Contents

Preface xi

1 **Physiological Aspects of Cochlear Hearing Loss** 1

 I. INTRODUCTION 1
 II. LINEAR AND NONLINEAR SYSTEMS 1
 III. STRUCTURE AND FUNCTION OF THE OUTER AND MIDDLE EAR 6
 IV. STRUCTURE AND FUNCTION OF THE NORMAL COCHLEA 9
 1. The cochlea, the basilar membrane and the organ of Corti 9
 2. Tuning on the basilar membrane 12
 3. The nonlinearity of input-output functions on the basilar membrane 16
 4. Two-tone suppression 18
 5. Combination tone generation 18
 6. Responses of the basilar membrane to complex sounds 19
 7. Otoacoustic emissions 20
 V. NEURAL RESPONSES IN THE NORMAL AUDITORY NERVE 21
 1. Spontaneous firing rates and thresholds 22
 2. Tuning curves and iso-rate contours 22
 3. Rate-versus-level functions 23
 4. Two-tone suppression 25
 5. Phase locking 26
 VI. TYPES OF HEARING LOSS 28
 VII. PHYSIOLOGY OF THE DAMAGED COCHLEA 29
 1. Basilar membrane responses 29
 2. Neural responses 31
 3. Structure–function correlation 32
 4. Otoacoustic emissions 35
 5. Phase locking 35
 VIII. CONCLUSIONS 36

2 **Absolute Thresholds** 39

 I. INTRODUCTION 39
 II. MEASURES OF ABSOLUTE THRESHOLD 39
 1. Minimum audible pressure (MAP) 39
 2. Minimum audible field (MAF) 39
 3. Comparison of MAP and MAF 40
 4. The audiogram 41
 III. DESCRIPTIONS OF THE SEVERITY OF HEARING LOSS 42
 IV. CAUSES OF HEARING LOSS DUE TO COCHLEAR DAMAGE 43
 V. PERCEPTUAL CONSEQUENCES OF ELEVATED ABSOLUTE THRESHOLDS 44
3 Masking, Frequency Selectivity and Basilar Membrane Nonlinearity 45

I. INTRODUCTION 45

II. THE MEASUREMENT OF FREQUENCY SELECTIVITY USING MASKING 46
 1. Introduction 46
 2. The power-spectrum model 46
 3. Estimating the shape of a filter 47

III. ESTIMATING FREQUENCY SELECTIVITY FROM MASKING EXPERIMENTS 48
 1. Psychophysical tuning curves 48
 2. The notched-noise method 51

IV. CHARACTERISTICS OF THE AUDITORY FILTER IN NORMAL HEARING 54
 1. Variation with centre frequency 54
 2. Variation with level 56
 3. Summary 59

V. MASKING PATTERNS AND EXCITATION PATTERNS 59
 1. Masking patterns 59
 2. Relationship of the auditory filter to the excitation pattern 61
 3. Changes in excitation patterns with level 62
 4. Possible effects of suppression 63

VI. NON-SIMULTANEOUS MASKING 64
 1. Basic properties of non-simultaneous masking 64
 2. Evidence for suppression from non-simultaneous masking 67
 3. The enhancement of frequency selectivity revealed in non-simultaneous masking 69
 4. Relation between the growth of forward masking and the basilar membrane input-output function 70

VII. THE AUDIBILITY OF PARTIALS IN COMPLEX TONES 73

VIII. EFFECTS OF COCHLEAR DAMAGE ON FREQUENCY SELECTIVITY IN SIMULTANEOUS MASKING 75
 1. Complicating factors 75
 2. Psychophysical tuning curves 76
 3. Auditory filter shapes measured with notched noise 79

IX. THE USE OF MASKING TO DIAGNOSE DEAD REGIONS 83
 1. The threshold-equalizing noise (TEN) test 83
 2. The TEN(HL) test 85
 3. Prevalence of dead regions assessed using the TEN(HL) test 86

X. EFFECTS OF COCHLEAR DAMAGE ON FORWARD MASKING AND SUPPRESSION 86

XI. EFFECTS OF COCHLEAR HEARING LOSS ON BM INPUT-OUTPUT FUNCTIONS 88

XII. PERCEPTUAL CONSEQUENCES OF REDUCED FREQUENCY SELECTIVITY, DEAD REGIONS, LOSS OF SUPPRESSION AND STEEPER BM INPUT-OUTPUT FUNCTIONS 90
 1. Susceptibility to masking 90
 2. Timbre perception 90
 3. Perceptual consequences of dead regions 91
4 Loudness Perception and Intensity Resolution 93

I. INTRODUCTION 93
II. LOUDNESS PERCEPTION FOR NORMALLY HEARING PEOPLE 93
1. Equal-loudness contours and loudness level 93
2. The scaling of loudness 94
3. The detection of intensity changes 96
III. EFFECTS OF COCHLEAR HEARING LOSS ON LOUDNESS PERCEPTION 97
IV. A MODEL OF NORMAL LOUDNESS PERCEPTION 101
V. A MODEL OF LOUDNESS PERCEPTION APPLIED TO COCHLEAR HEARING LOSS 104
1. Introduction 104
2. Elevation of absolute threshold 105
3. Reduced compressive nonlinearity 105
4. Reduced inner hair cell/neural function 106
5. Reduced frequency selectivity 107
6. Complete loss of functioning IHCs or neurones (dead regions) 108
7. Using the model to account for loudness recruitment 109
VI. EFFECTS OF BANDWIDTH ON LOUDNESS 110
1. Normal hearing 110
2. Impaired hearing 111
VII. EFFECTS OF COCHLEAR HEARING LOSS ON INTENSITY RESOLUTION 113
VIII. PERCEPTUAL CONSEQUENCES OF ALTERED LOUDNESS PERCEPTION 114
1. Consequences of loudness recruitment and reduced dynamic range 114
2. Perceptual consequences of reduced loudness summation 114
3. Perceptual consequences of altered intensity discrimination 115

5 Temporal Resolution and Temporal Integration 117

I. INTRODUCTION 117
II. MODELLING WITHIN-CHANNEL TEMPORAL RESOLUTION IN NORMAL HEARING 118
1. Bandpass filtering 118
2. The nonlinearity 119
3. The sliding temporal integrator 120
4. The decision device 122
5. Characterizing the nonlinear device and the sliding temporal integrator 122
III. TEMPORAL RESOLUTION IN NORMAL HEARING 124
1. The effect of centre frequency on gap detection 124
2. Temporal modulation transfer functions 125
3. The rate of recovery from forward masking 126
IV. TEMPORAL RESOLUTION IN PEOPLE WITH COCHLEAR DAMAGE 128
1. The influence of sound level on gap detection and the rate of decay of forward masking 128
6 Pitch Perception and Frequency Discrimination 143

I. INTRODUCTION 143
II. THEORIES OF PITCH PERCEPTION 144
III. THE PERCEPTION OF THE PITCH OF PURE TONES BY NORMALLY HEARING PEOPLE 144
 1. The frequency discrimination of pure tones 144
 2. The perception of musical intervals 148
 3. The effect of level on pitch 149
IV. FREQUENCY DISCRIMINATION OF PURE TONES BY PEOPLE WITH COCHLEAR HEARING LOSS 150
 1. Difference limens for frequency (DLFs) 150
 2. Frequency modulation detection limens (FMDLs) 152
V. THE PERCEPTION OF PURE-TONE PITCH FOR FREQUENCIES FALLING IN A DEAD REGION 155
VI. PITCH ANOMALIES IN THE PERCEPTION OF PURE TONES 157
VII. THE PITCH PERCEPTION OF COMPLEX TONES BY NORMALLY HEARING PEOPLE 159
 1. The phenomenon of the missing fundamental 159
 2. Discrimination of the repetition rate of complex tones 159
VIII. THEORIES OF PITCH PERCEPTION FOR COMPLEX TONES 160
 1. The representation of a complex tone in the peripheral auditory system 160
 2. Spectro-temporal pitch theories 162
 3. The relative importance of envelope and temporal fine structure 164
IX. PITCH PERCEPTION OF COMPLEX TONES BY PEOPLE WITH COCHLEAR HEARING LOSS 167
 1. Theoretical considerations 167
 2. Experimental studies 169
X. PERCEPTUAL CONSEQUENCES OF ALTERED FREQUENCY DISCRIMINATION AND PITCH PERCEPTION 170
 1. Effects on speech perception 170
 2. Effects on music perception 172

7 Spatial Hearing and Advantages of Binaural Hearing 173

I. INTRODUCTION 173
II. THE LOCALIZATION OF SINUSOIDS 174
 1. Cues for localization 174
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI. ASSESSING THE EFFECTS OF FREQUENCY SELECTIVITY ON VOWEL AND CONSONANT PERCEPTION</td>
<td>214</td>
</tr>
<tr>
<td>1. Consonant perception</td>
<td>214</td>
</tr>
<tr>
<td>2. Vowel perception</td>
<td>215</td>
</tr>
<tr>
<td>VII. INFLUENCE OF LOSS OF SENSITIVITY TO TEMPORAL FINE STRUCTURE</td>
<td>219</td>
</tr>
<tr>
<td>VIII. THE USE OF SIMULATIONS TO ASSESS THE IMPORTANCE OF PSYCHOACOUSTIC FACTORS IN SPEECH PERCEPTION</td>
<td>221</td>
</tr>
<tr>
<td>1. Simulations of loudness recruitment combined with threshold elevation</td>
<td>222</td>
</tr>
<tr>
<td>2. Simulations of reduced frequency selectivity</td>
<td>226</td>
</tr>
<tr>
<td>3. Simulation of the combined effects of threshold elevation, recruitment and reduced frequency selectivity</td>
<td>229</td>
</tr>
<tr>
<td>4. Simulation of reduced temporal resolution</td>
<td>230</td>
</tr>
<tr>
<td>IX. CONCLUSIONS</td>
<td>232</td>
</tr>
<tr>
<td>9 Hearing Aids</td>
<td>233</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>233</td>
</tr>
<tr>
<td>II. LINEAR AMPLIFICATION</td>
<td>233</td>
</tr>
<tr>
<td>1. The difficulty of restoring audibility using linear aids</td>
<td>233</td>
</tr>
<tr>
<td>2. Prescriptive fitting rules for linear hearing aids</td>
<td>234</td>
</tr>
<tr>
<td>III. COMPRESSION AMPLIFICATION</td>
<td>236</td>
</tr>
<tr>
<td>1. Basic characteristics of automatic gain control systems</td>
<td>236</td>
</tr>
<tr>
<td>2. Varieties of automatic gain control systems</td>
<td>241</td>
</tr>
<tr>
<td>3. Rationales for the use of multi-band compression (and noise reduction)</td>
<td>241</td>
</tr>
<tr>
<td>4. Research on the effectiveness of multi-band syllabic compression</td>
<td>242</td>
</tr>
<tr>
<td>5. Methods for initial fitting of hearing aids with multi-band compression</td>
<td>244</td>
</tr>
<tr>
<td>6. Methods for fine tuning hearing aids with multi-band compression</td>
<td>252</td>
</tr>
<tr>
<td>7. Slow-acting automatic gain control systems</td>
<td>253</td>
</tr>
<tr>
<td>8. Comparisons of slow-acting and fast-acting systems</td>
<td>255</td>
</tr>
<tr>
<td>9. General conclusions about compression</td>
<td>257</td>
</tr>
<tr>
<td>IV. SOME GENERAL PROBLEMS WITH HEARING AIDS</td>
<td>257</td>
</tr>
<tr>
<td>1. Inadequate gain at high frequencies</td>
<td>257</td>
</tr>
<tr>
<td>2. Acoustic feedback</td>
<td>258</td>
</tr>
<tr>
<td>3. Peakiness of frequency response</td>
<td>259</td>
</tr>
<tr>
<td>4. The occlusion effect</td>
<td>260</td>
</tr>
<tr>
<td>5. Time delays</td>
<td>261</td>
</tr>
<tr>
<td>V. METHODS FOR IMPROVING THE SPEECH-TO-NOISE RATIO</td>
<td>262</td>
</tr>
<tr>
<td>1. Multi-channel noise reduction</td>
<td>262</td>
</tr>
<tr>
<td>2. Directional microphones</td>
<td>262</td>
</tr>
<tr>
<td>3. Binaural processing algorithms</td>
<td>263</td>
</tr>
<tr>
<td>VI. TRANSPOSITION AIDS FOR SEVERE AND PROFOUND HEARING LOSS</td>
<td>264</td>
</tr>
<tr>
<td>VII. COCHLEAR IMPLANTS</td>
<td>266</td>
</tr>
<tr>
<td>VIII. CONCLUDING REMARKS</td>
<td>267</td>
</tr>
</tbody>
</table>

Glossary 269

References 287

Index 327