Index

Abbe errors, 80
Actuation force, 78, 100
Actuation stiffness, 98, 101, 248
Actuator decouplers, 47
Adhesive force, 262
Adhesive layers, 131
Amplification ratio, 98, 101, 248, 260
Analytical models, 52, 77, 146, 165, 185, 208, 223, 252
Area ratio, 45, 55, 68, 71, 88
Atomic force microscope (AFM), 10, 93
Axial load, 75
Axial-symmetric structure, 71
Bandwidth, 64, 158, 207
Bending, 49
Bending deflection, 142
Bending deformations, 27, 51, 73, 77, 115, 148, 174, 191, 225
Bidirectional drive, 214
Bidirectional motion, 131
Bidirectional translation, 115, 136
Blocking force, 100, 120
Bode plots, 129, 154, 180
Buckling, 49, 50, 72, 75
Buckling deformation, 75
Buckling effect, 51, 89
Butterworth filter, 203
Capacitive force sensor, 245
Capacitive sensors, 12, 245
Capacitive-to-voltage converter, 249
Cartwheel flexure, 171
Center shift, 181
Centimeter range, 77, 81, 89, 100
Characteristic equation, 76
Characteristic radius, 27
Chattering, 38
Circular contouring, 84, 156
Clearance adjuster, 220
Closed-loop control, 55, 203
Coarse resolution, 132, 241
Coarse stage, 93, 94
Coarse/fine resolution ratio, 114, 117, 145, 146, 159
Comb drives, 249
Compactness, 4, 55, 97
Compactness requirement, 23, 164, 192
Compensation factor, 78
Compliance matrix, 187
Compliant gripper, 213, 214, 245
Compliant guiding bearing, 115
Compliant mechanisms, 1, 213
Compound parallelogram flexure (CPF), 4
Compound radial flexure (CRF), 9, 164
Compressive force, 136
Compressive loads, 49, 75
Computer vision, 214
Computer-aided design (CAD), 4
Conceptual design, 99, 115, 136
CAD model, 79, 126, 201, 222, 252
Calibration, 127, 202, 228, 258

Confidence intervals, 84
Confidence levels, 84
Consistency, 231
Contact detection, 235
Contact force, 214
Contouring accuracy, 86
Control bandwidth, 86, 132, 180
Control simulation, 61, 179
Control technique, 12
Convergence, 61
Cooperative positioning, 156
Coordinate transformations, 187
Corner-filleted hinge, 169
Cost function, 59
Coupling effect, 82, 83, 94
CPF, 21
CRFs, 186
Critical length, 49, 75
Critical load, 50, 75
Crosstalk, 54, 71, 81
Cutoff frequencies, 86
Cylindrical constraint, 124

Damping coefficient, 96
Damping effect, 203
Damping ratio, 203, 206
Data acquisition, 34, 126, 202
Deamplification, 3
Decoupled motion, 89
Decoupling design, 93, 111
Deep reactive ion etching (DRIE), 254
Degree-of-freedom (DOF), 54
Depth of view, 214
Design criteria, 146
Differential equations, 96
Digital microscope, 202
Digital PID, 57
Digital PID control, 39, 109
Discrete-time sliding mode control (DSMC), 13
Discrete-time system model, 64
Displacement amplification, 260
Displacement amplifier, 97, 107
Displacement sensors, 181
Disturbances, 13, 43
Drift, 262
Driving displacement, 248
Driving distance, 216
Driving force, 121, 136, 138, 171, 217, 247
DSMC, 39, 42
Dual-actuation stage, 100
Dual-range motion, 115
Dual-range stages, 114
Dual-resolution stage, 116
Dual-servo control, 109
Dual-servo stage, 11, 114
Dual-servo system (DSS), 10, 93
Dynamic characteristics, 237
Dynamic crosstalk, 82
Dynamics equation, 76
Dynamics model, 36, 95

Eigenvalue, 61, 76
Eigenvector, 76
Elastic buckling, 49, 75
Elastic deformation, 2, 223
Elastic energy, 100
Electric noise, 150
Electrical discharge machining (EDM), 12, 33, 78, 104, 126, 149, 169
Electromagnetic actuator, 214, 245
Electrostatic actuator, 245
Electrostatic force, 249
Electrothermal actuator, 245
EMPC, 55, 58, 64, 66
Enhanced model predictive control (EMPC), 46
Environmental interaction, 241, 251
Equilibrium of moment, 168
Equivalent mass, 28
Equivalent stiffness, 115, 117, 136, 141, 217, 247, 250
Estimation, 59

Fabrication errors, 158, 207
Fabrication imperfection, 258
Fast Fourier transform (FFT), 63
Fatigue analysis, 201, 226
Fatigue failure, 201
Fatigue lifecycle, 208
FEA, 30, 52, 73, 76
FEA simulations, 101, 124, 146, 147, 164, 173, 197, 208, 222
Feedback control, 70, 111, 164
FFT, 178, 206
Field-programmable gate array (FPGA), 80
Fine resolution, 132, 241
Fine stage, 97, 98
Finite-element analysis (FEA), 93, 114, 185
Fixed–fixed constraints, 75
Fixed–guided constraint, 8
Fixed–guided flexures, 118, 139, 218
Fixed–guided beams, 141
Fixing schemes, 25, 192
Flexible element, 1
Flexure bearings, 2, 121, 136
Flexure hinges, 2, 68
Flexure mechanism, 47, 95, 214
Folded leaf springs, 99
Force control, 264
Force sensor, 213, 214, 231
Force wrench, 187
Force–sensing gripper, 264
Free-body diagram, 168, 191
Free-motion dynamics, 29
Frequency response method, 35, 61, 81, 86, 107, 129, 154, 178, 206, 237
Frequency responses, 61, 63, 81, 107, 178, 180

Gauge factor, 121, 144, 195, 220
Gripping force, 245, 250
Gripping force sensing, 214
Gripping force sensor, 263
Gripping motion, 214, 216
Gripping range, 255
Guiding mechanism, 95

Half-bridge circuit, 195, 202
High bandwidth, 75
Histogram, 84, 110, 129, 151, 204, 229
Horizontal interaction, 236
Hybrid micropositioning, 1
Hysteresis, 34, 55, 106, 181, 205, 260

Impact effect, 132
In-plane motion, 31
In-plane rotation, 76
Incremental control, 59, 65
Inertia effect, 239
Input decoupling, 47, 71
Interaction, 97, 111, 245
Interaction effect, 114
Interaction force, 98, 214, 216, 235, 245, 246, 251, 261
Interaction force reducer, 98
Interaction force sensing, 214, 245
Interaction force sensor, 263
Interaction stiffness, 252
Interference, 11, 83, 94, 102, 158
Interference behavior, 94, 96, 103, 109, 114
Interference motion, 103
Inverted microscope, 257

Kinematic scheme, 4
Kinetic energy, 27

Laplace transform, 96
Large-range gripper, 215
Laser displacement sensor, 12, 34, 54, 150, 177, 228
Laser interferometer, 12, 42
Lateral comb drive, 245
Lateral displacement, 258
Leaf flexures, 2, 23, 75, 114, 117, 139, 165, 187, 216, 247
Leaf springs, 49, 68
Life cycles, 227
Linear actuator, 114
Linear guiding flexure, 216
Linear model, 64
Linear regression, 260
Linear springs, 220
Linear-time-invariant (LTI), 56
Lorentz force law, 12
Low-pass filters, 89, 158
Luenberger observer, 60
Magnitude responses, 86
Manufacturing tolerance, 9, 77, 131, 192, 203, 206, 229, 238
Mass–spring–damper system, 36
Maximum allowable stress, 101
Maximum stress, 169, 173, 192, 195, 223
MCPF, 21, 23, 46, 71, 119, 139, 141
MCPFs, 104, 214, 216
MCRF, 165, 167, 191, 217
MCRFs, 186, 207, 214, 245
Measuring principle, 172
Mechanical stoppers, 88, 115, 193, 219
MEMS, 207
MEMS microgripper, 245, 264
Mesh density, 197
Mesh model, 197
Mesh size, 197
Micro-/nanomanipulation, 45
Microassembly, 213, 263
Microbalance, 236
Microelectromechanical systems (MEMS), 3, 244
Microfabrication, 254
Microforce sensing probe, 258
Microgripper, 132, 244
Microhandling, 213
Micromanipulation, 213, 244
Micromanipulator, 238, 255, 261
Micropositioning, 1
Micropositioning stages, 2
Micropositioning systems, 1
MIMO control, 114
Minimum-stiffness requirement, 23, 164, 169, 192
Mirror-symmetric stage, 47
Mirror-symmetric structure, 71
Modal analysis, 31, 53, 124, 148, 174, 199, 225, 254
Mode frequencies, 31
Mode shapes, 31, 32, 54, 149, 174, 200
Model predictive control (MPC), 13
Model uncertainties, 13
Model-free control, 13
Model-free controller, 39, 57, 109
Modular design, 71
Moment of inertia, 75, 99, 167, 190
Monolithic stage, 70, 71
Monolithic structure, 8, 70
Motion control, 63
Motion decoupling, 55, 70, 101
Motion guiding mechanism, 2
Motion range, 73, 78, 104, 116, 120, 131, 138, 181
Motion tracking, 180
Motion twist, 187
MPC, 46, 58
Multi-resolution positioning, 158
Multi-resolution stage, 138
Multi-stage compound parallelogram flexure (MCPF), 4
Multi-stage compound radial flexure (MCRF), 9, 164, 186
Multi-stroke micropositioning, 10, 136
Multi-stroke stages, 135
Multiple-input/multiple-output (MIMO), 94
Nanopositioner, 231, 258
Nanopositioning stage, 10, 11, 93
Natural frequency, 27, 29, 75, 201
Negative stiffness, 249
NMP, 57
NMP plant, 63
NMP system, 46
Noise, 41, 151, 203, 228, 260
Nominal parameters, 77
Nominal system, 57
Non-minimum-phase (NMP), 46
Non-minimum-phase systems, 68
Normal distribution, 129, 151, 228
Observer, 109
Open-loop control, 55, 81
Open-loop performance, 207
Optical encoders, 207
Optimization, 29, 59, 264
Optimum design, 55
Oscillation, 64, 236
Out-of-plane displacement, 76
Out-of-plane motion, 175
Out-of-plane payload, 76, 89, 174, 175, 193, 199
Out-of-plane stiffness, 175
Index

Output decoupling, 6, 47
Overconstraint, 164
Overlay image, 203
Overshoot, 66, 84, 110, 180, 203
Parallel connections, 142
Parallel mechanism, 46, 47, 71
Parallel plates, 158, 247
Parallel-kinematic architecture, 88
Parallel-kinematic scheme, 5, 70
Parallelogram flexure, 3, 95
Parametric design, 73, 146
Parasitic motion, 26, 47, 71, 73, 80, 81, 187
Parasitic translation, 3, 165
Payload capability, 175, 207
Perturbation estimation, 36
Perturbations, 57
Pessen integral rule, 41
Phase portrait, 39
Physical model, 95
Pick-and-place operation, 213
PID, 37, 42, 164
PID control, 39, 57, 66, 83, 89
PID control gains, 110, 180
PID controller, 156, 178
Piezoelectric stack actuators (PSAs), 11, 164
Piezoresistive, 228, 232
Piezoresistive sensor, 138, 158, 214
Plastic deformation, 119
Pole placement, 64
Positioning accuracy, 181
Positioning error, 111
Positioning performance, 89
Positioning resolution, 204, 207
Potential energy, 27
Precision positioning, 6, 38, 71, 81, 113, 132
Prediction horizon, 58, 65
Preloading effect, 107
Preview, 67
Printed circuit board (PCB), 254
Prismatic hinge, 7
Proof-of-concept design, 133, 159
Proportional-integral-derivative (PID) control, 13
PSA, 88, 93, 106
Pseudo-rigid-body (PRB) model, 27
Pull-in stability, 264
Quantitative models, 30, 52
Quarter-bridge circuit, 149, 220, 242
Quarter-bridge circuits, 121, 158
Radial flexure, 8, 164, 186
Rapid prototyping (RP), 12
Reachable workspace, 73, 88, 89
Real-time control, 54, 80, 127, 177, 228
Real-time controller, 202
Reliability, 39
Resistive sensor, 135, 138
Resolution, 41, 150
Resonant frequencies, 35, 76, 82, 107, 124, 154, 175, 200, 254
Resonant modes, 31, 103, 124, 148, 254
Resonant peak, 206, 237
Revolute hinge, 7
Revolute joint, 2
Right-circular hinges, 95
RMSE, 41, 110, 180
Robotic gripper, 213
Robust control, 13, 46
Root-mean-square (RMS), 228
Root-mean-square error (RMSE), 39, 64
Rotary angle, 8
Rotary bearing, 216
Rotary guiding, 214
Rotary motion, 8
Rotary motor, 185
Rotary positioning, 8
Rotary springs, 207
Rotary stages, 8, 163
Rotary VCM, 194, 201
Rotation center, 184
Rotational angle, 185, 190
Rotational bearings, 8
Rotational micropositioning, 1
Rotational motion, 124
Rotational range, 164, 171
Rotational stiffness, 31
Safety factor, 88, 101, 197
Sampling frequency, 61, 64
Sampling rate, 34, 202
Sampling time, 57, 64, 110
Saturation functions, 110
Scanning electron microscope (SEM), 254
Scanning probe microscopy (SPM), 10
Screw theory, 187
Sensing scheme, 172
Sensitivity, 185, 219, 228, 261
Sensitivity ratio, 229
Sensor sensitivity, 196, 203
Serial-kinematic scheme, 4
Set-point positioning, 39, 64, 84, 110, 180
Settling time, 110, 180
Shear modulus, 187
Side instability, 249
Side sticking, 258
Signal conditioning, 232
Signal processing, 207
Signal-to-noise ratio (SNR), 117, 123, 138, 146
Silicon-on-insulator (SOI), 244
Simulation, 66, 101
Single-drive stage, 114
Single-input/single-output (SISO), 56, 71
Sinusoidal signal, 129, 152, 228
Sinusoidal trajectory, 180
SISO, 93
SISO control, 94, 113
SISO controller, 63, 83
Skew-symmetric matrix, 188
Sliding function, 37
Sliding mode control (SMC), 13
SNR, 121, 128, 145
Soft mechanisms, 12
SOI, 245
SOI wafer, 254
Spectral analysis, 81
Spherical joint, 2
Spring constant, 168, 191, 217, 247
Stability analysis, 37
Standard deviation, 129, 151, 204
State observer, 13, 60, 64
State-space equation, 58
State-space model, 64
Static crosstalk, 82
Static structural analysis, 74, 76, 147, 173, 197
Static performance, 101, 106, 124, 147, 150, 173, 197, 223, 252
Steady-state error, 46, 64, 66, 110
Step response, 66
Stick–slip actuators, 11
Stiffness, 24, 36, 74, 97, 98, 241
Stiffness matrix, 187
Stiffness model, 51
Strain gauges, 121, 128, 144, 149, 222
Strain sensors, 151
Strain-gauge sensors, 12, 114, 128, 144, 194
Stress concentration, 1, 169
Stress life analysis, 201
Stress stiffening, 7, 164
Stroke stopper, 136, 143
Sub-micrometer, 21, 70
Sub-micrometer accuracy, 89
Sub-micrometer resolution, 42
Swept-sine signal, 129, 154, 178, 206
Swept-sine waves, 35, 61, 81, 237
Symbolic formulation, 187
Symbolic model, 198
System identification, 57
Tangential direction, 185, 216
Tangential translation, 167, 190
Thermal expansion, 25
Topology optimization, 2
Torsional stiffness, 184, 189, 194, 198, 217, 247
Total decoupling, 6, 47, 70, 71
Transfer function, 63
Transformation matrix, 188
Transient response, 46, 66, 94, 180
Transient response speed, 111
Translational displacement, 190
Translational micropositioning, 1, 45
Transverse comb drive, 245
Transverse displacement, 71, 99, 258
Transverse load, 47, 71
Transverse motion, 103
Transverse stiffness, 25, 47, 71, 98, 103, 104, 117, 235, 249
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-dimensional translation</td>
<td>71</td>
</tr>
<tr>
<td>Two-layer structure</td>
<td>88</td>
</tr>
<tr>
<td>Two-stage force sensing</td>
<td>215</td>
</tr>
<tr>
<td>Uncertainties</td>
<td>43</td>
</tr>
<tr>
<td>Uniaxial flexure stage</td>
<td>25</td>
</tr>
<tr>
<td>Universal hinge</td>
<td>7, 207</td>
</tr>
<tr>
<td>Universal joint</td>
<td>2</td>
</tr>
<tr>
<td>Variable-stiffness mechanism</td>
<td>114, 135</td>
</tr>
<tr>
<td>VCM</td>
<td>33, 51, 54, 80, 93, 106, 126, 149, 170, 177, 227</td>
</tr>
<tr>
<td>Vertical interaction</td>
<td>237</td>
</tr>
<tr>
<td>Virtual work principle</td>
<td>97</td>
</tr>
<tr>
<td>Visual servoing</td>
<td>207</td>
</tr>
<tr>
<td>Voice coil motor (VCM)</td>
<td>11, 145, 164, 185</td>
</tr>
<tr>
<td>Wheatstone bridge</td>
<td>126, 144</td>
</tr>
<tr>
<td>Wire-EDM</td>
<td>80, 176, 201, 227</td>
</tr>
<tr>
<td>Yield strength</td>
<td>2, 23, 101, 142, 168, 197, 218</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>23, 98, 119, 141, 167, 187, 195, 217, 247</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>23, 98, 119, 141, 167, 187, 195, 217, 247</td>
</tr>
<tr>
<td>Z–N method</td>
<td>41, 64, 84, 180</td>
</tr>
<tr>
<td>Ziegler–Nichols (Z–N)</td>
<td>39, 58, 110</td>
</tr>
</tbody>
</table>