What is the motivation for studying critical infrastructure protection (CIP)? What are the central issues that need to be addressed in order to create a meaningful strategy for dealing with threats against infrastructure? We begin by tracing the development of CIP over several decades and noting that it has evolved through at least seven phases: from initial awareness to combating terrorism, emphasis on natural disaster response, an early definitional phase, a public–private cooperation phase, a federalism versus states phase, a resilience awareness phase, and, after a decade of evolution, a phase characterized by the practical application of risk-informed decision-making.

CIP is a multifaceted topic, because it cuts across many disciplines and jurisdictions. It cuts vertically across federal, state, local, and tribal political boundaries, and it cuts horizontally across public and private organizations. It has a variety of policy issues at one extreme and a diverse set of scientific and engineering issues at the other extreme. The most glaring example of this is the electric power grid, which is pulled in many different directions by political, social, engineering, and public–private forces. The topics in this book touch on all of these but focus mainly on architectural and policy issues at the highest level.

One of the most difficult tasks of protecting critical infrastructure (CI) is the problem of deciding who is responsible for what across these political and organizational lines. While policy at the Department of Homeland Security (DHS) offices in Washington, DC, may dictate an all-hazards risk-informed decision-making process and encourage community action, actual operational and organizational processes at the state and local level may be entirely different due to a number of factors. Federalism and top-down policymaking may look good on paper, but actual implementation at the local level often lacks jurisdictional clarity, required expertise, willpower, or all three. For example, what is the role of public safety responders such as firefighters and law enforcement officers when something goes wrong with a gas pipeline, electrical power fails during a storm, or hackers exploit the Internet in a city without cybersecurity expertise?

There remain gaps in knowledge, jurisdictional clarity, and organizational fitness—topics this book attempts to remedy—in the emerging field of CIP. As this chapter illustrates, the field is still evolving. Some issues are being resolved, while others are still in the early stages of their evolution. The field has matured, circa 2014, as follows:

- **Recognition**: No such field of study existed prior to the mid-1900s. Although awareness of the importance of infrastructure began in 1962 with the Cuban missile crisis, nearly 30 years passed before the term CIP was defined. Throughout these 30 years, the roles and responsibilities of governmental agencies as well as the definition of CIP changed as the field has evolved. Nonetheless, much remains to be resolved.

- **Natural disaster recovery**: In the beginning, CIP was nearly identical to consequence management—recovery from disasters such as floods, hurricanes, and earthquakes.
The Stafford Act established Federal Emergency Management Agency (FEMA)—a federal agency dedicated to recovery after a flood, hurricane, earthquake, tornado, etc. Terrorism was not a factor in CIP in the beginning. It would take a decade of attacks before CIP was linked with terrorism in the United States. But a focus on terrorists—human-caused incidents—soon faded as natural disasters occurred more often than terrorist attacks, and headlines focused the public’s attention on billion-dollar natural disasters.

- **Definitional phase**: The term “CI” did not exist before the 1990s. There was no definition of CIP, and infrastructure was taken for granted. The public was confident that freshwater always flowed from faucets and electric light switches always produced light. The terrorist attacks of 9/11 changed all that, of course, even though the earliest definition of CIP was made in 1997. Then, from 1997 to 2003, the identification of CI sectors expanded from 8 to 13 sectors plus 5 key assets, expanded again to 18 sectors and key resources (KR), and then consolidated into 16 critical infrastructure sectors and key resources (CIKR) in 2013. Today, it is difficult to identify sectors of the national economy that are not critical; however, this book attempts to define criticality in a rigorous and operational way.

- **Public–private cooperation**: The role of the private sector in CIP was slow to take root until the late 1990s. But so many CIKR assets are in the hands of corporations—not local, state, or federal government—that it is difficult to separate public versus private assets. Public safety and health, law enforcement, and emergency response are largely a function of local government, but energy, power, communications, and commercial air travel are largely a function of the private sector. Water and key assets such as dams fall somewhere in between. Who should respond when something happens to these systems? Even today, the federal government and private sector owners of infrastructure are not clear on their respective roles and responsibilities with respect to CIP.

- **Federalism**: Because terrorists attack at the local level, the solution to the problem must also come from the local level—states, cities, and tribes. The future of homeland security rests in the hands of local governments, and yet the local level lacks sufficient technology, skills, and funding to cope with global terrorism or major catastrophes. The Superstorm Sandy, Fukushima dai-ichi power plant disaster, Horizont Gulf oil spill, and major droughts throughout the Midwest routinely outstrip local government’s capacity to deal with catastrophic events. Federal–state–local–tribal federalism does not seem to be able to cope with CIKR events spanning political boundaries or that are so consequential that local authorities are overwhelmed.

- **Resilience**: By the mid-2000s, it became obvious that asset hardening and 100% security of the vast CIKR sectors was an impossible and impractical goal of CIP. CIKR systems are too big, too complex, and too expensive to protect in their entirety. Thus, the field entered a period of reevaluation and government agencies began to focus on resiliency rather than absolute security. Although the definition of risk and resilience went through many iterations, the concept of a resilient society began to take root as an objective of CIP. However, like the term risk, the term resiliency still lacks a standard definition, making the application of resilience-informed decision-making difficult and often ineffective.

- **Risk-informed decision-making**: Ten years after the horrific terrorist attacks of September 11, 2001 (9/11), the notion of resilience remained a laudable goal but difficult to measure. Therefore, the field of CIP entered a more quantifiable phase loosely called risk-informed decision-making. During this phase, a variety of methods and practices emerged to quantify risk and resilience and to measure the return on investment (ROI) for a variety of techniques ranging from target hardening, public–private partnerships (PPP), regulation of chemicals, etc. to rigorous methods of assessing risk and resilience. Risk-informed decision-making seeks to prioritize investments in infrastructure on the basis of quantitative risk assessment.

The application of CIP has also evolved along with the movement toward a risk-informed decision-making strategy at the DHS. Although it is a moving target, a handful of strategic themes have emerged.

1.1 RECOGNITION

Prior to the dramatic and horrific attacks of September 11, 2001 (9/11), the U.S. public had little awareness of terrorism or how it could impact them personally. Attacks on the homeland were something that happened in other countries—not the United States. But a growing number of “national security emergencies” culminating in 9/11 exposed terrorism for...
what it is—a challenge to the security of the people of the United States. Even before 9/11 however, a few policymakers were busy formulating various strategies and policies that culminated in a national strategy for homeland security. A major part of this national strategy involves CIP—the protection of basic infrastructure sectors such as water, power, telecommunications, health and medical services, the Internet, and transportation systems. The early work of this small group peaked in the late 1990s, which marks the origins of what we now call homeland security. During this same time, CI and CIP emerged as a key element of homeland security.

Although CIP was defined and recognized as a major component of national security rather late in the game (1996), it really began with the creation of the National Communications System (NCS) in 1963 after communication problems between the United States and the Soviet Union threatened to interfere with negotiations during the Cuban missile crisis:

In October [1962], President John F. Kennedy, on national television, revealed that the Soviets had placed nuclear missiles in Cuba. As a result of this aggressive action, he ordered quarantine on all offensive military equipment under shipment to Cuba until the Soviets removed their weapons. … For nearly a week, the Nation was transfixed by the actions of Soviet Premier Nikita Khrushchev and President Kennedy. During this time, ineffective communications were hampering the efforts of the leaders to reach a compromise. Without the ability to share critical information with each other using fax, e-mail, or secure telephones such as we have today, Premier Khrushchev and President Kennedy negotiated through written letters. Generally, Washington and Moscow cabled these letters via their embassies. As the crisis continued, hours passed between the time one world leader wrote a letter and the other received it. Tensions heightened. On October 27 and 28, when urgency in communications became paramount, Premier Khrushchev bypassed the standard communication channels and broadcast his letters over Radio Moscow.

Following the crisis, President Kennedy, acting on a National Security Council recommendation, signed a Presidential memorandum establishing the NCS. The new system’s objective was “to provide necessary communications for the Federal Government under all conditions ranging from a normal situation to national emergencies and international crises, including nuclear attack.”

At its inception on August 21, 1963, the NCS was a planning forum composed of six Federal agencies. Thirty-five years later, it is a vital institution comprising 23 member organizations that ensure NS/EP (National Security/Emergency Preparedness) telecommunications across a wide spectrum of crises and emergencies. … During the 1980s and 1990s, the NCS expanded its focus to develop Government wide NS/EP procedures and enhancements to the Nation’s public networks and information infrastructures.

The role of the communications infrastructure grew more important as the United States entered the information age. In 1978, two communication regulatory agencies (the Department of Commerce Office of Telecommunications and the Whitehouse Office of Telecommunications) were combined into the National Telecommunications and Information Administration (NTIA) by Executive Order 12046. The NTIA handles the process of selling spectrum to telephone, radio, and TV networks. It also has the distinction of being the federal agency that oversaw the commercialization of the Internet in 1998–1999. The NCS was formally assigned responsibility for the telecommunication infrastructure in 1984 by Executive Order 12472.

In 1982, President Reagan established the National Security Telecommunications Advisory Committee (NSTAC) by Executive Order 12382. This important Presidential advisory body is made up of the CEOs of the major telecommunications companies.

The NSTAC is perhaps the first organization to advise a President on CIP.

The NCS and NSTAC were the first CI agencies within the U.S. government. Twenty years would pass before the term CI would be defined and the entire U.S. population would become aware of its importance in their daily lives. The DHS absorbed NCS in February 2003, but the NSTAC still reports to the President of the United States.

1.2 NATURAL DISASTER RECOVERY

While the NCS and NSTAC were active throughout the 1970s and 1980s, responses to disasters—both human caused and natural—were still on the back burner as far as CIP was concerned. The FEMA was created in 1978–1979 to respond to hurricanes and earthquakes. Soon after its creation, FEMA was assigned the (temporary) responsibility of responding to terrorist attacks by Executive Order 12148 in 1979:

All functions vested in the President that have been delegated or assigned to the Defense Civil Preparedness Agency, Department of Defense, are transferred or reassigned to the Director of the Federal Emergency Management Agency.

All functions vested in the President that have been delegated or assigned to the Federal Disaster Assistance Administration, Department of Housing and Urban Development, are transferred or reassigned to the Director of the Federal Emergency Management Agency, including any of those functions re-delegated or reassigned to the Department of Commerce with respect to assistance to communities in the development of readiness plans for severe weather-related emergencies.

*http://www.ncs.gov/about.html

1 Presidential Reorganization Plan No. 3 issued by President Carter in 1978 established the FEMA, which went into effect on April 1, 1979.

All functions vested in the President that have been delegated or assigned to the Federal Preparedness Agency, General Services Administration, are transferred or reassigned to the Director of the Federal Emergency Management Agency.

All functions vested in the President by the Earthquake Hazards Reduction Act of 1977 (42 U.S.C. 7701 et seq.), including those functions performed by the Office of Science and Technology Policy, are delegated, transferred, or reassigned to the Director of the Federal Emergency Management Agency... For purposes of this Order, “civil emergency” means any accidental, natural, man-caused, or wartime emergency or threat thereof, which causes or may cause substantial injury or harm to the population or substantial damage to or loss of property.

FEMA was confronted by perhaps the first major terrorist attack on U.S. soil in Oregon in 1984. Members of the political-religious commune founded by Bhagwan Shree Rajneesh attempted to influence a political election by poisoning voters with salmonella.8

In a bizarre plot to take over local government, followers of Bhagwan Shree Rajneesh poisoned salad bars in 10 restaurants in The Dalles in 1984, sickening 751 people with salmonella bacteria. Forty-five of whom were hospitalized. It is still the largest germ warfare attack in U.S. history. The cult reproduced the salmonella strain and slipped it into salad dressings, fruits, vegetables and coffee creamers at the restaurants. They also were suspected of trying to kill a Wasco County executive by spiking his water with a mysterious substance. Later, Jefferson County District Attorney Michael Sullivan also became ill after leaving a cup of coffee unattended while Rajneeshees lurked around the courthouse.

Eventually, Ma Anand Sheela, personal secretary of the Bhagwan, was accused of attempted murder, conspiracy, arson, and other crimes and disowned by the Bhagwan. Convicted of the charges against her, she spent 29 months in federal prison, then moved to Switzerland.9

The salmonella incident in Oregon was an attack on one of many infrastructure sectors identified as critical over the past decade: agriculture. But in 1984, there was no generally accepted definition of infrastructure nor any recognition of what sectors belonged to the list of national CI.

The importance of infrastructure began to dawn on the federal government when in 1988 President Reagan issued Executive Order 12656. This order alludes to “essential resources” and places responsibility for their protection in the hands of Federal Departments:

The head of each Federal department and agency, within assigned areas of responsibility shall:

Sec. 204. Protection of Essential Resources and Facilities. (1) Identify facilities and resources, both government and private, essential to the national defense and national welfare, and assess their vulnerabilities and develop strategies, plans, and programs to provide for the security of such facilities and resources, and to avoid or minimize disruptions of essential services during any national security emergency;

(2) Participate in interagency activities to assess the relative importance of various facilities and resources to essential military and civilian needs and to integrate preparedness and response strategies and procedures;

(3) Maintain a capability to assess promptly the effect of attack and other disruptions during national security emergencies.

This executive order contains a number of objectives that remain problematic even today. It calls for identification of public and private facilities that are essential to national welfare—a task that remains unfulfilled today, as political and socioeconomic forces complicate the definition of “essential” and “national welfare.” A bridge in one county may be considered essential by voters in that county, but not essential in an objective sense, because of alternate routes. Moreover, when limited resources are considered and there is funding for only one bridge, objective selection of which bridge is saved or repaired quickly enters the political realm instead of the rational realm.

Part two of President Reagan’s executive order calls for interagency cooperation to address military and civilian needs. When a severe emergency such as a devastating superstorm or terrorist attack happens, however, interagency cooperation often vanishes and the military takes over. Civil–military relations theoretically mean that the military takes orders from civilians, but in practice, only the military has the capacity to deal with major catastrophes. This inequality between the authority of local law enforcement agencies and the readiness of federal troops is revealed over and over again whenever major incidents such as Hurricane Katrina and New Orleans spin out of control.

Finally, the third part of the executive order remains problematic because state and local agencies often do not or cannot afford to maintain capabilities to meet the need. For example, a smallpox outbreak in Manhattan—population 8 million—would quickly overwhelm public health and safety agencies in New York. The state and local authorities would have to maintain 40,000 trained emergency responders to head off the spread of smallpox.
1.3 DEFINITIONAL PHASE

Even in the early 1990s, the trend toward greater awareness of human-made and natural disasters was subtle—it had not yet reached a point where it was of national concern. But by 1993–1995, the rate and severity of acts of terror, for example, was increasing and becoming more alarming to the federal government. The 1993 attack on the World Trade Center by Ramzi Yousef; the acts and eventual capture of the Unabomber (1995); the devastating attack on the Federal Building in Oklahoma City, Oklahoma (1995); and the sarin gas attack in a Tokyo subway in 1995 suggested a trend. Acts of violence by nongovernmental organizations (NGOs) were increasing and, as a by-product, raising the level of public awareness. Soon these acts would be attributed to terrorists and move from the back to the front page of the media. Within a short 5–6 years, response to unlawful terrorism would become known as the Global War on Terrorism (GWOT) and reached a threshold that deserved national attention. During this definitional phase, the importance of infrastructure to the safety and security of the U.S. population began to take shape. But the threat was still confined to human-initiated acts of terror. One of the earliest concerns was the fragility and vulnerability of the systems we depend on daily, such as roads, bridges, stadiums, schools, and office buildings. These facilities house many people and yet they are completely open and unprotected. The communication systems, energy systems, and power systems that run cities and enable modern society to function were also open and unprotected. The emergency response systems and public health services taken for granted for decades were suddenly exposed as poorly prepared. Modern life depended on them, and yet, these essential systems were vulnerable to attacks by both humans and Mother Nature.

The modern origin of homeland security and one of its pillars, CIP, can be placed somewhere between 1993 and late 1995. In fact, 1995 is a reasonable start date because of the flurry of activity aimed at protecting national infrastructure and key assets after 1995. Presidential Decision Directive 39 (PDD-39) issued by President Clinton in 1995 set the stage for what was to come—a new federal DHS. PDD-39 essentially declared war on terrorists10:

It is the policy of the United States to deter, defeat and respond vigorously to all terrorist attacks on our territory and against our citizens, or facilities, whether they occur domestically, in international waters or airspace or on foreign territory. The United States regards all such terrorism as a potential threat to national security as well as a criminal act and will apply all appropriate means to combat it. In doing so, the U.S. shall pursue vigorously efforts to deter and preempt, apprehend and prosecute, or assist other governments to prosecute, individuals who perpetrate or plan to perpetrate such attacks.

We shall work closely with friendly governments in carrying out our counterterrorism policy and will support Allied and friendly governments in combating terrorist threats against them. Furthermore, the United States shall seek to identify groups or states that sponsor or support such terrorists, isolate them and extract a heavy price for their actions. It is the policy of the United States not to make concessions to terrorists.

The criticality of national infrastructure and associated key assets became an important issue when President Clinton issued executive order EO-13010 in 1996. This executive order established a Presidential Commission on Critical Infrastructure Protection (PCCIP). The commission was chaired by Robert Marsh and its report subsequently became known as the Marsh Report [1]. It defined CI in terms of “energy, banking and finance, transportation, vital human services, and telecommunications.” The Marsh Report was the first publication to use the term CI and has become one of the foundational documents of CIP history.

The Marsh Report and executive order EO-13010 provided the first formal definition of infrastructure as “a network of independent, mostly privately-owned, man-made systems that function collaboratively and synergistically to produce and distribute a continuous flow of essential goods and services.” And CI is “an infrastructure so vital that its incapacity or destruction would have a debilitating impact on our defense and national security.”

According to Executive Order 1301011:

Certain national infrastructures are so vital that their incapacity or destruction would have a debilitating impact on the defense or economic security of the United States. These critical infrastructures include telecommunications, electrical power systems, gas and oil storage and transportation, banking and finance, transportation, water supply systems, emergency services (including medical, police, fire, and rescue), and continuity of government. Threats to these critical infrastructures fall into two categories: physical threats to tangible property (“physical threats”), and threats of electronic, radio frequency, or computer-based attacks on the information or communications components that control critical infrastructures (“cyber threats”). Because many of these critical infrastructures are owned and operated by the private sector, it is essential that the government and private sector work together to develop a strategy for protecting them and assuring their continued operation.

The work of the PCCIP resulted in PDD-63 (Presidential Decision Directive of 1998), which defined critical infrastructure more specifically and identified eight basic sectors, listed in Table 1.1. According to PDD-63:

10http://www.fas.org/irp/offdocs/pdd39.htm
11http://www.fas.org/irp/offdocs/eo13010.htm
Critical infrastructures are those physical and cyber-based systems essential to the minimum operations of the economy and government. They include, but are not limited to, telecommunications, energy, banking and finance, transportation, water systems and emergency services, both governmental and private.12

Table 1.1 identifies the sectors initially defined by PDD-63 in 1998 and also identifies the sector-specific agency (SSA) responsible at the federal level. SSAs can be any government agency responsible for carrying out the various CIP missions (Page 50 in Ref. [2]):

\begin{itemize}
 \item Leads, integrates, and coordinates the execution of the National Infrastructure Protection Plan (NIPP), in part by acting as a central clearinghouse for the information-sharing, reporting, and coordination activities of the individual sector governance structures
 \item Facilitates the development and ongoing support of governance and coordination structures or models
 \item Facilitates NIPP revisions and updates using a comprehensive national review process
 \item Ensures that effective policies, approaches, guidelines, and methodologies regarding partner coordination are developed and disseminated to enable the SSAs and other partners to carry out NIPP responsibilities
 \item Facilitates the development of risk, risk-informed, and criticality-based assessments and prioritized lists of CIKR
 \item Facilitates the sharing of CIKR prioritization and protection-related best practices and lessons learned
 \item Facilitates participation in preparedness activities, planning, readiness exercises, and public awareness efforts
 \item Ensures cross-sector coordination with the SSAs to avoid conflicting guidance, duplicative requirements, and reporting
\end{itemize}

The definition of critical infrastructure in PDD-63 went through rapid evolution and expansion after the attacks of 9/11. The office of the President of the United States released the National Strategy for Homeland Security in July 2002 and then rapidly followed up with an expansion of the definition of critical infrastructure sectors in February 2003 with the release of the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets.13

According to the 2003 strategy document, the objectives of CIP include:

\begin{itemize}
 \item Identifying and assuring the protection of those infrastructures and assets that we deem most critical in terms of national-level public health and safety, governance, economic and national security, and public confidence consequences
 \item Providing timely warning and assuring the protection of those infrastructures and assets that face a specific, imminent threat
 \item Assuring the protection of other infrastructures and assets that may become terrorist targets over time by pursuing specific initiatives and enabling a collaborative environment in which federal, state, and local governments and the private sector can better protect the infrastructures and assets they control
\end{itemize}

In addition to the list of sectors shown in Table 1.2, the 2003 National Strategy lists five KR:

\begin{itemize}
 \item National monuments and icons
 \item Nuclear power plants
 \item Dams
 \item Government facilities
 \item Commercial key assets
\end{itemize}

12http://www.fas.org/irp/offdocs/pdd/pdd-63.htm

1998 was a year of ramping up counterterrorism programs. Major initiatives besides PDD-62 (countering terrorism), PDD-63 (CIP), and PDD-67 (continuity of government) were the creation of a variety of programs:

- National Infrastructure Protection Center (NIPC) established in the Department of Justice.
- Chemical Safety Board formed.
- National Domestic Preparedness Office (NDPO) created in the Department of Justice.
- Critical Infrastructure Analysis Office (CIAO) established.
- Counter-Terror Coordination Unit in National Security Council formed.
- Congress earmarks $17M for Special Equipment and Training Grants.
- Attorney General announces creation of NDPO.

1.4 PUBLIC–PRIVATE COOPERATION

By 1999, some experts believed that most infrastructure in the United States was owned by the private sector—not government. The Internet had just been commercialized in 1998, and the communication and electrical power sectors were in the process of being deregulated. Control of most public utilities was in the hands of corporations, and according to Table 1.1, it appeared that the private sector owned or operated most infrastructure considered “critical.”

Thus, in 1999, President Clinton established the National Infrastructure Assurance Council (NIAC) to bring industry and government closer together. According to Executive Order 13130, the NIAC was established to facilitate the partnership through Public Sector Information Sharing and Analysis Centers (PS-ISACs):

By the authority vested in me as President by the Constitution and the laws of the United States of America, including the Federal Advisory Committee Act, as amended (5 U.S.C. App.), and in order to support a coordinated effort by both government and private sector entities to address threats to our Nation’s critical infrastructure, it is hereby ordered as follows:

Section 1. Establishment.

(a) There is established the National Infrastructure Assurance Council (NIAC). The NIAC shall be composed of not more than 30 members appointed by the President. The members of the NIAC shall be selected from the private sector, including private sector entities representing the critical infrastructures identified in Executive Order 13010, and from State and local government. The members of the NIAC shall have expertise relevant to the functions of the NIAC and shall not be full-time officials or employees of the executive branch of the Federal Government.

(b) The President shall designate a Chairperson and Vice-Chairperson from among the members of the NIAC.

(c) The National Coordinator for Security, Infrastructure Protection and Counter-Terrorism at the National Security Council (National Coordinator) will serve as the Executive Director of the NIAC.

(d) The Senior Director for Critical Infrastructure Protection at the National Security Council will serve as the NIAC’s liaison to other agencies.

(e) Individuals appointed by the President will serve for a period of 2 years. Service shall be limited to no more than 3 consecutive terms.

Section 2. Functions.

(a) The NIAC will meet periodically to:

1. enhance the partnership of the public and private sectors in protecting our critical infrastructure and provide reports on this issue to the President as appropriate;
2. propose and develop ways to encourage private industry to perform periodic risk assessments of critical processes, including information and telecommunications systems; and
3. monitor the development of Private Sector Information Sharing and Analysis Centers (PS-ISACs) and provide recommendations to the National Coordinator and the National Economic Council on how these organizations

14The source of this claim has never been found, but a popular meme of the time was that the private sector owned or operated 85% of the critical infrastructure listed in Table 1.1.
can best foster improved cooperation among the
PS-ISACs, the National Infrastructure Protection
Center (NIPC), and other Federal Government entities.
(b) The NIAC will report to the President through the
Assistant to the President for National Security Affairs,
who shall assure appropriate coordination with the
Assistant to the President for Economic Policy.
(c) The NIAC will advise the lead agencies with critical
infrastructure responsibilities, sector coordinators, the
NIPC, the PS-ISACs and the National Coordinator on
the subjects of the NIAC’s function in whatever manner
the Chair of the NIAC, the National Coordinator, and the
head of the affected entity deem appropriate.

1.5 FEDERALISM: WHOLE OF GOVERNMENT

The National Strategy document of 2003 declares that homeland
security and CIP in particular are “whole of government”
responsibilities. “Homeland security, particularly in the con-
text of critical infrastructure and key asset protection, is a
shared responsibility that cannot be accomplished by the
federal government alone. It requires coordinated action on
the part of federal, state, local, and tribal governments; the
private sector; and concerned citizens across the country.”16

But in practice, the strategy places most of the power—and all of the funding—in the hands of the federal government.
For example, all SSAs are federal government agencies. The
federal government assumed this responsibility even before
the creation of the DHS in 2003. The President’s Critical
Infrastructure Protection Board (PCIPB) was one of the ear-
liest federal government agencies created as a consequence
of 9/11. It was followed by a flurry of additional government
bureaucracies created to counter terrorism and natural disas-
ters—incidents that appeared to be rising exponentially.

By Executive Order 13231 (October 2001), President
Bush created the PCIPB, with primary responsibility to
develop policies to protect the information infrastructure of
the federal government. EO-13231 recognized the growing
importance of the telecommunications and Internet infra-
structure as well as its interdependency with other sectors.
Without information systems, the U.S. federal government
could not continue to operate in the event of an attack:

Consistent with the responsibilities noted in section 4 of this
order, the Board shall recommend policies and coordinate
programs for protecting information systems for critical
infrastructure, including emergency preparedness communica-
tions, and the physical assets that support such systems.

In 2002, President Bush signed the Homeland Security
Bill, establishing the new DHS. It began operation in
February 2003 and incorporated 22 agencies that were scattered throughout the federal bureaucracy. This included
the NCS, CIAO, and Department of Justice Office of
Domestic Preparedness, along with a number of other large agencies such as the Transportation Security Administration
(TSA), INS, Border Patrol, and Coast Guard. Protection of
CI continued to expand and become one of the major
responsibilities of the DHS.

Presidential Directive HSPD-5 (February 2003) and its
companion, _HSPD-8_ (December 2003), authorized the
Secretary of DHS “to prevent, prepare for, respond to, and
recover from terrorist attacks, major disasters, and other
emergencies.”17 In December 2003, President Bush replaced
PDD-63 with HSPD-7 (Homeland Security Presidential
Directive #7). It rewrote the list of sectors and sector-specific
agencies responsible (see Table 1.3).

Unfortunately, HSPD-7 sectors and KR departed from
the list given by the National Strategy and clouded the issue

Table 1.3 CIKR (16) and responsibilities as defined
by HSPD-7

<table>
<thead>
<tr>
<th>Sector</th>
<th>Sector-specific agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture/food (meat, poultry, eggs)</td>
<td>Department of Agriculture</td>
</tr>
<tr>
<td>Public health/food (other than meat, poultry, eggs)</td>
<td>Department of Health and Human Services</td>
</tr>
<tr>
<td>Drinking water and treatment systems</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>Energy (production, storage, distribution of gas, oil, and electric power, except for commercial nuclear power facilities)</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>Nuclear power plants</td>
<td>Department of Homeland Security and Nuclear Regulatory Commission and Department of Energy</td>
</tr>
<tr>
<td>Banking and finance</td>
<td>Department of the Treasury</td>
</tr>
<tr>
<td>Defense industrial base</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>Cybersecurity</td>
<td>Department of Commerce and Department of Homeland Security</td>
</tr>
<tr>
<td>Chemical</td>
<td>Not specified</td>
</tr>
<tr>
<td>Transportation systems, including mass transit, aviation, maritime, ground/surface, and rail and pipeline systems</td>
<td>Department of Transportation and Department of Homeland Security</td>
</tr>
<tr>
<td>Emergency services</td>
<td>Not specified</td>
</tr>
<tr>
<td>Postal and shipping</td>
<td>Not specified</td>
</tr>
<tr>
<td>National monuments</td>
<td>Department of the Interior</td>
</tr>
<tr>
<td>Key assets: dams, government facilities, and commercial facilities</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

of which department or agency was responsible for energy, power, and the information and telecommunication sector. The list of CIKR in Table 1.3 was short-lived.

Indeed, HSPD-7 does not specify who is responsible for several of the sectors previously identified as “critical.” It appears that HSPD-7 was written to address infighting among departments and agencies that may have felt left out of the National Strategy. Alternatively, the purpose of HSPD-7 may have been to include departments and agencies that have expertise in fields such as cyber, chemical, and nuclear security. For whatever reason, HSPD-7 leaves some responsibilities unspecified and spreads others across multiple departments.

For the first time, HSPD-7 declared that it is impractical to protect everything and focused effort on major incidents—ones that cause mass casualties comparable to the effects of using weapons of mass destruction:

While it is not possible to protect or eliminate the vulnerability of all critical infrastructure and key resources throughout the country, strategic improvements in security can make it more difficult for attacks to succeed and can lessen the impact of attacks that may occur. In addition to strategic security enhancements, tactical security improvements can be rapidly implemented to deter, mitigate, or neutralize potential attacks... Consistent with this directive, the [DHS] Secretary will identify, prioritize, and coordinate the protection of critical infrastructure and key resources with an emphasis on critical infrastructure and key resources that could be exploited to cause catastrophic health effects or mass casualties comparable to those from the use of a weapon of mass destruction. [3]

By 2009, the number of sectors and KR had expanded even more, culminating in 18 CIKR: critical manufacturing was added and information technology and communications were separated into two sectors [2]. In less than a decade, the number of CIKR expanded from 8 to 18. At this pace, CIP would embrace just about every aspect of society, from communications, power, and healthcare to the food we eat, water we drink, and work we do. If CIP embraces nearly everything, perhaps it means nothing. What then is the main goal of CIP?

HSPD-5/HSPD-8 was expanded by President Obama on March 30, 2011, to strengthen “… the security and resilience of the United States through systematic preparation for the threats that pose the greatest risk to the security of the Nation, including acts of terrorism, cyber attacks, pandemics, and catastrophic natural disasters.”18 President Obama pared down the number of CIKR in HSPD-7 to 16 sectors and KR in PPD-21 (2013) (see Table 1.4). Postal and shipping was folded into transportation and national monuments and icons was removed. In addition, the sector-specific agencies responsible for each CIKR were sharpened with more authority given to the DHS. Thus, the long-term definition of critical infrastructure was established.

Figure 1.1 The structure of the critical infrastructure protection office of the Department of Homeland Security as of 2014 is focused on program compliance, analysis, and strategy.

1.6 INFRASTRUCTURE PROTECTION WITHIN DHS

The DHS was formed in response to the 9/11 tragedy. It was formed by merging 22 separate agencies. Responsibility for CIP is spread over a number of directorates within DHS, but primary responsibility falls under the National Protection and Programs Directorate (NPPD). The NPPD received 4% of the $60 billion DHS budget in 2014 and is 1 of 12 directorates that emerged out of a reorganization in 2012 (see Fig. 1.1).

Table 1.4 CIKR as defined by PPD-21 (2013)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Sector-specific agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>Commercial facilities</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>Communications</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>Critical manufacturing</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>Dams</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>Defense industrial base</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>Emergency services</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>Energy</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>Financial services</td>
<td>Department of the Treasury</td>
</tr>
<tr>
<td>Food and agriculture</td>
<td>U.S. Department of Agriculture and Department of Health and Human Services</td>
</tr>
<tr>
<td>Government facilities</td>
<td>Department of Homeland Security and General Services Administration</td>
</tr>
<tr>
<td>Healthcare and public health</td>
<td>Department of Health and Human Services</td>
</tr>
<tr>
<td>Information technology</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>Nuclear reactors, materials, and waste</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>Transportation systems</td>
<td>Department of Homeland Security and Department of Transportation</td>
</tr>
<tr>
<td>Water and wastewater systems</td>
<td>Environmental Protection Agency</td>
</tr>
</tbody>
</table>

The operational directorates of DHS as of 2014 are:

- U.S. Customs and Border Protection (CBP)
- U.S. Immigration and Customs Enforcement (ICE)
- Transportation Security Administration (TSA)
- U.S. Coast Guard (USCG)
- U.S. Secret Service (USSS)
- National Protection and Programs Directorate (NPPD)
- Office of Health Affairs (OHA)
- Federal Emergency Management Agency (FEMA)
- U.S. Citizenship and Immigration Services (USCIS)
- Federal Law Enforcement Training Center (FLETC)
- Science and Technology Directorate (S&T)
- Domestic Nuclear Detection Office (DNDO)

The 2014 DHS budget mentions CI 64 times, with emphasis on cybersecurity, stating the goal of “… critical infrastructure security and resilience [is] to strengthen the security and resilience of critical infrastructure against evolving threats through an updated and overarching national framework that acknowledges the interdependencies between cybersecurity and securing physical assets … through risk assessment, mitigation, and incident response capabilities.” Thus, the emphasis shifted once again, from terrorism to natural hazards and to cybersecurity. Objectives and strategies are likely to continue to shift as threats adapt.

1.7 IMPLEMENTING A RISK STRATEGY

The overall strategy of CIP was set by 2012 with PPD-2, but implementation remained a challenge. Policy dictated a vertically integrated effort from federal–state–local and tribal governments and a horizontally integrated effort across public and private organizations. Government was supposed to cooperate, and the private sector was supposed to help the public sector. But what does this mean? What was each party supposed to do?

Roles and responsibilities could not be aligned vertically or horizontally without operational definitions of objectives. Broadly, the objectives of CIP were impractical as stated by policy. Specifically, infrastructure is too vast, complex, and expensive to protect everything, and expertise among governmental agencies is nonexistent. This called for a narrower definition of objectives and operational definitions of goals, for example, government had to define what is critical in a CI, and both public and private parties had to agree upon metrics for prioritizing projects. Before CIP policy can be implemented, goals and objectives must be defined rigorously enough to implement them.

Policy stated the obvious—protect infrastructure from hazards such as terrorists, storms, earthquakes, etc. Protection included both hardening and response when something bad happens. Funding was inadequate to protect everything, so implementation depended on prioritization of CI assets, which in turn depended on the definition of criticality. Two approaches were initially attempted. The first prioritization strategy was called risk informed and the second was called resilience informed. Risk-informed decision-making means applying risk assessments to prioritize funding of projects to harden CI assets. Resilience-informed decision-making means applying various methods to enhance the resilience of infrastructure assets. Rather than hardening assets, resilience-informed decision-making attempts to make assets adaptable and antifragile. Both approaches have their strengths and weaknesses.

1.7.1 Risk-Informed Decision-Making

The fundamental question posed by a risk-informed strategy is this: given limited resources of the federal government, how should resources (funding) be allocated to reduce risk?
How should priorities be set? Once again, we turn to the NIPP (2009) for guidance (Fig. 1.2):

Risk. The potential for an unwanted outcome resulting from an incident, event, or occurrence, as determined by its likelihood and the associated consequences

Risk-Informed Decision-Making. The determination of a course of action predicated on the assessment of risk, the expected impact of that course of action on that risk, and other relevant factors

Risk Management Framework. A planning methodology that outlines the process for setting goals and objectives; identifying assets, systems, and networks; assessing risks; prioritizing and implementing protection programs and resiliency strategies; measuring performance; and taking corrective action

The era of risk-informed decision-making evolved slowly from politically motivated allocation of resources to the quantifiable and measurable six-step process described in Figure 1.2. Instead of dividing funding according to pressures from politicians, risk-informed decision-making allocates funding according to the likelihood of a high-consequence event. Risk is defined in different ways by different sector-specific agencies, but given a rigorous definition of risk, agencies can allocate funds according to their impact on risk reduction. The risk-informed strategy follows a risk assessment process such as the following (see Fig. 1.2):

1. **Set goals and objectives:** Objectives may range from reduction of consequences to elimination of risk, increasing resiliency, and risk minimization. A risk-informed decision-making process emphasizes risk reduction but may also consider additional objectives such as sociopolitical benefits to a community.

2. **Identify assets, systems, and networks:** Single assets such as a building, bridge, computer, or ports are easy to identify, but most CIKR are part of a complex system. For example, there are numerous assets in a water system—pipes, pumps, treatment plants, and reservoirs. Thus, drinking water is a system containing many assets typically connected together in some fashion. Generally, these systems are modeled as a network of nodes and links: nodes representing pumps, treatment plants, and reservoirs and links representing pipes.

3. **Assess risks:** Risks can be calculated in a variety of ways. A multicriteria risk assessment is a spreadsheet containing risk factors and numerical ratings for each factor. A probabilistic risk assessment (PRA) approach is more exacting: the simplest form is \(R = TVC \), where \(T \) is threat as defined by the probability of a human attacker, \(V \) is the vulnerability of the asset or system to a given threat, and \(C \) is the consequence. \(V \) is a...
conditional probability that a given threat will succeed if attempted. \(C \) is consequence measured in a meaningful unit such as dollars, casualties, or economic damage. See Appendix B for mathematical details.

For natural disasters and accidents, a different risk equation is used: \(R = E(c)C \), where \(E(c) \) is the probability of a hazardous event obtained from historical data and \(C \) is the consequence as before. Hazard probabilities are known for floods, hurricanes, earthquakes, and tornadoes. For example, the famous Gutenberg–Richter scale for measuring the intensity of earthquakes is actually a probability distribution that relates the likelihood of an earthquake to its intensity \(c \). An earthquake of 8 is 1 million times more intense than an earthquake of 4, on the Gutenberg–Richter scale. But the probability \(E(4) \) of a magnitude 4 earthquake is \(10^{-4} \), and the probability \(E(8) \) of a magnitude 8 earthquake is \(10^{-8} \)—10,000 times less likely.

Risk assessment becomes more complicated when analyzing a complex adaptive system such as a power grid, human population subject to an infectious disease, or large and complex transportation system. When such CIKR systems are assessed for risk, we must consider nonlinear effects, feedback loops, and a variety of factors. These are discussed in subsequent chapters.

4. Prioritize: CIKR are typically so large and expensive that it is necessary to identify the most critical assets of vital importance. This requires prioritization—a lengthy topic in itself. Simple prioritization in a risk-informed decision-making setting might be to rank assets according to risk. The highest-risk assets are allocated resources, first. But this has limitations, because the cost to reduce risk by 1% may differ greatly from one asset to another. If the goal is to reduce overall risk, then it may be better to reduce the most cost-effective risks, first. In this case, reducing risk of the highest-risk assets may not be cost-effective.

A number of prioritization schemes should be considered. For example, consider highest-consequence, most vulnerable, highest-risk, highest-return-on-investment, and highest-increase-in-resiliency schemes, depending on the goals and objectives of the risk management framework. A variety of optimization techniques may be applied to this step, because in the end, prioritization is a resource allocation problem that answers the question, “what is the best use of resources to minimize or maximize the objective?”

5. Implement programs: A typical assessment of CIKR produces a recommendation. For example, the assessment may advise the community to secure its drinking water system, repair bridges, or buy backup transformers for the local power grid. Each of these actions takes investment of resources—most often in the form of funding. The output from the previous step 4: Prioritize are used to guide these investments.

6. Measure effectiveness: Finally, the effectiveness of the implementation program needs to be measured and fed back into subsequent assessments. A simple measure is ROI. For example, if the objective is to reduce risk, ROI is obtained by calculating the difference in risk before and after program implementation and dividing by the amount of investment:

\[
\text{ROI} = \frac{\text{risk (before) } - \text{risk (after)}}{\text{Investment}}
\]

The risk-informed strategy is labor-intensive, because all assets must be evaluated and numerical values of \(T, V, \) and \(C \) estimated. These measurements may number in the thousands, and because it involves probabilities, they may be inaccurate. Furthermore, the results of risk assessment may not satisfy sociopolitical objectives such as addressing assets critical to one segment of the population at the expense of assets in other segments of the population. How does one choose between protecting the drinking water system in one part of town versus the hospital in another part of town?

1.7.2 Resilience-Informed Decision-Making

Almost immediately upon the formation of the new DHS, it became clear that CIKR assets numbered in the millions (see Table 1.5).\(^{19}\) The vastness of single sectors makes it impossible to protect everything. When multiplied by the large number of sectors and key assets, the challenge became insurmountable without some kind of prioritization. Furthermore, the concept of “100% security” began to vanish and be replaced by an elusive concept—resilience. Instead of an unyielding goal of 100% security, resilience was an intangible property of CIKR somewhere between absolute security and absolute vulnerability. Instead of a secure infrastructure, a resilient infrastructure was able to bounce back after being attacked or damaged by a storm, earthquake, etc.

The February 2003 National Strategy document contained the word resilience three times. The NIPP (2009) document mentions resilience 15 times. The 2013 PPD-21 directive from President Obama incorporates resilience in its title and uses the word 44 times.\(^ {20}\) By 2013, the focus of CIKR had shifted from counterterrorism and all-hazards preparedness to building resilience into both infrastructure and the population. The era of resilient infrastructure began, and terrorism, all-hazards response, and weapons of mass destruction faded into the background.

\(^{19}\)NIPP (2009), pp.50.

TABLE 1.5 Selection of CIKR assets

<table>
<thead>
<tr>
<th>Assets in a select subset of CIKR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,912,000 farms</td>
<td></td>
</tr>
<tr>
<td>87,000 food-processing plants</td>
<td></td>
</tr>
<tr>
<td>1,800 federal reservoirs</td>
<td></td>
</tr>
<tr>
<td>1,600 municipal wastewater facilities</td>
<td></td>
</tr>
<tr>
<td>5,800 registered hospitals</td>
<td></td>
</tr>
<tr>
<td>87,000 U.S. localities</td>
<td></td>
</tr>
<tr>
<td>250,000 firms in 215 distinct industries</td>
<td></td>
</tr>
<tr>
<td>2 billion miles of cable</td>
<td></td>
</tr>
<tr>
<td>2,800 power plants</td>
<td></td>
</tr>
<tr>
<td>300,000 producing sites</td>
<td></td>
</tr>
<tr>
<td>5,000 public airports</td>
<td></td>
</tr>
<tr>
<td>120,000 miles of major railroads</td>
<td></td>
</tr>
<tr>
<td>590,000 highway bridges</td>
<td></td>
</tr>
<tr>
<td>2 million miles of pipelines</td>
<td></td>
</tr>
<tr>
<td>300 inland/costal ports</td>
<td></td>
</tr>
<tr>
<td>500 major urban public transit operators</td>
<td></td>
</tr>
<tr>
<td>26,600 FDIC-insured financial institutions</td>
<td></td>
</tr>
<tr>
<td>66,000 chemical plants</td>
<td></td>
</tr>
<tr>
<td>137 million delivery sites</td>
<td></td>
</tr>
<tr>
<td>5,800 historic buildings</td>
<td></td>
</tr>
<tr>
<td>104 commercial nuclear power plants</td>
<td></td>
</tr>
<tr>
<td>80,000 dams</td>
<td></td>
</tr>
<tr>
<td>3,000 government-owned/government-operated facilities</td>
<td></td>
</tr>
<tr>
<td>460 skyscrapers</td>
<td></td>
</tr>
</tbody>
</table>

![FIGURE 1.3](image)

A resilience triangle is formed by a collapse followed by recovery.

Unfortunately, a variety of qualitative definitions of resilience make it difficult to measure and apply. Vugrin et al. surveyed the concept of resilience in infrastructure systems and offered a number of definitions [4]. Generally, resilience is a property of a system—not a single asset:

Given the occurrence of a particular disruptive event (or set of events), the resilience of a system to that event (or events) is the ability to efficiently reduce both the magnitude and duration of the deviation from targeted system performance levels.\(^1\)

Of course, this definition is difficult to put into practice, because it lacks quantifiable specifics. Bruneau et al. proposed a measurable and operational model of resilience as shown pictorially in Figure 1.3 and mathematically modeled in Appendix B. Damage to a system in the form of magnitude and duration is represented by a triangular area notched out of a performance-versus-time diagram shown in Figure 1.3. The resilience triangle represents loss due to a drop in performance followed by a recovery period that eventually restores the system to its previous level of performance.

The difference between full performance and diminished performance represented by the resilience triangle defines the system’s resilience. Smaller triangular areas represent greater resilience. The size of the triangular area is reduced, by reducing (1) recovery time, (2) precipitous drop in performance, or (3) both. In addition, the likelihood of a precipitous drop in performance increases the frequency of collapses over time. Thus, reducing the size of the resilience triangle increases resilience:

1. Speed up recovery: \((t_r - t_0)\)
2. Reduce performance drop: \((P_c - P)\)
3. Decrease the probability of failure, \(V\)

This definition suffices for single assets such as buildings, bridges, Internet servers, power plants, and pipelines, but it is inadequate to quantify the resilience of complex interdependent systems such as the power grid, communications network, or an entire municipal water system. However, this metric quantifies the qualitative definition of resilience proposed in the NIPP (2009):

Resilience: The ability to resist, absorb, recover from, or successfully adapt to adversity or a change in conditions. (Page 111 in Ref. [2])

But the resilience triangle model does not address resistance, absorption, adaptation, and recovery factors loosely defined by the NIPP. How does a CIKR resist, absorb, or recover from adversity? How is the ability to resist, absorb, or adapt to adversity measured? These complex properties are addressed by a complex adaptive system model of CIKR described in more detail in Chapters 2–4.

1.7.3 Prevention or Response?

Both risk- and resilience-informed strategies beg the question of, “How much should be devoted to response versus prevention?” When it comes to CIKR protection, is prevention the best use of resources, or should money be spent mainly in response? In a prevention-only strategy, resources are applied to deter and prevent damage. A response-only strategy invests in response capability, such as emergency management services, law enforcement and firefighting capacity, etc.
One way to answer to this question is to classify hazards according to their risk levels—low, high, or even complex. Figure 1.4 illustrates the difference between high- and low-risk hazards. The risk profile curve of Figure 1.4 shows how risk can increase without bound versus consequence or approach zero after a temporary increase. The profile of a low-risk hazard approaches zero as consequence approaches infinity. The profile of a high-risk hazard approaches infinity.

One of the persistently unresolved CIKR security issues is the question of how many resources should be applied to prevention versus response: is the strategy biased more toward response as the National Strategy seems to suggest, or does it provide just as much support for prevention? What should the balance between prevention and response be?

An argument for a greater emphasis on prevention is that prevention is cheaper than suffering mass casualties, economic damage, psychological damage, or damage to national pride. But 100% prevention is impossible. Some terrorist acts will always escape detection and natural disasters like hurricanes cannot be avoided. Still, roads, buildings, and power lines can be designed to withstand almost anything—for a price.

Table 1.6 lists some high- and low-risk hazards, based on their risk profiles. Note that some consequences are measured in deaths, some in financial loss, and others in impacted area. Consequence can be expressed in a number of different units. Furthermore, risk due to an earthquake is considered low when measured in land area but high when measured in deaths.

Figure 1.4 suggests a different risk-informed strategy for low- versus high-risk hazards. For example, the financial risk of small city fires is considered high risk. Therefore, strict building codes and inspections are called for to prevent them. The opposite strategy might apply to low-risk hazards such as terrorism and airline accidents. More resources should be applied to response. Thus, the best risk-informed strategy might depend on the profile of the hazard:

Prevention versus Response: Apply more resources to prevention of high-risk hazards and more resources to response to low-risk hazards.

1.8 ANALYSIS

The evolution of CIP continues to expand and encompass a wider array of challenges. From a focus on terrorism, the homeland security enterprise has grown to encompass cybersecurity, response to natural disasters and climate...
change, concern for school safety, immigration, and other “whole of government” issues. Only three challenges are explored here: the PPP conundrum, information sharing across jurisdictions, global climate change and its impact on natural disasters, and funding of decaying infrastructure.

1.8.1 The PPP Conundrum

What is the role of the private sector in building resilient systems? What is the responsibility of government during response and recovery? In practice, the PPP comes down to regulation and regulatory processes that are determined by politics more than science. For example, the impact of the 1992 EPACT on energy and the electrical power grid, the 1996 Telecommunications Act on communications and the Internet, and the Safe Drinking Water Act (SDWA) of 1974 on environmental regulation profoundly shape the CI sectors, but none of these regulations reduce risk or improve resilience. In some cases, these sectors have become less resilient and riskier because of regulation.

The National Strategy calls for cooperation between government and private corporations that own and operate much of the most critical infrastructure systems and KR, but this strategy is at odds with the way government and private companies operate. Government is motivated by politics, while the private sector is motivated by profit. Both parties want security, but they differ in how to achieve it.

Specifically, the 1992 EPACT dramatically weakened the electric power grid by making it unprofitable to improve the transmission assets underlying the grid, and the 1996 Telecommunications Act created the carrier hotel architecture that is now recognized as the communication sector’s biggest vulnerability. The energy and telecommunication sectors can be improved only through modification or repeal of these regulations, but such radical modifications will require government and the private sector to understand the underlying complexity of these sectors. The necessary expertise does not exist in government and the motivation does not exist in the private sector.

Reversal of deterioration due to aging and wear is a second major factor hinging on PPP. Much infrastructure developed and paid for over the past 120 years is now near the end of its life cycle. The Interstate Highway System, for example, continues to grow in length as it also crumbles due to inadequate maintenance. The nation’s electric power grid is built on 1940s technology and power lines that can no longer support consumer demand. Most drinking water systems in major cities are decaying and slowly failing. Who should pay the mounting maintenance bill?

1.8.2 The Information-Sharing Conundrum

Successful infrastructure protection requires information sharing across jurisdictions (horizontal sharing) up and down the various tribal, local, state, and federal levels (vertical sharing). For example, law enforcement information must freely ebb and flow among and between agencies—local law enforcement must report suspicious activity to regional intelligence centers that report aggregated information to federal agencies. Conversely, situational awareness information and alerts must flow seamlessly from federal agencies to intelligence collection and distribution agencies and finally back to the street level.

Information sharing—both horizontally and vertically—is key to prevention of terrorist attacks and saving lives during a natural disaster. This is why the National Strategy emphasizes, “… protection-related information sharing among private entities within sectors, as well as between government and private entities.” These human networks must span tribal, local, state, and federal levels both horizontally and vertically. But information is often hoarded or filtered as it flows in both directions.

1.8.3 Climate Change Conundrum

A third consideration is the rising challenge of global climate change and its impact on CIKR. Clearly, the intensity of storms is on the rise, as well as weather-related consequences. The number of billion-dollar natural disasters has outgrown the nation’s ability to pay for them, which leads to the question of priorities, “Should we be spending money on target hardening, resilience, and lowering risk when the next superstorm is likely to wipe out an entire sector?” Our response to weather and climate change in general may take all of our resources, leaving little to invest in security.

1.8.4 The Funding Conundrum

The national strategy says nothing about how to pay for CIP. And since the private sector exists to make a profit, they are not motivated to invest in target hardening without some financial justification. So what strategy leads to greater security and resiliency through costly enhancements? If we can learn to think asymmetrically about the architecture of infrastructure sectors, why not think asymmetrically about how to finance these needed improvements?

One idea is to “think dual purpose.” Can an investment in security serve a dual purpose of also improving ROI? For example, can a private infrastructure sector company reduce operating costs by enhancing security? For example, it might be economically feasible to reduce insurance premiums by decreasing theft at ports. A telecommunication company might increase profits by improving throughput and reliability of telephone calls per hour. Does redundancy in telecommunications also improve the security and reliability of the Internet? Can public schools be converted to hospital rooms during an emergency that requires surge capacity? Can local law enforcement improve service by using online social media and simultaneously reduce the cost of intelligence fusion centers and 911 emergency call centers?
Dual-purpose systems typically achieve greater security through redundancy, because redundancy provides a cushion against both heavy loading and system failure. Extra standby telecommunication switches and alternate optical fiber lines may seem expensive if not used all the time, but they also provide a high degree of reliability because the system can switch to a backup when needed. Redundant components improve reliability and fill the gap during periods of surge in demand. For example, the New York Stock Exchange was closed for a week following the 9/11 terrorist attacks, because the exchange lacked redundancy. Had the exchange maintained a backup in a separate location, it could have bounced back more quickly.

The funding challenge may actually be an opportunity to rethink infrastructure. Rethinking the power grid in terms of distributed generation and storage reverses the century-old concept of centralized power plants connected to the consumer through an extensive and complex transmission and distribution network. Over the past 40 years, we have learned that the larger the grid is, the harder it falls. Distributed generation can reduce this vulnerability.

1.8.5 Spend 80% on 20% of the Country

The funding conundrum is partially alleviated by realizing that CI is spread unevenly across the country. CIKR assets are concentrated—typically around densely populated areas such as New York City, Silicon Valley, major ports, manufacturing centers, and key rivers and transportation hubs. Moreover, hubs from different sectors are often geographically clustered—typically around a small number of metropolitan areas. For example, Manhattan, New York, has a high concentration of assets in the banking and finance sector. In addition to the New York Stock Exchange, largest Federal Reserve bank, and many of the world’s largest banks, Manhattan is also home to major communication hubs and one-of-a-kind medical centers.

The largest concentration of energy refineries and major source of refined gas and oil products for distribution throughout the United States is located in Galveston Bay, Texas, and along the Louisiana coast. But Texas and Louisiana are also home to the Mississippi supply chain that supplies food and manufactured goods to the rest of the world.

Fairfax County, Virginia, is the home to a large concentration of Internet servers and defense industrial base companies. Chicago is a national hub for transportation and logistics—the sixth largest port in terms of the intermodal supply chain and also a critical banking and finance center. Most of the 6 million cargo containers that form the backbone of U.S. trade flow through three ports, most of the energy mined to supply fuel for coal-powered power plants is concentrated in Wyoming, and most of the industrial defense base is concentrated in two or three areas of the United States.

These examples suggest an 80–20% rule: 80% of the investment in CIP should be spent on 20% of the country. This, of course, is a political impossibility, but if we are to think asymmetrically about the challenges facing CI, we must face reality: target hardening is too expensive to do everywhere. Instead, an optimal strategy invests in the most vulnerable and high-risk parts of the country. If funding is spread equally to all regions of the country, the most critical regions will be underprotected and the other regions will waste the funds.

1.9 EXERCISES

1. What report was the first to use the term “critical infrastructure”?
 a. EO-13010
 b. The “Marsh Report”
 c. The Patriot Act
 d. The National Strategy for Homeland Security

2. How many CIKR sectors and key resources were listed in the Marsh Report?
 a. 5
 b. 8
 c. 13
 d. 18
 e. 16

3. What organizational structure was proposed to handle the public–private sector partnership in homeland security (select one)?
 a. PS-ISAC
 b. NIAC
 c. ENIAC
 d. NIPC
 e. PCIPB

4. What sector is not on the list of Table 1.2: CIKR as of 2003 (select one)?
 a. Agriculture
 b. Internet and the web
 c. Water
 d. Transportation
 e. U.S. postal and shipping

5. What organization was the first in the United States to advise a U.S. President on critical infrastructure issues (select one)?
 a. NCS
 b. NSTAC
 c. NIAC
 d. PCCIP
 e. FEMA
6. What federal government agency was the first to be assigned the responsibility of fighting terrorists in the United States?
 a. NCS
 b. NSTAC
 c. NIAC
 d. PCCIP
 e. FEMA

7. When and where was the first bioterror attack on U.S. soil? Who perpetrated it?
 a. 2001: New York City; al Qaeda
 b. 1993: New York City; Ramzi Yousef
 c. 1984: Oregon; Ma Anand Sheela
 d. 1995: Oklahoma City; Unabomber
 e. 1995: Oklahoma City; Timothy McVeigh

8. When was critical infrastructure acknowledged as a major component of homeland security? By what document?
 a. 1995: PDD-39
 b. 1996: EO-13010
 c. 1998: PDD-63
 e. 2003: National Strategy for the Physical Protection of Critical Infrastructures and Key Assets

9. How many critical infrastructure sectors were defined in PDD-63 in 1998?
 a. 8
 b. 5
 c. 11
 d. 13
 e. 14

10. How many critical infrastructure sectors are defined in the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets in 2003?
 a. 8
 b. 5
 c. 11
 d. 13
 e. 14

11. The NIAC was formed in 1999 by EO-13130. What does NIAC mean?
 a. National Industry Advisory Council
 b. National Infrastructure Assurance Council
 c. National Information Assurance Council
 d. National Information Advisory Committee
 e. National Infrastructure Advisory Committee

12. Geographically, critical infrastructure is concentrated around a few locations, which argues for:
 a. Investing to protect dense population centers
 b. Hardening the top 12 metropolitan areas
 c. Investing 80% of the money to protect 20% of the country
 d. Investing most of the money to protect Manhattan
 e. Distributing the generation of power to factories and shopping malls

13. Dual-purpose strategies for coaxing investment in infrastructure protection from the companies that own and operate most infrastructure are defined as:
 a. Enhancing productivity and availability while improving security
 b. Forcing companies to lower insurance policies to pay for improvements
 c. Taxing Internet companies to stop the spread of viruses
 d. Use redundancy to increase volume
 e. Spread the components of an infrastructure across large geographical areas

14. Hazards can be classified according to their high or low risk according to:
 a. Consequences
 b. Likelihood of disaster
 c. Loss of power and energy
 d. Response versus prevention costs
 e. Emergency response capability

15. The PPP conundrum is:
 a. The private sector is profit driven and government is not.
 b. It is too expensive to protect everything.
 c. CIKr are owned by the private sector, not government.
 d. Companies ignore state and local jurisdictions.

REFERENCES

