326
up-converting nanoparticles 289–90, 293–5
magnetic spin quantum number 7
manganese 336
master oscillator power oscillator (MOPO) 304, 306
MCF-7 cells 220, 285, 289
MD see magnetic dipole
mercury 240–241, 244–6
macrocyclic probes 163–71, 220–221
macropinocytosis 168
magnesium 237–40
magnetic dipole (MD) transitions 27–33, 38, 40
magnetic field effect see Zeeman effect
magnetic resonance imaging (MRI) bioimaging 181
contrast agents 303–4, 320–326
direct excitation Ln(III) luminescence spectroscopy 303–4, 320–326
up-converting nanoparticles 289–90, 293–5
magnetic spin quantum number 7
manganese 336
master oscillator power oscillator (MOPO) 304, 306
MCF-7 cells 220, 285, 289
MD see magnetic dipole
mercury 240–241, 244–6
magnetic spin quantum number 7
Index

metal-enhanced luminescent probes 152–4
metallacrowns 342
metal-organic frameworks 181
metal oxide/p-doped silicon (MOS) capacitors 130
metal-to-ligand charge transfer transitions (MLCT) 209, 335–6, 348–9
Michler ketone 210, 213
microemulsions 222
microfluidic devices 162–3
MLCT see metal-to-ligand charge transfer transitions
molecular beacons 247–9
molecular engineering 201–5
molecular imaging 126
molecular probes and conjugates
 aliphatic polyaminocarboxylate and carboxylate probes 155–60
 β-diketonate probes 146–51
 monocapped square antiprism 25
monochromators 63–5, 85–6
monoclonal antibodies 148, 157, 175–6, 223
MOPO see master oscillator power oscillator
MOS see metal oxide/p-doped silicon
MRI see magnetic resonance imaging
multi-compartmental ligands 342–7
multiphotonic imaging 201–5, 216–17
multi-photon excitation imaging 154

N
nanoparticles
 aliphatic polyaminocarboxylate and carboxylate probes 160–163
 β-diketonate probes 151–2
 chemosensors 248–9, 257–8
 lab-on-a-chip technology 162–3, 248–9
 spectroscopic techniques 68
 surface modification 278
 synthesis of core and core–shell nanoparticles 277–8
 two-photon absorption 222–3
 see also up-converting nanoparticles
nanoprobes for single-object imaging 222–3
nano-rattles 287
near-field optical microscopy 68
near infrared excitation/emission (NIR-NIR) imaging 180–181, 223–5
neodymium
 allowed and forbidden f/f transitions 33
 bioimaging 181
 chemosensors 239–40, 245–6, 256, 261–2
 circularly polarised luminescence 93
 crystal field parameters 27
 direct excitation Ln(III) luminescence spectroscopy 310, 312, 316, 322
 heterometallic complexes 342, 349–50
 Judd–Ofelt theory 37
 spectroscopic techniques 73
 spin–orbit coupling 11
 two-photon absorption 209
 neutrophils 155–7
nickel 336
NIR-NIR see near infrared excitation/emission
NMR see nuclear magnetic resonance
nonlinear optics (NLO) 197–205
nonlinear transmission method 199
non-radiative quenching
 direct excitation Ln(III) luminescence spectroscopy 308–14, 318–20, 322–6
 sensitization mechanism 40–41, 44–5
 nuclear magnetic resonance (NMR) spectroscopy 78, 334–5

O
oblique illumination 128
oligochitosan 150–151
one-electron wave functions 5–7
optical parametric oscillator (OPO) 66
optical sectioning 271, 283, 291–2
optical sensors 303–4
opto-electronic shutters 141
organic luminophores 126
osmium 347, 349
outer-sphere quenching 309–10, 314, 318–20, 322–6

P
palladium 155–7
PALM see photoactivation localization microscopy
PAMAM see polyamidoamine
paramagnetic chemical exchange saturation transfer (paraCEST) 322–6
parity rule 29–30, 34, 206
PCEM see point charge electrostatic moment
PD see power density
PDMS see polydimethylsiloxane
PDZ domain 158–9
PEM see photo-elastic (or elasto-optic) modulator
PeT see photoinduced electron transfer
PET see positron emission tomography
Pfeiffer effect 96–8
phantom images 324–5
phase contrast microscopy 128
pH low insertion peptide (pHLIP) 161–2
phosphate ester binding and cleavage 317–18
phosphorescence
antenna effect 40–42
bioimaging 131–2, 138
photoactivation localization microscopy (PALM) 68
photo-avalanche mechanism 275
photobleaching 129, 201
photo-elastic (or elasto-optic) modulator (PEM) 86–8, 90–91
photoinduced electron transfer (PeT) 237–8, 348–9
photoluminescence 274
photomultiplier tubes (PMTs) 66–7
pseudorotaxanes 352–3
pulsed excitation/gated detection 54, 65
pulsed nitrogen lasers 66
Q
quantum dots (QDs) 126
quantum yield 39
absolute measurement with integrating sphere 72–3
bioimaging 153, 168–9
chemosensors 232
measurement against standard in solid-state 71–2
measurement against standard in solution 70–71
spectroscopic techniques 69–73
two-photon absorption 203, 210
up-converting nanoparticles 275–6, 291
R
radial charge density distribution 2–3
rate constants 39–40, 45
ratiometric peaks 233
repulsive Coulomb energy 8
responsive multimetallic systems 351–3
rhenium 344–7
rotation formula 30
Russell–Saunders quantum number 2–3
see also spin–orbit coupling
ruthenium 261, 336–7, 347–9
S
samarium
bioimaging 163, 174–5
circularly polarised luminescence 83, 93, 99
direct excitation Ln(III) luminescence spectroscopy 306–10
spectroscopic techniques 73
SBMC see streptavidin-based macromolecular complex
scanning microscopy 216, 222
scanning monochromators 63–4
Schrödinger equation 4, 7
see also Hamiltonian operator
self-assembled chemosensors 235–7
self-assembled triple helix bioprobes 171–7
cell penetration and imaging 174–5
cytotoxicity 174
heterometallic complexes 338–41
photophysical properties 173–4
specific targeting with bioconjugated luminescent probes 175–6
structure, thermodynamic stability and kinetic inertness 171–3
sensitization mechanism 40–45
antenna effect 40–44, 207–10
charge transfer state mediated 209–11
energy transfer 40–44
intersystem crossing 40–42
non-radiative quenching 40–41, 44–5
singlet and triplet states 40–42
two-photon absorption 207–11
sensitised emission 2
signal saturation 129
signal to noise ratio (SNR) 131–2, 248
silver 336
SIM see structured illumination microscopy
simple overlap model (SOM) 26–7
single-object imaging 222–3
Slater two-electron radial integrals 8
slit width 64–5
SNR see signal to noise ratio
sodium 237–40
sol-gel 214, 222
solid-state inorganic ion exchange matrices 56
SOM see simple overlap model
SOS see sum-over states
spark spectroscopy 1
spectrographs 63–4
spectroscopic techniques 49–75
absolute measurement with integrating sphere 72–3
adapting experiments for diverse samples 52–3
ancillary components 67
antenna effect 53, 55
challenges in experiment design and interpretation 52–7
common luminescence experiments 57–60
components and characteristics 63–7
concepts and definitions 49–52
design elements and configurations 61–3
detectors 66–7
excitation sources 65–6
excited state lifetimes 73
in-solution measurements 70–71
instrumentation in luminescence spectroscopy 52–69
instrument modules 61–2
luminescence emission spectra 49–51, 58
luminescence excitation spectra 49–51, 58–9
luminescence lifetime measurements 59–60
monochromators 63–4
number of coordinated solvent molecules 73
quantum yield measurement 69–73
recent advances in instrumentation 67–9
resolving and assigning spectral bands 55–7
resolving weak emission from intense background 53–5
solid-state measurements 71–2
spectral range for Ln(III) ions 49–51
standards 70–72
time-resolved emission and excitation spectra 60
typical absorption and emission spectra 49–50
spin coordinates 7
spin–orbit coupling 9–13
spin rule 29
splitting energy 20–21
square antiprism 23–4
Stark effect 9–10, 13–20
crystal field parameters and symmetry 14–18
energies of crystal field split terms 18–20
expectation values 14
STED see stimulated emission depletion
Stern–Volmer constants 167
stimulated emission depletion (STED) 68
stochastic optical reconstruction microscopy (STORM) 68
streptavidin-based macromolecular complex (SBMC) 138
structured illumination microscopy (SIM) 68
sum-over states (SOS) method 201–2
super-resolution techniques 68
symmetry
allowed and forbidden f/f transitions 30–32
crystal field parameters 14–18
synchrotron radiation 280–282

T
TCSPC see time-correlated single photon counting
TEM see transmission electron microscopy
terbium bioimaging 155–60, 163–7, 169–77
chemosensors 237–9, 241–3, 245, 249,
251–6, 258–60, 262
circularly polarised luminescence 83–4, 95,
99–100, 104, 108–9, 111–12
direct excitation Ln(III) luminescence
spectroscopy 306–10
heterometallic complexes 332, 343–5, 347,
350–351
non-radiative quenching 45
spectroscopic techniques 55, 73
two-photon absorption 206–8, 212,
214–18
up-converting nanoparticles 294
terpyridine-based ligands 156, 178–9
thalidomide 77
theranostics 125
three-level model 202–3
thulium bioimaging 181
direct excitation Ln(III) luminescence
spectroscopy 306, 322
heterometallic complexes 335
up-converting nanoparticles 274–6,
284–90, 292
time-correlated single photon counting
(TCSPC) 69, 131
time-gated spectroscopy 214–15
time-resolved amplified cryptate emission
(TRACE) 170
time-resolved circularly polarised luminescence
(CPL) 87
time-resolved detection (TRD)
bioimaging 126–7, 131–4, 136–8, 148,
160–163, 171
direct excitation Ln(III) luminescence
spectroscopy 308–10, 317
emission and excitation spectra 60, 69
time-resolved luminescence microscopy
(TRLM) 127, 131–44
commercial instruments 143–4
early instrumental developments
134–40
lanthanide luminescent bioprobes and
bioconjugates 133, 134–40
optimization of instrumentation
140–144
principles 131–4
tip enhanced optical microscopy 68
total internal reflection fluorescence microscopy
(TIRFM) 139–40
TPEF see two-photon excited fluorescence
TPUWF see two-photon upconversion wide
field microscopy
TRACE see time-resolved amplified cryptate
emission
transition probabilities 37–8
transmetallation reactions 333–4
transmission electron microscopy (TEM)
278–81, 283–7
transparency window 200, 223, 271
TRD see time-resolved detection
tricapped trigonal prism 24
TRLM see time-resolved luminescence
microscopy
tumour detection
lanthanide luminescent bioprobes and
bioconjugates 162–3, 165, 176
time-resolved luminescence
microscopy 135–6
two-photon absorption 222–3
up-converting nanoparticles 285–93
two-photon absorption 197–230
antenna effect 207–14, 220–221, 224–5
bioimaging 200–201, 203–5
biphotonic microscopy imaging 200–201,
203–5, 215–25
breakthrough experiments 205–6
brightness trade-off 211–14
charge transfer state mediated
sensitization 209–11
concepts and definitions 197–8
excitation of f–f transitions 206–7
excited luminescence in solid matrix 214
experimental determination of 2PA
efficiency 199–200
heterometallic complexes 348–9
molecular engineering for multiphotonic
imaging 201–5, 216–17
nanoprobes for single-object imaging
222–3
NIR-NIR imaging 223–5
nonlinear optics 197–205
nonlinear transmission method 199
optimization of molecular two-photon cross
section 211–14
sensitization mechanism 207–11
spectroscopic evidence 205–15
Index

two-photon absorption (Continued)
 theoretical and historical background 198–9, 205–6
time-gated spectroscopy 214–15
two-photon excited fluorescence
 procedure 199–200
 Z-scan method 199
two-photon excited fluorescence (TPEF)
 procedure 199–200
two-photon fluorescence microscopy see biphotonic microscopy imaging
two-photon scanning microscopy 216, 222
two-photon upconversion wide field microscopy (TPUWFM) 292

U
up-converting nanoparticles (UCNPs) 269–302
 animal studies 287–90
 bioimaging 127, 180–181, 271, 283–93
 cell studies 283–7
 characterization 278–83
 concepts and definitions 269–71, 283
 deep-tissue optical imaging 291–3
 figure of merit for brightness 291, 295
 magnetic resonance imaging 289–90, 293–5
 optical sectioning 271, 283, 291–2
 physical properties of Ln(III) ions 272
 principles of upconversion 272–6
 surface modification 278
 synthesis of core and core–shell nanoparticles 277–8

V
vibrational circular dichroism (VCD) 78

W
water counting studies 314, 316, 318

X
xenon flash lamps 65
X-ray absorption near-edge fine structure (XANES) 282
X-ray photo-electron spectroscopy (XPS) 281–2
X-ray (powder) diffraction (XRD) 278

Y
ytterbium
 allowed and forbidden f–f transitions 31–2
 bioimaging 135–6, 174, 181
 chemosensors 245–6, 255–6, 261–2
 circularly polarised luminescence 83, 93
direct excitation Ln(III) luminescence
 spectroscopy 306, 322
 heterometallic complexes 342–3, 345, 349–51
 spectroscopic techniques 57, 73
two-photon absorption 209, 212–15, 223–25
 up-converting nanoparticles 270–277, 283–91

Z
Zeeman effect 9–10, 19–21
zinc 159, 177, 240–244, 246, 334, 340
Zonula occludens-1 158–9
Z-scan method 199