INDEX

abundance
   definition, 306
   see also community abundance: species abundance distributions
acclimation, 176, 288–9, 291
acorn ant, 206
activation energies, 22, 23, 31, 45
   central tendency, 45
   inherent, 103
   insects, 201, 202
   for photosynthesis, 30, 176
   for respiration, 30
adaptation, 176, 194
adaptive dynamics models, 163
aerobic respiration, 236, 238
affinity specialists, 157–8
African fruit beetle, 206
age at first reproduction, metabolism and, 220–1
aggregation effects, 42
aging, 220, 224
agriculturalists, 255, 256
albatrosses, 228–9, 230, 303
   field metabolic rates, 231, 232
   prey processing, 229, 230
   reproduction, 226
   soaring flight, 228–9, 232
allocation, principle of, 58, 65, 217
allocation rule, 81
allometric constant, 176
allometric food web dynamics models, 95
allometric food web structure models, 93
allometric similarity, across taxa, 184
allometry
   comparative (evolutionary/interspecific), 49, 50
   definition, 146
   early studies, 48–9
   intraspecific, 49, 50
   ontogenetic, 49, 50
   research history, 165–6
   alternative models, comparison to, 18–19
   alternative reproductive tactics (ARTs), 72–3
   altitudinal diversity gradient, 303
   amphibians, diversification rates, 119
amplification, 299
anabolic processes, 51
angiosperms, 170–3, 176
   diversification rates, 119
animal movement patterns, 76
ant-lion larvae, 211
anthropology, 249
ants
   colonies, 199, 301
   foraging networks, 301
   lifespan of queens, 75
   local diversity, 130
   metabolic rates, 205, 207
ape package, 17
apical dominance, 182
aquatic food webs, 163
archaea, 137, 146
area-filling branch lengths, 298
area-preserving branching, 174–5
Arrhenius equation, 9–11, 142, 176, 306
modified, 102
Arrhenius plots, 23, 30
assembly, 176, 303
assimilation efficiency, 217, 218, 306
assimilation rates, 218, 306
ATP, 36
synthesis, 138, 146, 215, 238
auks, 229, 230
autotrophs, 3, 4, 306
see also photoautotrophs

bacteria
eating, 45
lithotrophic, 146
metabolic rate scaling, 236
balanced growth assumption, 49, 55
baleen whales, 226, 227
basal metabolic rate (BMR), 27–8, 213, 215, 229–32, 306
curvilinear relationship with body mass, 27, 28
bats, lifespans, 220, 224
BayesTraits, 17
bees
lifespan of queens, 75
see also honeybees
behavioral evolution, metabolic ecology and, 118
behavioral thermoregulation, 201, 203
behaviors, 67–76
metabolism role, 68–9
see also communication; cooperation; foraging; reproduction
Bergmann’s rule, 283–4, 285, 303
Bertalanffy model, 51–2, 54
bessbug, 206
biodiversity, 120–31
and climate, 121
loss scale, 271
metabolic theory of, 124–6
conceptual problems, 126–8
empirical patterns, 129
merits, 129–30
unified theories of, 85, 304
biofilms, 149
biogeochemical gradients, 45
biological organization, levels of, 148–52
biological rates, allometric scaling, 29
biological times, 22
allometric scaling, 29
biological units, sizes, 147
biomass
climate change impact on, 285–6
standing, metabolic models of, 284–5
biomass partitioning, 169, 172
biomass production rate, 139, 273
biomass turnover, 100–1
biotic metabolism, 111
birds
altricial, 223
cellular allometry, 216
diversification rates, 119
immune systems, 223
ingestion rates, 217
lifespan, 220, 224
metabolic rates, 213–14
mortality rates, 63, 64
neuron firing rates, 72
population density, 221
small, MTE and problems of, 223
species population sizes, 126
species richness, 121, 124
total abundance, 124
see also seabirds; terrestrial vertebrates
birth rates, 59
body mass and, 63
temperature and, 63
blood velocity, changes in, 26
blood volume, scaling, 25, 27
blue whale, 226
BMR see basal metabolic rate
body mass (M), 22
body size
climate change effects on, 282–4
and ecosystems, 100–1
effect of, 24
and extinction risk, 272–4, 275–7
and geographic range size, 275–7
Boltzmann factor see Arrhenius equation
Boltzmann’s constant, 22, 306
boobies, 229, 230
bootstrap techniques, 18
botanical scaling
examples, 169–70
historical overview, 165–9
origin of exponents, 170–5
origin of normalizations, 175–7
see also Savage et al. model; WBE model; WBE2 model
botflies, 235
bowhead whales, 226
brain size, 118
branch length ratio scaling, 171
branch radii ratio scaling, 171
branch segment conductivity, scaling exponents, 167
branching architecture, 174
classification of plants based on, 168
variation in, 181–2
branching traits, 174
Brazilian gold frog, 213
Broadstone Stream food web, 94
Brownian motion model, 115
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>call power</td>
<td>70, 71</td>
</tr>
<tr>
<td>call rate</td>
<td>70, 71</td>
</tr>
<tr>
<td>cancer tumor cells</td>
<td>238</td>
</tr>
<tr>
<td>capacity rule</td>
<td>81</td>
</tr>
<tr>
<td>caper package</td>
<td>17</td>
</tr>
<tr>
<td>capillaries</td>
<td>26</td>
</tr>
<tr>
<td>capital breeders</td>
<td>227, 228</td>
</tr>
<tr>
<td>capture success</td>
<td>90</td>
</tr>
<tr>
<td>carbohydrates as primary energy source of life</td>
<td>36</td>
</tr>
<tr>
<td>carbon assimilation rate</td>
<td>107, 109, 289–90, 291</td>
</tr>
<tr>
<td>carbon balance</td>
<td>107, 109, 289–90, 291</td>
</tr>
<tr>
<td>carbon cycling</td>
<td>110</td>
</tr>
<tr>
<td>carbon dioxide</td>
<td>108, 165, 289</td>
</tr>
<tr>
<td>carbon sink</td>
<td>186</td>
</tr>
<tr>
<td>cardiovascular networks</td>
<td>294–5, 298, 299, 300</td>
</tr>
<tr>
<td>carnivores</td>
<td>113</td>
</tr>
<tr>
<td>cephalopods, metabolic rates</td>
<td>191</td>
</tr>
<tr>
<td>cetaceans</td>
<td>227</td>
</tr>
<tr>
<td>cerebral system</td>
<td>72, 76</td>
</tr>
<tr>
<td>chemical elements</td>
<td>see elements</td>
</tr>
<tr>
<td>chemical extremophiles</td>
<td>144</td>
</tr>
<tr>
<td>chemical harshness</td>
<td>144–5</td>
</tr>
<tr>
<td>chewing rates</td>
<td>69</td>
</tr>
<tr>
<td>chimpanzees</td>
<td>249, 250, 251–2</td>
</tr>
<tr>
<td>chipmunks</td>
<td>235</td>
</tr>
<tr>
<td>Chiroptera, age of first reproduction</td>
<td>61</td>
</tr>
<tr>
<td>chlorophyll</td>
<td>292</td>
</tr>
<tr>
<td>chloroplasts</td>
<td>43</td>
</tr>
<tr>
<td>cities</td>
<td>294, 295–8</td>
</tr>
<tr>
<td>human interactions</td>
<td>297–8</td>
</tr>
<tr>
<td>climate</td>
<td>121</td>
</tr>
<tr>
<td>climate and biodiversity</td>
<td>122</td>
</tr>
<tr>
<td>climate change</td>
<td>280–92</td>
</tr>
<tr>
<td>adaptation to</td>
<td>119</td>
</tr>
<tr>
<td>CO₂ release and</td>
<td>103</td>
</tr>
<tr>
<td>ecosystem response</td>
<td>186</td>
</tr>
<tr>
<td>effects on communities</td>
<td>284–6</td>
</tr>
<tr>
<td>effects on ecosystems</td>
<td>286–92</td>
</tr>
<tr>
<td>carbon dioxide fertilization</td>
<td>291–2</td>
</tr>
<tr>
<td>interactive and indirect effects</td>
<td>292</td>
</tr>
<tr>
<td>precipitation changes</td>
<td>290–1</td>
</tr>
<tr>
<td>temperature change</td>
<td>288–90</td>
</tr>
<tr>
<td>effects on individuals</td>
<td>281–4</td>
</tr>
<tr>
<td>body size and temperature</td>
<td>282–4</td>
</tr>
<tr>
<td>metabolism and temperature</td>
<td>281–2</td>
</tr>
<tr>
<td>clock trees</td>
<td>298–9</td>
</tr>
<tr>
<td>Coachella Valley food web</td>
<td>92, 93</td>
</tr>
<tr>
<td>coastal communities</td>
<td>265</td>
</tr>
<tr>
<td>coccolithophores</td>
<td>162</td>
</tr>
<tr>
<td>cofactors</td>
<td>37</td>
</tr>
<tr>
<td>communication</td>
<td>70–2</td>
</tr>
<tr>
<td>energetic costs</td>
<td>70</td>
</tr>
<tr>
<td>and fitness</td>
<td>70</td>
</tr>
<tr>
<td>communities</td>
<td>80</td>
</tr>
<tr>
<td>species abundance distributions</td>
<td>81</td>
</tr>
<tr>
<td>community abundance</td>
<td>285–6</td>
</tr>
<tr>
<td>metabolic models</td>
<td>284–5</td>
</tr>
<tr>
<td>community-level allometries</td>
<td>91</td>
</tr>
<tr>
<td>community metabolism</td>
<td>152–3</td>
</tr>
<tr>
<td>community structure, energy and</td>
<td>80–5</td>
</tr>
<tr>
<td>compensation</td>
<td>263</td>
</tr>
<tr>
<td>competition models</td>
<td>80, 168–9</td>
</tr>
<tr>
<td>competitive exclusion</td>
<td>76, 95, 131</td>
</tr>
<tr>
<td>complexity-stability theory</td>
<td>87</td>
</tr>
<tr>
<td>computers</td>
<td>294, 298–301</td>
</tr>
<tr>
<td>information networks scaling</td>
<td>299–300</td>
</tr>
<tr>
<td>wire scaling on chips</td>
<td>298–9</td>
</tr>
<tr>
<td>concentration, notation</td>
<td>308</td>
</tr>
<tr>
<td>conducting-to-non-conducting ratio</td>
<td>167</td>
</tr>
<tr>
<td>conduit radius taper</td>
<td>177</td>
</tr>
<tr>
<td>scaling exponents</td>
<td>167</td>
</tr>
<tr>
<td>confidence intervals (CIs)</td>
<td>17–18</td>
</tr>
</tbody>
</table>
conservation biology, 271–9
  broad-scale applications of MTE, 277–9
  metabolic linkages to extinction risk, 272–7
conservation reserves, 277
consumer–resource body-size ratios, 236, 237, 244
consumer–resource interactions, 87, 91
  see also parasites; predator–prey relations
consumption, 86–8
  allometry of, 217–18
contingency model of optimal foraging, 93, 94
cooporation, 74–6, 253, 256
  between cells, 149
copulation, duration, 76
crime, 297, 298
  critical pO2, 203–4
crustaceans, metabolic rates, 191
cultivation, 249
culture, 249
cumulative distribution function, linearization, 13
currencies, ecological, 4–5
cyanobacteria, 151, 154–5

Damköhler number, 144
damselﬁsh, 235
Damuth’s rule, 81
Daphnia, 44–5
darwin, 114, 115
  definition, 114
  “Darwinian demon”, 262
day range, scaling, 82–3
death rates, 59
decentralization, 300, 301
decomposition, 42
deep-sea ostracods, 284
delivery rates, constraints, 301
demographic steady state, 183
demographic theory, 169
density dependence, 294, 306
depth diversity gradient, 303
desert lizards, 213
determinate growth, 55
development rate
  in ﬁsh, 59–61
  in zooplankton, 59–61
diapause, 206
diatoms, cell sizes, 162, 163
diet matrix, 269
differentiation, 56
dinollagellates, 162
dinosaurs, 223–4
discontinuous gas exchange cycles (DGC), 199
discretionary energy, 282
dispersal, 191, 194–7
distributed networks, 294
disturbance, 185
diversiﬁcation rates
  estimating, 115–16
  MTE and, 118–19
  mutation rates and, 122
  temperature and, 118–19
diversity, biological see biodiversity
diving behavior, 69, 70
Droop equations, 31, 38–9, 157, 306
dual inheritance theory, 249
dynamic energy budget (DEB), 24, 219
ecological footprint, 119
ecological space-filling, 183–4
ecological stoichiometry (ES), 34–47
  applications to metabolism, 38–9
  incorporation in metabolic ecology, 31
  linking with MTE models, 43–5
  models, 38–9
  opportunities, 45–7, 110, 163
ecological theories
  thoughts on testing, 19–20
  see also metabolic theory of ecology
ecology
  components, 5
  theoretical scaffold for, 303
economies of scale, 255–6
ecosystem age, as elemental availability driver, 38
ecosystem allometry, 186
ecosystem respiration, 100, 103–4
  temperature dependence, 23, 289–90
  across climate gradients, 106–7
  inherent, 103–4
  through time, 105–6
ecosystems, 99–111
  body size dependence of ﬂuxes, 100
  climate change effects on, 286–92
  carbon dioxide fertilization, 291–2
  interactive and indirect effects, 292
  precipitation changes, 290–1
  temperature change, 288–90
  MTE and health of, 224
  scaling relationships, 170, 173
  scaling up to, 46–7
  temperature dependence, 101–8
  interactions among temperature-dependent processes, 107–8
ectothermic poikilotherms, 201
ectotherms, 213
  climate change effects on, 278, 281–2
  conformation to Bergmann’s rule, 283
  intestinal surface area, 218
  metabolic rates, 209, 215
  molecular evolution rates, 116
  species richness, 125, 126
EER see energy equivalence rule
egestion, 49

electrochemicals, 37

electron transport chain, 138, 142

elemental availability
  gradients, 37–8
  mapping at multiple scales, 46

elements
  distribution, 37–8
  functional roles, 36–7
  performance curve measurement, 46
  storage, 43–4

elephant seals, 228

elephants, 213

embryo energetics, 53

emperor penguin, 226

encounter rates, 88–90

endosymbiosis, 149, 150–1

endothermic insects, 201, 203

endotherms, 213
  climate change effects on, 278, 282
  conformation to Bergmann’s rule, 283
  intestinal surface area, 218
  metabolic rates, 215
  molecular evolution rates, 116
  species richness, 125, 126, 130

endothermy, evolution, 211

energetic efficiency, 139

energetic hypotheses
  broad-sense, 78, 79, 80, 81
  narrow-sense, 78, 79–80, 81

energy equivalence, 81, 100, 266, 302–3, 304
  definition, 307
  exceptions, 303
  going beyond, 83–4
  importance, 83
  in land plants, 183
  in terrestrial vertebrates, 221
  as upper constraint, 81–2

energy equivalence rule (EER), 124–5
  generalized, 124, 125

energy flow, incoming rate of, 53

energy maximization models, 39

energy transformation, 36

engineering, biologically inspired designs, 304

environmental productivity, 126

environmental stress, 144–5

environmental variation, and trait values, 182

enzyme deactivation, 79

enzyme kinematics, 79

Eppley curve, 160

equilibrium population size (K), 79–80
  covariation with temperature, 80

error distribution, 19

ES see ecological stoichiometry

estivation, 30–1

ethnolinguistic populations, 253

eukaryotes
  number of metabolic reactions, 141
  unicellular, metabolic rate scaling, 146–8, 150–1

Eulipotyphla, age of first reproduction, 61

eusociality, evolution of, 206

evapotranspiration, 121, 130

evolution
  components, 5
  see also genetic theory of evolution
  evolutionary compensation, 195
  evolutionary dynamics, 95–7
  evolutionary game theory, 97
  evolutionary rates, 112–19
    definition, 113
    differential, 113
    factors affecting, 113, 114
    importance, 112
    measuring methods, 113–16
    and phylogenetic signal, 115
  evolutionary speed hypothesis, 118, 119
  exchange surfaces, 168
  excretion, 49
    rates, 44
  exponential relationships, 11
  extinct animals, 223–4
  extinction dynamics, 122, 126–7
  extinction risk
    body size and, 272–4, 275–7
    energetics of space use and, 275–7
    energy requirements and, 274–5
    geographic range size and, 273, 275–7
    life history and, 272–4

FACE, 291

Fe, as chlorophyll cofactor, 41

fecundity, allometric scaling in parasites, 240–1

feedbacks, 281, 287, 288–9, 292, 303

felsen, 115

female mimics, 73

fermentation, 222, 223

Fick’s law, 143

field metabolic rate (FMR), 27–8, 227, 229–32, 307

finite size effects, 180–1, 184

fire ants, 206, 207

fish
  body sizes, 263
  development rate, 59–61
  metabolic rates, 191
  mortality rates, 63, 64
  production rates, 265
  suction, 69
  trophic level increases, 264

Fisher’s fundamental theorem, 5
Fisher’s sex ratio theory, 5, 19
fishing, 261–70
fishery assessment, 269–70
fishery management, 268–70
impacts, 267–8
trade-offs with conservation, 270
see also marine ecology
fitness
communication and, 70
metabolic constraints, 73
quantification, 68
fitted parameters, consistency with theoretical predictions, 17–18
fitting MTE models to data, 13–17
basic fitting, 13–14
log-linear regression vs. nonlinear regression, 14–15
methods for fitting frequency distributions, 17
phylogenetic methods, 16–17
which method to use, 15–16
flight costs, 229–32
flight metabolic rates, 205
flour beetle, 207
fluid velocity, scaling exponents, 167
FMR see field metabolic rate
food assimilation efficiency, 217
food chains, coupling between, 267
food retention time, 218, 222–3
food webs, 86–98
dynamics, 94–7
as elemental availability driver, 38
marine, 263–5
complexity, 265–7
models, 91–3, 222
hybrid, 93
size-based, 93
properties, 87
resilience, 267
structure, 91–4
temperature effects, 97
ways forward, 97–8
see also trophic relations
foraging, 69–70
metabolic costs, 205
metabolic rate constraints, 69
optimal, 39
ranges for seabirds, 229, 230
temperature constraints, 282
foraging generalism, 91
foraging trait allometries, 88–90, 97
forests
recovery from disturbance, 185
scaling relationships, 170, 173
sunlight filtering, 302
Foraminifera
sequence evolution rates, 116
speciation rates, 119
species richness, 129
fractal network theory, 156
free-air CO2 enrichment (FACE), 291
free radicals, 220
frequency distributions
methods for fitting, 17
visualizations of, 13
frogs, 118
fundamental biodiversity number, 126
fungi, eating, 45
fur seals, 227, 231
gamete biomass production rates, 72, 73
gannets, 229, 230
generalized least-squares approach, 16
generalized linear model (GLM) regression, 255
 genetic theory of evolution, metabolic theory of ecology vs., 2, 3
genetics, as unified theory of evolution, 2
geographic range size, 252–3
and body size, 275–7
and extinction risk, 273, 275–7
Gibbs free energy, 139, 140
global circulatory system, 38
global climate change see climate change
global communication networks, 249
glycolysis, 37, 138, 238
Goliath beetle, 199
goodness-of-fit tests, 18
GPP see gross primary productivity
grasshoppers, 205, 207
gravity, as elemental availability driver, 38
green algae, 146, 154–5
griffenfly, 199
gross primary productivity (GPP), 100, 107, 109
group living, 74–6
group sizes, 252, 253
growth
determinate, 55
indeterminate, 55
ontogenetic see ontogenetic growth
growth efficiency, 139, 265
growth rate hypothesis, 39–40
growth rates
and age at first reproduction, 59
model based on individual metabolism, 218–19
and P concentration, 110
plant, normalization, 176
“growth types”, 52
growth yield see growth efficiency
gulls, 229, 230
gut microbes, 151
gymnosperms, 170–3, 176

H-trees, 298–9, 300
habitability of environment, 138
habitat destruction, 277
haldane, 115
handling times, 90
Hardy–Weinberg equilibrium, 5
harvester ants, metabolic rates, 75, 208–9
heat waves, 278
heme metalloproteins, 37
hemocyanin, 37
hemoglobin, 206
herbivore–plant interactions, climate change effects on, 292
herbivores
  consumption rates, 46
  digestion, 222–3
  population density, 221–2
  population N flux, 100, 101
  temperature dependence, 196
heterotrophic respiration, 102
  climate change effects on, 288
heterotrophs, 102, 307
hibernation, 30–1
hierarchical branching, 27
home range, 250, 252
  scaling, 82–3
homeothermic endothermy, 201
homeotherms
  equilibrium population size (K), 80
  ingestion rates, 217
homeothermy, 213
honeybees
  colonies, 199, 205, 208, 209
  larvae, 206–7
  metabolic rates, 205–6, 207, 208, 209
  starvation, 200
hooded seals, 226
horticulturists, 255, 256
host immune responses, 246
host–parasite models, 80
human ecology, 248–57
  comparative energetics of populations, 253–6
  comparative life history, 250, 251
  comparative population ecology, 250–3
  evolutionary history, 248–9, 304
  species dominance, 249
human-engineered systems, 293–301
  differences from cardiovascular networks, 294–5
  see also cities; computers
human health, MTE and, 224
human interactions, scaling, 297–8
human tissue, chemical composition, 35–6
hummingbirds, 118
hunter-gatherers, 250, 252, 253–6
hydraulic conductance, 167
hypermetric scaling, 201, 307
hypometric scaling, 201, 307
hypothesis refinement, iterative process of, 19
I
  and brain development, 47
  as limiting element, 46
income breeders, 227
independent contrasts, 16
indeterminate growth, 55
industrial societies, 256
infectious disease, 246
information criteria-based methods, 18–19
information exchange, 301
information networks, scaling, 299–300
infracommunities, 242–3
infrapopulations, 242–3
ingestion, 49
  rates, terrestrial vertebrates, 217
innovation, 297, 298
insect colonies
  life histories, 66
  metabolic rates, 203, 206, 208–9, 256, 304
  sizes, 199
insect larvae, 206–7
insects
  climate change and, 211
  developmental allometries, 206–7
  ecosystem functioning role of, 199, 211
  interspecific allometries, 209–11
  intraspecific allometries, 207–8
  metabolic cold adaptation, 190
  metabolic rates
    body size and, 206–11
    locomotion effects, 205
    measuring, 199–201
    nutrition and feeding effects, 205–6
    oxygen and supply limitation effects, 203–5
    temperature effects, 201–3
  metabolism, 199
  physiological diversity, 198–9
  species numbers, 198
  species population sizes, 126
  suitability for experiments, 305
  tracheal system, 199, 200, 204–5
  interaction strengths, 91, 95
  interconnect, 299, 300
  interference competition, 97
  intestinal surface area, 218
  intrinsic rate of increase, 100, 307
  invariant subunits, 43
invertebrates
  mortality rates, 63, 64
  total abundance, 124
  see also marine invertebrates
ionic elements, regulation, 40–1
island biogeography, 277
isochronic regions, 299, 301
isometric scaling, 201, 307
jackknife techniques, 18
jaws, closing forces, 69
keystone effects, 95
killing rates, 87–8
kinetic energy, of molecules, 125
kissing bug, 205
Kleiber line, 84
Kleiber’s Law, 22, 24, 49, 303
  validity issues, 27–9
lactation duration, 72, 226
lake plankton, metabolism, 106
land plants see plants
lapping rates, 69
larval development
  marine invertebrates, 191–6
  optimal larval hatch size, 194, 196
  see also insect larvae
last mile, 294, 301
latitudinal diversity gradient, 118, 121, 303
lava flows, 107, 110
Lavoisier’s conservation of mass, 35
leaf-specific conductivity, scaling exponents, 167
leaf weight ratio (LWR), 166
Liebig’s Law of the Minimum (LLM), 39
  applications, 39–41
life, chemical composition, 35–6, 45–6
life histories, 57–66, 303
  definition, 58
  development rate in zooplankton and fish, 59–61
  evolutionary considerations, 64–5
  and extinction risk, 272–4
  and fast–slow continuum, 84–5
  future work, 66
  historical background, 59
  marine species, 262–3
  maximum population growth rates, 63–4, 65, 79, 263, 281
  predicting change with body size, 58–9
  primates, 250, 251
  timing in mammals, 61, 62
  trade-offs between traits, 65
  see also mortality rates; production rates
lifespans, metabolism and, 220–1
ligands, 46
light limitation, 160, 182, 187
likelihood-based methods, 18–19
likelihood ratio tests, 18
limitation cascades, 42–3
linear binning, 13
liver cells, 215, 216
lizards, 219
LLM, 39
  applications, 39–41
locomotory metabolic efficiency, 205
locusts, 205, 206
log-linear regression
  error term, 14
  nonlinear regression vs., 14–15
log-scaling, 11
log-transformation, 11
  nonlinear regression vs., 14–15
logistic equation, 78
logistic growth model, 51
Lotka–Volterra models, 80, 94
macroeocology, 264
maintenance metabolic rate, 137, 138
major axis (MA) regression, 15
major ecological transitions, 149
major evolutionary transitions, 148–9, 161
malaria, 238
mammals
  age at first reproduction, 220
  cellular allometry, 216
  evolutionary rates, 113
  ingestion rates, 217
  life-history scalings, 251
  life-history timing, 61, 62
  lifespans, 220
  metabolic rates, 213–14
  mitochondrial surface area, 215, 216
  mortality rates, 63, 64
  neural activity, 72
  population density, 221
  small, MTE and problems of, 222–3
  see also marine mammals; terrestrial vertebrates
marine ecology, 261–70
  food webs, 263–5
    complexity, 265–7
  life histories, 262–3
  see also fishing
marine habitat, 190
marine invertebrates, 188–97
  body mass range, 189
  climate change effects, 196–7
  metabolic rate variations
    with body size, 191, 192
    with depth, 190–1, 192
    with temperature, 191, 192
resource limitation hypotheses, 189–90
cold temperature, 190
food, 189–90
oxygen, 190
temperature dependence of development, 191–6
marine mammals, 225–33
body size range, 226
extant taxa, 225
foraging patterns, 227
lactation, 228
lifespans, 226
maternal investment, 226
reproduction, 226–7
marsupials
age of first reproduction, 61
gestation time, 61
life histories, 61, 62
mass, as not all metabolically active, 43–4
mass-balance equations, 139, 203
mass exponent, 44–5
mass-specific metabolic rate (B), 22
mass-specific production rate, 273
mats, microbial, 149
maturation time, allometric scaling in parasites, 241
Mauna Loa, ecosystem development, 107, 110
maximal metabolic rate (MMR), 27–8, 215, 307
maximum lifespan, 63
maximum likelihood estimation (MLE), 17
maximum population growth rates (r_mast), 63–4, 65, 79, 263, 281
mean retention time, 218
mechanical power output, 205
meta-metabolome, 152
metabolic cold adaptation, 190
metabolic control analysis, 217
metabolic ecology, principles, 4
metabolic lifestyles, 137
metabolic power, 238
average reaction, 140
metabolic rates
active/growth, 137
basal (BMR) see basal metabolic rate
as central to ecology, 22
definitions, 2–3, 138, 307
diet and, 84
factors governing, 3
field (FMR) see field metabolic rate
global changes in, 283
lifestyle and, 84
maintenance, 137, 138
mass-corrected, 23
maximal (MMR) see maximal metabolic rate
minimum, 137
multi-nutrient limitation, 42
quarter-power scaling, riddle of, 24
scale and aggregation effects, 42
scaling of, 2
and major transitions, 150, 152
standard see standard metabolic rate
temperature-corrected, 23
variation with factors other than body size, 28–9
metabolic scaling theory, proposed ways to advance, 178–82
metabolic theory of ecology (MTE)
central equation, 3, 11, 22, 68, 302
stoichiometric underpinnings, 43–5
definition, 307
future research, 304–5
genetic theory of evolution vs., 2, 3
life history predictions, 58–9
limitations, 31–2
linking models with ES, 43–5
plant ecology predictions, 184–5
principles, 4
scaling up to ecosystem scaling, 185–6
usefulness, 31–3
ways to advance, 186–7
metabolism
definition, 2, 31
dimensions, quantitative outline of, 139–40
molecular basis, 2
as unified theory of ecology, 2
metabolomics, 45
metal scarcity, 45
metazoa, eating, 45
Metropolitan Statistical Areas, 295
Mg, as limiting element, 46
Michaelis–Menten equation, 31, 38, 143, 307
microarrays, 46
microbes see microorganisms
microbial consortia, 149
microbial mats, 149
microbial pathogens, 246
microbial respiration, water availability and, 109
microorganisms, 135–53
biodiversity, 135–6
biological organization levels, 148–52
cell sizes, 135–6, 145–8
chemical kinetics, 141–4
community metabolism, 152–3
dimensions characterizing MTE of, 136
interplay of, 152–3
quantitative outline, 139–40
environmental stress, 144–5
metabolic ecology history, 136–7
physiological foundations, 137–40
physiological harshness, 144–5
suitability for experiments, 305
thermodynamics, 140–1
micropredators, 95
migratory locusts, 205
milkweed bug, 207
mineral “licks”, 46
mineral weathering, 110
mineralization, 110
minimum dynamic areas, 277
minimum metabolic rate, 137
mitochondria
as invariant subunits, 43
numbers increase, 292
oxygen need, 204
mitochondrial surface area, 215, 216
MLE see maximum likelihood estimation
MMR see maximal metabolic rate
molds, colonies, 151
molecular evolution
measuring rates of, 113–14
MTE and rates of, 116–17
mollusks, evolutionary rates, 113
Monod’s Law see Michaelis–Menten equation
monotremes, life histories, 61, 62
Moore’s Law, 294, 300–1
more-individuals hypothesis, 122–4, 125
morphological evolution, measuring rates of, 114–15
mortality rates, 62–3, 64
body mass and, 63, 64
definition, 308
fishing, 267, 269–70
human environmental impacts on, 274
natural, 270
predation, 269–70
temperature and, 63, 64
mortality scaling, 185, 187
mosquitoes, 238
MTE see metabolic theory of ecology
multi-core architecture, 300
multicellular animals, transition to, 300
multicellular plants, mortality rates, 63, 64
multiple regression, 12, 14
muscle dynamics, 72
mutation rates, 116
and diversification rates, 122
metabolic rates and, 125
N fixation, 42–3, 110
N-limited environments, 39
Na, as limiting element, 46
Na-limited environments, 40–1
NAR, 166, 176
nation-states, 256
natural logarithm (ln), 307
natural selection, 65
on hydraulics of internal vascular network geometry, 175
in WBE model, 171, 175
nematodes, 236, 239, 240–3
nested hierarchy model, 91
net carbon assimilation rate (NAR), 166, 176
net primary productivity (NPP), 38, 274
across ecosystems, 170, 174
human usage, 275
nutrient limitation, 31
water limitation, 31
net reproductive rate, 241
network conductance, scaling exponents, 167
neural activity, 72
neutral theory of biodiversity and biogeography, 126–7
niche conservatism, 122, 131
niche filling rates, 115–16
niche model, 91, 93
probabilistic, 93
nonlinear regression
error term, 14
log-transformation vs., 14–15
normalization
botanical scaling
growth rate, 176
leaf allometry, 176
normalization constants, 44, 166
insects, 209–11
shifting of, 182
theory of, 44
normalized-logarithmic binning, 13
normothermia, 213
NPP see net primary productivity
number of conduits in branch segment, scaling exponents, 167
nutrient limitation, 38–9, 126
definition, 38
and phytoplankton, 162
nutrients, and ecosystem energetics, 110–11
OLS bisector, 15
OLS regression see ordinary least-squares (OLS) regression
ontogenetic growth, 48–56
allometric models, 49–55
caveats, 55–6
stoichiometry dependence, 55
temperature dependence, 55
ontogeny, as entailing growth and development, 56
ordinary least-squares (OLS) regression, 15, 240
alternatives to, 15
organisms, building, 35–6
ornaments, 73
Ornstein–Uhlenbeck model of evolution, 115
oxygen
collection in parasites, 236
transport of, 37
Index

[P] see phosphorus concentration
P-limited environments, 39–40
“pace of life”, 262
package effect, 148, 158
packing, scaling exponents, 167
packing rule, 169, 170, 177–8, 179–80
Pagel λ model, 16
paracellular absorption, 218
paradox of enrichment, 95
parasites, 234–47
definition, 307
as diversity component, 235
in ectothermic hosts, 238
in endothermic hosts, 238
energetic impacts on hosts, 246
and free-living species in ecosystems, 243–4, 245–6
future research directions, 246–7
in hosts, 241–3
infracommunity biomass vs. host body size, 243
infrapopulation abundance vs. parasite body size, 242–3
individuals, 236–41
life-history traits allometric scaling, 240–1
metabolic rate scaling, 236–8
temperature effects, 238–9
life cycles, 66
optimal body-size scaling, 241
usefulness in testing MTE, 236
parasitic castrators, 241
parasitoids, 241
sizes of emerging, 91
parasitology, light shed on by MTE, 235
parental investment
human, 249
increased, 195–6
Pareto distribution, 17
passerine birds, 284
pastoralists, 255, 256
patent production, 297, 298
penguins, 226, 229, 230, 232
persistence of species see species persistence
perturbations, response of ecological networks to, 97
petrels, 226, 228, 231, 232
pH, and metabolism of microorganisms, 144–5
Phalangeriformes, morphological evolution, 113
phenotypic standard deviation, 114
phosphorus concentration, 43
effects on growth rates, 31, 32
photoautotrophs, 137, 154, 160
photosynthesis
climate change effects on, 288–9
N concentration and, 110
origin, 37
rates limitation, 41
 temperature dependence, 23, 103, 104–5, 292
across climatic gradients, 107
effective, 288–9
water and, 108–9
see also production
photosynthetic rates
carbon-normalized, 158
cell-normalized, 158
phylogenetic general linear models (PGLMs), 16–17
phylogenetic methods, 16–17
phylogenetic non-independence, degree of, 19
phylogenetic signal
definition, 115
evolutionary rate and, 115
phylogeny, and metabolic scaling, 119
physiological harshness, 144–5
physiological stress ecology, 197
phytoplankton, 154–63
abundance scaling, 161
blooms, 161
cell size evolution, 161–2
development rates of eggs, 31, 32
future research directions, 163
global change effects, 162–3
groups, 154, 155
habitat, 155
light harvesting and utilization, 158
mortality rates, 63, 64
parasites, 159
population growth rate, 156–7
 nutrient uptake and, 157–8
temperature and, 160
predators (grazers), 159
primary production, 263, 266
productivity scaling, 161
respiration, 157
scaling relationships, 156–62
sinking, 159
size distributions, 155
genealogic patterns in, 161–2
species richness scaling, 161
temperature effects, 162
temperature scaling, 160
pig nematode, 236
pinnipeds, 229
 Pinus ponderosa trees, 182, 183, 185
pinworm nematodes, 241
pipe model, 166–8
placentals, life histories, 61, 62
plant chemical defenses, 94
plant ecology scaling relationships, 170
plant geometry models, 168
plant growth, law of, 166
plant hydraulics models, 168
plant respiration
  climate change effects on, 288
temperature dependence, 104, 106
plant scaling see botanical scaling
plants, 165–87
  birth rates, 63
  mortality rates, 63, 64
  see also botanical scaling
Plattian inference, 19
Platyrhini, morphological evolution, 113
PO2 rates, 203–4
poikilotherms, ingestion rates, 217
poikilothermy, 213
polar bears, 226
polymorphic ant, 208, 209
polynomial regression, 18
population, definition, 78
population densities
  allometric scaling, 221–2
  human, 250, 252
  hunter-gatherers, 250, 252
population dynamics
  parameterizing models, 78–80
  prospects, 85
population growth rate, 139
  definition, 308
  maximum, 63–4, 65, 79, 263, 281
  temperature dependence, 29
  terrestrial vertebrates, 219–20
postprandial metabolic scope, 205
potential energy, of chemical bonds, 125
power, of reaction, 143
power-law relationships, 9–10, 11, 17
PPR see primary production required
precipitation
  climate change effects on, 280
  productivity effects of, 106, 109, 290–1
  respiration effects of, 109, 290–1
  timing importance, 291
predation matrices, 92
predation risk
  cell size and, 159
  ornaments and, 73
predator–prey model, 80
predator–prey relations, 86–98
phylogenetic differences and, 94
  size ratios, 90–1, 222, 265
  and stability, 95
  ways forward, 97–8
  see also food webs; trophic relations
predators
  population density, 221–2
trophic level, 91
pressure gradient along branch segment, scaling exponents, 167
prey delivery methods, 229, 230
primary production required (PPR), 274
primates
  evolutionary rates, 113
  home ranges, 250, 252
  life histories, 250, 251
  principle of allocation, 58, 65, 217
  probabilistic niche model, 93
Procellariiformes, 227, 228, 231–2
publication
  across climatic gradients, 107
  temperature dependence, 103, 104–5
  see also photosynthesis
production equivalence, 244, 304, 308
production rates, 61–2, 63
  limited by metabolic rate, 65
prokaryotes
  abundance, 135
  cell sizes, 146, 147
  colonies, 151
  lithotrophic, 140, 146
  metabolic rate scaling, 146, 150–1, 303
  number of metabolic reactions, 140–1
  phototrophic, 140, 146
  prospect, 303–5
proteomics, 45
protists
  cell sizes, 146
  colonies, 151
  metabolic scaling, 147–8, 150–1, 236
Pütter equation, 51, 52
quorum sensing, 149
rainforest soil, concentration of elements, 35
rate parameter, 115
reactant concentration (R), 102
Red List, 271, 272, 273–6
Redfield’s ratio, 38–9
reduced major axis (RMA) regression, 15, 16, 240
Reiss model, 52, 54
relative growth rate (RGR), 166
reproduction, 49, 72–4
  age at first, 59, 61, 220
  caveat on, 55
  variety of behaviors, 68
reproductive output, 262
reptiles
  mitochondrial surface area, 215, 216
  population density, 221
residuals, homoskedastic, 18
resistance-capacitance models, 168
resource acquisition, 69–70
resource concentrations, temperature dependence, 105–6
resource intensification, 256
resource steady state, 182–3
respiration, 49
origin, 37
see also ecosystem respiration
rest cycles, 68
resting metabolic rate, 192, 204, 206, 207, 235
see also basal metabolic rate
resting states, 30–1
ribosomes, 40, 110
high densities and rapid growth, 45
as invariant subunits, 43
RMA see reduced major axis (RMA) regression
RNA content, growth rate correlation with, 39–40
road networks, 294
scaling, 295–7
Rosenzweig–MacArthur predator–prey model, 80
Rubisco concentrations, 292
running beetles, 205
S, as limiting element, 46
satellites, 73
sauropod dinosaurs, 223
Savage et al. model, 167, 178–82
scale effects, 42
scaling exponents, 55
driven by branching traits, 172–4
for plant internal networks, 167
scarab beetles, 201, 202
schistosome trematodes, 240
scorpions, 209
SDA, 205
sea lions, 227, 228, 231
sea otters, 226
sea snakes, 227
seabirds, 225–33
body size range, 226
comparisons among, 227–32
field metabolic rates, 229–32
flight costs, 229–32
foraging range, 229, 230
prey delivery methods, 229, 230
extant taxa, 225–6
lifespans, 226
reproduction, 227
seafloor animals, 265
seals, 226, 227, 228, 231
seawater, concentration of elements, 35
selection drivers, on plant metabolism, 178–80, 181
self-thinning rule, 168–9
senescence, 220, 224
sequence evolution, 116
measuring rates of, 113–14
settlement probability, 194–5
sharks, 263, 267
shearwaters, 228
Sheldon hypothesis, 264
shelf communities, 265
shifting cultivators, 255, 256
shrews, 118
sigmoid growth, 51
silver foxes, domestication, 117
simple regression, 14
simpson, 114
sinking rates, 159, 162
size–density relationships, 81–2
size spectra, 264–6
fishing impacts on, 267–8
size–temperature equation, 11
SLA, 166, 176
sleep cycles, body size dependence, 68
’sleep-or-hide’ strategies, 272–3
SLOSS question, 277
SMATR package, 15
SMR see standard metabolic rate
snakes, 73
social insect colonies see insect colonies
sociality, 74–6
societies, metabolic ecology of, 304
soil production, moisture dependence, 109
soil respiration
moisture dependence, 109
temperature dependence, 103–4, 106, 287, 288
solvents, 36
space-filling, 174–5, 179, 180, 182
ecological, 183–4
space use, allometric scaling, 82–3
speciation rates
metabolic rates and, 125
species richness and, 126–7
species abundance distributions, 81
species coexistence, environmental limits of, 122–4, 131
species–energy theory, 122
species life history, 84
species niche dynamics, 122, 130–1
species persistence, 95, 98
species range dynamics, 122
species richness
scale dependence, 127–8
and speciation rate, 126–7
water availability and, 130
species turnover, 101
species velocity models, 281
specific dynamic action response (SDA), 205
specific leaf area (SLA), 166, 176
sperm whales, 226
springtail collembolans, 199
stability, 94–7
bioenergetic foundation, 94–5
predator–prey size ratios and, 95
standard metabolic rate (SMR), 213, 308
starvation, 200, 201, 206
starvation resistance hypothesis, 44
stick insect, 199
stoichiometry see ecological stoichiometry
storage, 66
storage specialists, 157–8
stress experiments, 46
stridulating katydids, 205
structural elements, 39–40
structure, 36–7
sublinear scaling, 151–2, 256, 304
definition, 308
subsistence-level societies, 255–6
substrate concentration, and reaction speed, 143–4
succession, 185
suction ventilation, 199
sunlight, as elemental availability driver, 38
superlinear scaling
accommodating, 294–5, 299
definition, 308
of metabolic rate in prokaryotes, 146, 150–1, 303
superorganisms, 149, 301, 304, 305
survival, larval, 191, 194, 196
sustainability, paths to, 297
symmorphosis, 25, 217
synthesis, 302–3
systems biology, 141
taxonomic invariance, 128
temperature
and ecosystems, 101–8
effects, 29–31, 130–1
global changes in, 283
global increase projected, 277
measure of dependence ($Q_{10}$), 29–30
in plant metabolism, 176–7
seasonal variations, 106–7
and species richness, 127–8, 130
temperature-corrected abundance, 244
temperature response curves, microorganisms, 142–3
temperature–size rule, 55
tenebrionid beetles, 204
terminal metabolic units, 171, 175
terrestrial vertebrates, 212–24
body mass range, 213
metabolic rates
body size dependence, 213–14
temperature dependence, 213–14
metabolic scaling implications
in biology, 222–4
for population ecology, 219–22
metabolism allometry, 214–17
cellular level, 215–16
integrated view, 217
organ level, 215
subcellular level, 216–17
suborganismal level, 214–15
resource acquisition and allocation vs. size, 217–19
see also birds; mammals; reptiles
territory sizes, 253–6
thermodynamic equation, 140
Thorson’s rule, 189
thyroid hormone, 37
ticks, 209
tiger puffer fish, 56
tissue structure, 36–7
tobacco hornworm, 49, 50, 207
torpor, 30–1, 206, 213, 214
total biomass, scaling exponents, 167
total number of branches, scaling exponents, 167
tracheal system, insect, 199, 200, 204–5
trait evolution, MTE and, 117–18
transpiration, 109
travel distances, 295–7
trees
species population sizes, 126
species richness, 127–8, 129, 130
total abundance, 124
trophallaxis, 206
trophic levels, 263, 308
and extinction risk, 274–5
trophic relations, 87–91
foraging trait allometries, 88–90, 97
metabolic requirements, 87–8
predator–prey size ratios, 90–1, 222, 265
and stability, 95
temperature effects, 97
trophic transfer efficiency, 87, 91, 244, 265
tropics, climate change risks in, 278
true seals, 226, 227, 231
two species interactions, 80
universal growth curve, 53, 54, 219
upwelling regions, 227
utility to availability ratios, 42
van’t-Hoff–Arrhenius equation see Arrhenius equation
van’t-Hoff principle, 213
velocity specialists, 157
vertebrates
diversity patterns, 128
see also terrestrial vertebrates
vessel lengths, scaling, 26
veterinary practice, 224
vinegar flies, 207
violence, 298
visual acuity, 89
visual predation hypothesis, 191
visualization
  frequency distributions, 13
  functional relationships, 11–13
volume flow rate, scaling exponents, 167
vulnerability, 91

wandering albatross, 226
water
  availability, and species richness, 130
  and ecosystem energetics, 108–10
  as elemental availability driver, 38
  limitation, 126, 153, 278
    and insect metabolic rates, 206
  most living mass consists of, 36
water column, stratification, 162
WBE model, 24–6, 53–4, 170–5, 177, 308
  applications beyond biology, 293–301
    cities, 294, 295–8
    computers, 294, 298–301
  core assumptions, 24, 171
  core predictions, 172–4, 178
  elaborations, 176, 177
  empirical issues with, 27–9, 177
  extension to ecology, 182
  predicted scaling exponents, 167, 172–4, 178
  secondary assumptions, 171–2, 174–5, 178
  theoretical criticisms, 26–7, 177
  usefulness, 32–3
WBE2 model, 165, 175, 177, 308
  criticisms, 177

  as intraspecific, 175
  merging with trait-based plant ecology, 175–7
  wealth creation, 297, 298
  weaning mass, 61
  weapons, 73
West, Brown, and Endquist model see WBE model
whales, 226, 227, 267
whiteflies, 199, 201, 202
whole-organism metabolic rate (I), 22
whole-plant respiration rate, 174
whole-plant scaling relationships, 169
wildlife reserves, 277
Wilson’s storm petrel, 226
wind, as elemental availability driver, 38
wire scaling, 300
  wire width preserving, 298
within-plant scaling relationships, 169
woodrats, 284
xylem flow rate, 174
xylem flow resistance, 168
xylem flux, 25, 100
yeasts, 146, 147, 151
zero-order frameworks, 185, 186
zero-sum dynamics, 84
zooplankton
  development rate, 59–61
  foraging rates, 69
  grazing by, 159