CONTENTS

Preface, xiii
 A comment on statistics, xv
 A comment on scientific names, xvi

Acknowledgements, xvii

1 INTRODUCTION AND CLASSIFICATION OF MIMICRY SYSTEMS, 1
 A brief history, 2
 On definitions of ‘mimicry’ and adaptive resemblance, 3
 The concept of ‘adaptive resemblance’, 8
 The classification of mimicry systems, 9
 Wickler’s system, 9
 Vane-Wright’s system, 10
 Georges Pasteur (1930–2015), 11
 Other approaches, 13
 Endler, 13
 Zabka & Tembrock, 13
 Maran, 14
 Mimicry as demonstration of evolution, 14

2 CAMOUFLAGE: CRYPsis AND DISRUPTIVE COLOURATION IN ANIMALS, 19
 Introduction, 20
 Distinguishing crypsis from masquerade, 20
 Crypsis examples, 24
 Countershading, 24
 Experimental tests of concealment by countershading, 27
 Bioluminescent counter-illumination, 28
 Background matching, 29
 Visual sensitivity of predators, 30
 To make a perfect match or compromise, 31
 Colour polymorphism, 32
 Seasonal colour polymorphism, 32
 Butterfly pupal colour polymorphism, 32
 Winter pelage: pelts and plumage, 35
 Melanism, 37
 Industrial melanism, 37
 Fire melanism, 40
 Background selection, 41
 Orientation and positioning, 43
 Transparency, 45
 Reflectance and silvering, 47
 Adaptive colour change, 49
 Caterpillars and food plant colouration, 50
 Daily and medium-paced changes, 54
 Rapid colour change, 56
 Chameleons, 56
 Cephalopod chromatophores and dermal papillae, 57
 Bird eggs and their backgrounds, 58
 Disguising your eyes, 61
 Disruptive and distractive markings, 61
 Edge-intercepting patches, 61
 Distractive markings, 63
 Zebra stripes and tsetse flies, 66
 Stripes and motion dazzle – more zebras, kraits and tigers, 69
 Computer graphics experiments with human subjects, 69
 Observations on real animals, 69
 Comparative analysis, 71
 Dual signals, 72
 Protective crypsis in non-visual modalities, 73
 Apostatic and antiapostatic selection, 73
 Search images, 74
 Experimental tests of search image, 76
 Gestalt perception, 76
 Effect of cryptic prey variability, 77
 Reflexive selection and aspect diversity, 77
 Searching for cryptic prey – mathematical models, 80
Ontogenetic changes and crypsis, 81
Hiding the evidence, 82
Petiole clipping by caterpillars, 82
Exogenous crypsis, 82
Military camouflage and masquerade, 85

3 CAMOUFLAGE: MASQUERADE, 87
Introduction, 88
Classic examples, 88
Twigs as models, 88
Leaves (alive or dead) as models, 88
Bird dropping resemblances, 89
Spider web stabilimenta, 93
Tubeworms, etc., 94
Experimental tests of survival value of masquerade, 94
Ontogenetic changes and masquerade, 97
Thanatosis (death feigning), 97
Feign or flee? The trade-offs of thanatosis, 100
Other aspects of death mimicry, 100
Seedless seeds and seedless fruit, 100

4 APOSEMATISM AND ITS EVOLUTION, 103
Introduction, 104
Initial evolution of aposematism, 108
Associations of unpalatable experience with place, 109
Mathematical models and ideas of warning colouration evolution, 112
Kin selection models, 112
Green beard selection, 112
Family selection models, 113
Individual selection models, 113
Spatial models and metapopulations, 116
Handicap and signal honesty, 117
Early warnings – reflex bleeding, vomiting and other noxious secretions, 120
Longevity of aposematic protected taxa, 121
Macroevolutionary consequences, 121
Experimental studies, 121
Tough aposematic prey and individual selection, 121
Pyrazine and other early warnings, 123
Learning and memorability, 124
Strength of obnoxiousness, 126
Is the nature of the protective compound important?, 126
Neophobia and the role of novelty, 127
Innate responses of predators, 130
Aposematism and gregariousness, 132
Phylogenetic analysis of aposematism and gregariousness, 134
Behaviour of protected aposematic animals, 135
Of birds and butterflies, 135
Evolution of sluggishness, 139
Origins of protective compounds, 140
Plant-derived toxins, 140
Cardiac glycosides, 141
Pyrrolizidine alkaloids, 144
De novo synthesis of protective compounds, 145
Obtaining toxins from animal sources, 147
Costs of chemical defence, 149
Aposematism with non-chemical defence, 150
Escape speed and low profitability, 150
Parasitoids and aposematic insects, 152
Diversity of aposematic forms, 152
Egg load assessment, 154
Proof of aposematism, 154
Bio luminescence as a warning signal, 155
Warning sounds, 155
Warning colouration in mammals, 157
Weapon advertisement, 158
Mutualistic aposematism, 160
Aposematism induced by a parasite, 161
Aposematic commensalism, 161
Polymorphism and geographic variation in aposematic species, 161
Aposematism in plants, 163
Synergistic selection of unpalatability in plants, 165
Aposematism in fungi, 166
Why are some unpalatable organisms aposematic and others not?, 167

5 ANTI-PREDATOR MIMICRY. I. MATHEMATICAL MODELS, 171
Introduction, 172
Properties of models, rewards, learning rates and numerical relationships, 172
Simple models and their limitations, 173
Müller’s original model, 173
Simple models of Batesian and Müllerian mimicry, 173
Are Batesian and Müllerian mimicry different?, 174
An information theory model, 176
Monte-Carlo simulations, 177
More refined models – time, learning, forgetting and sampling, 180
Importance of alternative prey, 181
Signal detection theory, 181
Genetic and evolutionary models, 182
Coevolutionary chases, 185
Models involving population dynamics, 185
Neural networks and evolution
of Batesian mimicry, 188
Automimicry in Batesian/Müllerian mimicry, 188
Predator’s dilemma with potentially harmful prey, 190

6 ANTI-PREDATOR MIMICRY. II. EXPERIMENTAL TESTS, 191
Introduction, 192
Experimental tests of mimetic advantage, 192
How similar do mimics need to be?, 194
Is a two-step process necessary?, 198
Relative abundances of models and mimics in nature, 198
Sex-limited mimicries and mimetic load, 198
Mimetic load, 203
Apostatic selection and Batesian mimicry, 204
Müllerian mimicry and unequal defence, 204
Imperfect (satyric) mimicry, 206

7 ANTI-PREDATOR MIMICRY. III. BATESIAN AND MÜLLERIAN EXAMPLES, 213
Introduction, 214
Types of model, 214
Mimicry of slow flight in butterflies, 214
The Batesian/Müllerian spectrum, 215
Famous butterflies: ecology, genetics and supergenes, 216
Heliconius, 216
Hybrid zones, 217
Wing pattern genetics, 219
Modelling polymorphism, 220
Danais and Hypolimnas, 220
Papilio dardanus, 221
Papilio glaucus, 223
Papilio memnon, 223
Supergenes and their origins, 223
Mimicry between caterpillars, 224
Some specific types of model among insects, 225
Wasp (and bee) mimicry, 225
How to look like a wasp, 228
Time of appearance of aculeate mimics, 228
Pseudostings and pseudostinging behaviour, 230
Wasmannian (or ant) mimicry, 231
Ant mimicry as defence against predation, 231
Ant mimicry by spiders, 234
Spiders that feed on ants, 236
How to look like an ant or an ant carrying something?, 236
Myrmecomorphy by caterpillars, 237
Ant chemical mimicry by parasitoid wasps, 237
Protective mimicries among vertebrates, 239
Fish, 239
Batesian mimicry among fish, 239
Müllerian mimicry among fish, 239
Batesian and Müllerian mimicry among terrestrial vertebrates, 239
The coral snake problem – Emsleyan (or Mertensian) mimicry, 240
Other snakes, zig-zag markings and head shape, 244
Mimicry of invertebrates by terrestrial vertebrates, 246
Inaccurate (satyric) mimics, 248
Mimicry of model behaviour, 249
Aide mémoire mimicry, 250
Batesian–Poultonian (predator) mimicry, 251
Mimicry within predator–prey and host–parasite systems, 253
Bluff and appearing larger than you are, 253
Collective mimicry including an aggressive mimicry, 255
Jamming, 255
Man as model – the case of the samurai crab, 258

8 ANTI-PREDATOR MIMICRY. ATTACK DEFLECTION, SCHOOLING, ETC., 259
Introduction, 260
Attack deflection devices, 260
Eyespots, 260
Experimental tests of importance of eyespot features, 262
Eyespots in butterflies, 266
Wing marginal eyespots, 267
Eyes with sparkles, 267
Eyespots on caterpillars, 269
Importance of eyespot conspicuousness, 269
Eyespots and fish, 269
Not just an eyespot but a whole head, winking and other enhancements, 271
Reverse mimicry, 271
Insects, 271
Reverse mimicry in flight, 275
Reverse mimicry in terrestrial vertebrates, 275
Other deflectors, 277
Injury feigning in nesting birds, 277
Tail-shedding (urotomy) in lizards and snakes, 277
Flash and startle colouration. 280
 Intimidating displays and bizarre mimicries. 283
Schooling, flocking and predator confusion. 284
 'Social' mimicry in birds and fish. 286
 Alarm call mimicry for protection. 287

9 ANTI-HERBIVORY DECEPTIONS, 289

Introduction, 290
Crypsis as protection in plants. 290
 Leaf mottling and variegation for crypsis. 291
 Mistletoes and lianas. 293
 Fruit masquerade by leaves. 294
Protective Batesian and Müllerian mimicry in plants. 295
 False indicators of damage or likely future damage. 296
 Conspicuousness of leafmines. 297
 Dark central florets in some Apiaceae. 297
 Mimicry of silk or fungal hyphae. 299
Insect egg mimics. 299
Defensive aphid and caterpillar mimicry in plants. 300
Aphid deterrence by alarm pheromone mimicry. 300
Ant mimicry in plants. 301
Of orchids and bees. 301
Carrier mimicry as defence. 302
Algae and corals. 302
Plant galls. 302
Experimental evidence for plant aposematism and Batesian mimetic potential in plants. 302

10 AGGRESSIVE DECEPTIONS, 305

Introduction. 306
Cryptic versus alluring features. 307
Crypsis and masquerade by predators. 307
 Stealth. 307
 Shadowing. 308
 Seasonal polymorphisms in predators. 308
 Why seabirds are black and white (and grey). 309
Chemical crypsis by a predatory fish. 309
Alluring mimics. 310
 Flower mimicry. 312
 Rain mimicry. 315
 Physical lures. 315
 Angling fish. 315
 Caudal (and tongue) lures in reptiles. 317
 Caudal lure in a dragonfly. 318
 Death feigning as a lure. 318
Other prey and food mimicry. 319
 The case of the German cockroach. 319
Wolves in sheeps' clothing. 319
Vulture-like hawks. 319
Cleaner fish and their mimics. 320
Mingling with an innocuous crowd. 322
Duping by mimicry of competitors. 323
Seeming to be conspecific. 324
Getting close. 325
 Appearing to be a potential mate. 325
 Pheromone lures. 326
Mimicking danger as a flushing device. 328
 Human use of aggressive mimicry. 328
Cuckoldry, inquilines and brood parasitism. 329
 Cuckoldry in birds. 329
 Gentes and 'cuckoo' eggs. 332
 Cues for egg rejection. 335
 Mimicry by chicks – genetic and substantive differences. 338
 Cuckoo chick appearance. 338
 Begging calls. 339
 Cuckoo and host coevolution. 340
 Mimicry between adult cuckoos and their hosts. 340
 Hawk mimicry by adult cuckoos. 340
 Mimicry of harmless birds by adult cuckoos. 342
 Brood parasitism and inquilinism in social insects. 342
 Cuckoo bees and cuckoo wasps. 342
 Kleptoparasites of bees. 346
 Myrmecophily. 346
 Acquired chemical mimicry in social parasites and inquilines. 346
 Brood-parasitic and slave-making ants. 348
 Chemical mimicry and ant and termite inquilines. 349
A brood-parasitic aphid. 349
Does aggressive mimicry occur in plants?. 350

11 SEXUAL MIMICRIES IN ANIMALS (INCLUDING HUMANS), 353

Introduction. 354
Mimicking the opposite sex. 354
 Female mimicry by males. 354
 Avoiding aggression from competing males. 357
Mate guarding through distracting other males. 357
Androchromatism and male mimicry by females. 358
Egg dummies on fish. 360
Food dummies and sex. 362
Mimicry by sperm-dependent all-female lineages, 363
Female genital mimicry in a female, 363
Energy-saving cheating for sex, 364
Behavioural deceptions in higher vertebrates, 364
Polygynous birds, 364
Deceptive use of alarm calls and paternity protection, 365
Female–female mounting behaviour in mammals and birds, 365
Mimicry in humans, 367
Make-up, clothes and silicone, 367
Cryptic oestrus in humans, 368
Flirting in humans, 368

12 REPRODUCTIVE MIMICRIES IN PLANTS, 371
Introduction, 372
Pollinator deception, 372
Pollinator sex pheromone mimicry, 376
Food deception, 382
Specific floral mimicry, 382
Generalised floral mimicry, 386
Mimicry of a fungus-infected plant, 388
Brood-site/oviposition-site deception, 388
Shelter mimicry, 392
Flower similarity over time, 392
Flower automimicry – intraspecific food deception (bakerian mimicry), 393
Mathematical modelling of sexual deception by plants, 394
Pollinator guild syndromes, 394
Bird-pollinated systems, 394

13 INTRA- AND INTERSPECIFIC COOPERATION, COMPETITION AND HIERARCHIES, 399
Introduction, 400
Remaining looking young, 400
Delayed plumage maturation, 400
Interspecific social dominance mimicry, 401
Bird song and alarm call mimicry – deceptive acquisition of resources, 401
Wicklerian mimicry – mimicry of opposite sex to reduce aggression, 403
Female resemblance in male primates, 403
Social appeasement by female mimicry in an insect, 404
Hyperfemininity in prereproductive adolescent primates, 404

Mimicry of male genitalia by females, 404
The case of the spotted hyaena, 404
Mimicry of male genitalia in other mammals, 404
Phallic mimicry by males, 405
Appetitive (foraging) mimicry, 406
Appetitive mimicry and deceptive use of alarm calls, 406
Beau Geste and seeming to be more than you are, 408
Appearing older than you are, 408
Weapon automimicry, 408

14 ADAPTIVE RESEMBLANCES AND DISPERSAL: SEEDS, SPORES AND EGGS, 409
Introduction, 410
Fruit and seed dispersal by birds, 410
Warningly coloured fruit, 414
Fruit mimicry by seeds, 414
Seed dispersal by humans, arable weeds and Vavilovian mimicry, 414
Seed elaiosomes and their insect mimics, 415
Mimicry by parasites to facilitate host finding, 415
The trematode and the snail, 415
The trematode and the fish, 416
Pocketbook clams and fish, 416
‘Termite balls’, 417
Pseudoflowers, pseudo-anthers and pseudo-pollen, 417
Truffles, 418
Mimicry of dead flesh by fungi and mosses, 419
Deception of dung beetles by fruit, 419

15 MOLECULAR MIMICRY: PARASITES, PATHOGENS AND PLANTS, 421
Introduction, 422
Macro-animal systems, 422
Anemone fish, 422
Parasitic helminthes, 422
Platyhelminthes (Trematoda), 422
Tapeworms (Platyhelminthes: Cestoda), 423
Parasitic nematodes, 423
Parasitoid wasp eggs, 424
Pathogenic fungi, 424
Protista, 424
Chagas’ disease, 424
Microbial systems, 424
Bacterial chemical mimicry and autoimmune responses, 424
Helicobacter pylori, 425
Campylobacter jejuni, 425
Mimicry by plant-pathogenic bacteria, 425
Viruses, 425
Plants, 425
Sugar, toxin and satiation mimicry, 425
Phytoecdysteroids – plant chemicals that mimic insect moulting hormone, 427
Plant oestrogens – phyto-contraceptives, 427
Extended glossary, 429
References, 445
Author index, 515
General index, 533
Taxonomic index, 539