CONTENTS

FOREWORD TO SECOND EDITION BY CHRISTOPHER T. WALSH xvii
PREFACE TO SECOND EDITION xix
FOREWORD TO FIRST EDITION BY PAUL S. ANDERSON xxiii
PREFACE TO FIRST EDITION xxv
ACKNOWLEDGMENTS FROM FIRST EDITION xxix

1. WHY ENZYMES AS DRUG TARGETS? 1
 Key Learning Points / 1
 1.1 Enzymes Are Essential for Life / 2
 1.2 Enzyme Structure and Catalysis / 6
 1.3 Permutations of Enzyme Structure During Catalysis / 12
 1.4 Extension to Other Target Classes / 17
 1.5 Other Reasons for Studying Enzymes / 18
 1.6 Summary / 21
 References / 22

2. ENZYME REACTION MECHANISMS 25
 Key Learning Points / 25
 2.1 Initial Binding of Substrate / 25
2.2 Noncovalent Forces in Reversible Ligand Binding to Enzymes / 28
 2.2.1 Electrostatic Forces / 28
 2.2.2 Hydrogen Bonds / 28
 2.2.3 Hydrophobic Forces / 29
 2.2.4 Van der Waals Forces / 30
2.3 Transformations of the Bound Substrate / 30
 2.3.1 Strategies for Transition State Stabilization / 32
 2.3.2 Enzyme Active Sites Are Most Complementary to the Transition State Structure / 36
2.4 Steady State Analysis of Enzyme Kinetics / 39
 2.4.1 Factors Affecting the Steady State Kinetic Constants / 43
2.5 Typical Values of Steady State Kinetic Parameters / 46
2.6 Graphical Determination of k_{cat} and K_M / 47
2.7 Reactions Involving Multiple Substrates / 49
 2.7.1 Bisubstrate Reaction Mechanisms / 49
2.8 Summary / 54
References / 54

3. REVERSIBLE MODES OF INHIBITOR INTERACTIONS WITH ENZYMES / 57

Key Learning Points / 57
3.1 Enzyme–Inhibitor Binding Equilibria / 58
3.2 Competitive Inhibition / 59
3.3 Noncompetitive Inhibition / 68
 3.3.1 Mutual Exclusivity Studies / 76
 3.3.2 Noncompetitive Inhibition by Active Site-Directed Inhibitors / 80
3.4 Uncompetitive Inhibition / 82
3.5 Inhibition Modality in Bisubstrate Reactions / 86
3.6 Value of Knowing Inhibitor Modality / 88
 3.6.1 Quantitative Comparisons of Inhibitor Affinity / 88
 3.6.2 Relating K_i to Binding Energy / 89
 3.6.3 Defining Target Selectivity by K_i Values / 92
 3.6.4 Potential Advantages and Disadvantages of Different Inhibition Modalities in Vivo / 92
 3.6.5 Knowing Inhibition Modality Is Important for Structure-Based Lead Optimization / 95
3.7 Enzyme Reactions on Macromolecular Substrates / 96
3.7.1 Challenges in Inhibiting Protein-Protein Interactions / 97
3.7.2 Hot Spots in Protein–Protein Interactions / 99
3.7.3 Factors Affecting Protein–Protein Interactions / 104
3.7.4 Separation of Binding and Catalytic Recognition Elements / 107
3.7.5 Noncompetitive Inhibition by Active Site-Binding Molecules for Exosite Utilizing Enzymes / 109
3.7.6 Processive and Distributive Mechanisms of Catalysis / 110
3.7.7 Effect of Substrate Conformation on Enzyme Kinetics / 116
3.7.8 Inhibitor Binding to Substrates / 116

3.8 Summary / 118
References / 119

4. ASSAY CONSIDERATIONS FOR COMPOUND LIBRARY SCREENING 123

Key Learning Points / 123
4.1 Measures of Assay Performance / 125
4.1.1 Calibration Curves / 125
4.1.2 Total, Background, and Specific Signal / 128
4.1.3 Defining Inhibition, Signal Robustness, and Hit Criteria / 130
4.2 Measuring Initial Velocity / 133
4.2.1 End-Point and Kinetic Readouts / 135
4.2.2 Effect of Enzyme Concentration / 137
4.2.3 Other Factors Affecting Initial Velocity / 139
4.3 Balanced Assay Conditions / 142
4.3.1 Balancing Conditions for Multisubstrate Reactions / 145
4.4 Order of Reagent Addition / 146
4.5 Use of Natural Substrates and Enzymes / 148
4.6 Coupled Enzyme Assays / 154
4.7 Hit Validation / 156
4.7.1 Determination of Hit Reproducibility / 156
4.7.2 Verification of Chemical Purity and Structure / 158
4.7.3 Hit Verification in Orthogonal Assays / 159
4.7.4 Chemical and Pharmacological Tractability / 160
4.7.5 Promiscuous Inhibitors / 162
4.7.6 Prioritization of Confirmed Hits / 164
4.7.7 Hit Expansion / 165

4.8 Summary / 166

References / 166

5. LEAD OPTIMIZATION AND STRUCTURE–ACTIVITY RELATIONSHIPS FOR REVERSIBLE INHIBITORS

Key Learning Points / 169
5.1 Concentration–Response Plots and IC_{50} Determination / 170
5.1.1 The Hill Coefficient / 176
5.1.2 Graphing and Reporting Concentration–Response Data / 180
5.2 Testing for Reversibility / 183
5.3 Determining Reversible Inhibition Modality and Dissociation Constant / 188
5.4 Comparing Relative Affinity / 190
5.4.1 Compound Selectivity / 192
5.5 Associating Cellular Effects with Target Enzyme Inhibition / 193
5.5.1 Cellular Phenotype Should Be Consistent with Genetic Knockout or Knockdown of the Target Enzyme / 194
5.5.2 Cellular Activity Should Require a Certain Affinity for the Target Enzyme / 194
5.5.3 Buildup of Substrate and/or Diminution of Product for the Target Enzyme Should Be Observed in Cells / 197
5.5.4 Cellular Phenotype Should Be Reversed by Cell-Permeable Product or Downstream Metabolites of the Target Enzyme Activity / 198
5.5.5 Mutation of the Target Enzyme Should Lead to Resistance or Hypersensitivity to Inhibitors / 199
5.6 Summary / 200

References / 200

6. SLOW BINDING INHIBITORS

Key Learning Points / 203
6.1 Determining k_{obs}: The Rate Constant for Onset of Inhibition / 205
6.2 Mechanisms of Slow Binding Inhibition / 207
6.3 Determination of Mechanism and Assessment of True Affinity / 210
 6.3.1 Potential Clinical Advantages of Slow Off-Rate Inhibitors / 217
6.4 Determining Inhibition Modality for Slow Binding Inhibitors / 217
6.5 SAR for Slow Binding Inhibitors / 219
6.6 Some Examples of Pharmacologically Interesting Slow Binding Inhibitors / 220
 6.6.1 Examples of Scheme B: Inhibitors of Zinc Peptidases and Proteases / 220
 6.6.2 Example of Scheme C: Inhibition of Dihydrofolate Reductase by Methotrexate / 226
 6.6.3 Example of Scheme C: Inhibition of Calcineurin by FKBP-Inhibitor Complexes / 229
 6.6.4 Example of Scheme C When $K_i^* << K_i$: Aspartyl Protease Inhibitors / 231
 6.6.5 Example of Scheme C When k_6 Is Very Small: Selective COX2 Inhibitors / 234
6.7 Summary / 242
References / 243

7. TIGHT BINDING INHIBITION 245

Key Learning Points / 245
7.1 Effects of Tight Binding Inhibition on Concentration–Response Data / 246
7.2 The IC$_{50}$ Value Depends on K_i^{app} and $[E]_T$ / 248
7.3 Morrison’s Quadratic Equation for Fitting Concentration–Response Data for Tight Binding Inhibitors / 253
 7.3.1 Optimizing Conditions for K_i^{app} Determination Using Morrison’s Equation / 255
 7.3.2 Limits on K_i^{app} Determinations / 256
 7.3.3 Use of a Cubic Equation When Both Substrate and Inhibitor Are Tight Binding / 257
7.4 Determining Modality for Tight Binding Enzyme Inhibitors / 258
7.5 Tight Binding Inhibitors Often Display Slow Binding Behavior / 261
7.6 Practical Approaches to Overcoming the Tight Binding Limit in Determining K_i / 263
7.7 Enzyme-Reaction Intermediate Analogues as Examples of Tight Binding Inhibitors / 266
 7.7.1 Bisubstrate Analogues / 271
 7.7.2 Testing for Transition State Mimicry / 272
7.8 Potential Clinical Advantages of Tight Binding Inhibitors / 277
7.9 Determination of $[E]_T$ Using Tight Binding Inhibitors / 279
7.10 Summary / 282
References / 282

8. DRUG–TARGET RESIDENCE TIME 287

Key Learning Points / 287
8.1 Open and Closed Systems in Biology / 288
8.2 The Static View of Drug–Target Interactions / 292
8.3 Conformational Adaptation in Drug–Target Interactions / 294
 8.3.1 Conformational Selection Model / 294
 8.3.2 Induced-Fit Model / 296
 8.3.3 Kinetic Distinction Between Conformational Selection and Induced-Fit Mechanisms / 297
8.4 Impact of Residence Time on Natural Receptor–Ligand Function / 300
 8.4.1 Immune Response / 300
 8.4.2 Control of Protease Activity by Natural Inhibitors / 302
8.5 Impact of Drug–Target Residence Time on Drug Action / 304
 8.5.1 Mathematical Definition of Residence Time for Different Mechanisms of Drug–Target Interaction / 304
 8.5.2 Impact of Residence Time on Cellular Activity / 305
 8.5.3 Impact on Efficacy and Duration in Vivo / 309
 8.5.4 Temporal Target Selectivity and Drug Safety / 316
8.6 Experimental Measures of Drug–Target Residence Time / 318
 8.6.1 Kinetic Analysis of Approach to Equilibrium / 318
 8.6.2 Jump-Dilution Experiments / 319
 8.6.3 Separation Methods / 321
 8.6.4 Spectroscopic Differentiation / 322
 8.6.5 Immobilized Binding Partner Methods / 324
8.7 Drug–Target Residence Time Structure–Activity Relationships / 325
 8.7.1 Structural Changes Associated with Conformational Adaptation / 326
 8.7.2 Thermodynamics of Drug–Target Complex Dissociation / 328
 8.7.3 A Retrograded Induced-Fit Model of Drug–Target Complex Dissociation / 332
8.8 Recent Applications of the Residence Time Concept / 334
8.9 Limitations of Drug–Target Residence Time / 338
8.10 Summary / 340
References / 341

9. IRREVERSIBLE ENZYME INACTIVATORS 345

 Key Learning Points / 345
 9.1 Kinetic Evaluation of Irreversible Enzyme Inactivators / 346
 9.2 Affinity Labels / 350
 9.2.1 Quiescent Affinity Labels / 351
 9.2.2 Potential Liabilities of Affinity Labels as Drugs / 356
 9.3 Mechanism-Based Inactivators / 358
 9.3.1 Distinguishing Features of Mechanism-Based Inactivation / 360
 9.3.2 Determination of the Partition Ratio / 366
 9.3.3 Potential Clinical Advantages of Mechanism-Based Inactivators / 367
 9.3.4 Examples of Mechanism-Based Inactivators as Drugs / 368
 9.4 Use of Affinity Labels as Mechanistic Tools / 375
 9.5 Summary / 380
References / 380

10. QUANTITATIVE BIOCHEMISTRY IN THE PHARMACOLOGICAL EVALUATION OF DRUGS 383

 Key Learning Points / 383
 10.1 In Vitro ADMET Properties / 384
 10.1.1 Exponential Decay Processes and the Definition of Half-Life / 385
 10.1.2 Caco-2 Cell Permeability as a Surrogate for Intestinal Absorption / 387
CONTENTS

10.1.3 Whole Blood or Plasma Stability / 390
10.1.4 Plasma Protein Binding / 392
10.1.5 Metabolism of Xenobiotics in the Liver / 397
10.1.6 Hepatocyte, S9, and Microsome Stability / 400
10.1.7 CYP450 Mediated Metabolism / 403
10.1.8 Cytochrome P450 Inhibition / 408
10.1.9 hERG Inhibition / 416

10.2 In Vivo Pharmacokinetic Studies / 426
10.2.1 General Considerations and Curve Fitting Parameters / 426
10.2.2 Kinetic Models of Drug PK / 432
10.2.3 Absorption and Bioavailability / 444
10.2.4 Factors Affecting PK Parameters / 445
10.2.5 Allometric Scaling of Drug Pharmacokinetics / 451

10.3 Metabolite Identification / 453

10.4 Measures of Target Occupancy / 454
10.4.1 Radiometric Imaging / 455
10.4.2 Ex Vivo Determination of Target Occupancy / 457
10.4.3 Pharmacodynamic Measures of Target Engagement / 459

10.5 Summary / 465

References / 466

APPENDIX 1 KINETICS OF BIOCHEMICAL REACTIONS 471
A1.1 The Law of Mass Action and Reaction Order / 471
A1.2 First-Order Reaction Kinetics / 475
A1.3 Second-Order Reaction Kinetics / 478
A1.4 Pseudo–First-Order Reaction Conditions / 479
A1.5 Approach to Equilibrium: An Example of the Kinetics of Reversible Reactions / 480

APPENDIX 2 DERIVATION OF THE ENZYME–LIGAND BINDING ISOTHERM EQUATION 483

APPENDIX 3 SERIAL DILUTION SCHEMES 487

APPENDIX 4 RELATIONSHIP BETWEEN \([I]/IC_{50}\) AND PERCENTAGE INHIBITION OF ENZYME ACTIVITY WHEN \(h = 1\) 491