Contents

Preface xi

Contributors xiii

Acknowledgments xvii

1. The Reproductive Biology and Spawning of Zebrafish in Laboratory Settings 1

 1.1 Introduction 1
 1.2 Overview of Zebrafish Reproductive Biology and Behavior 2
 1.3 Spawning Techniques and Technology 5
 1.4 Determining Factors for Reproduction in Laboratory Stocks of Zebrafish 8
 1.5 Conclusions 11
 References 11

2. Developmental Toxicity Assessment in Zebrafish 15

 2.1 Introduction 15
 2.2 Methods 16
 2.3 Results 20
 2.4 Discussion 23
 References 25

3. Use of Emerging Models for Developmental Toxicity Testing 27

 3.1 Importance of Assessing Developmental Toxicity 27
 3.2 Current Methods for Assessing Developmental Toxicity 27
 3.3 Use of Emerging Models for Developmental Toxicity Testing 28
 3.4 New Guidelines for Chemical Testing Using Zebrafish 29
 3.5 Conclusions 42
 References 43

4. Assessment of Drug-Induced Cardiotoxicity in Zebrafish 45

 4.1 Introduction 45
 4.2 Zebrafish Heart 45
9. Whole Zebrafish Cytochrome P450 Assay for Assessing Drug Metabolism and Safety 103

9.1 Introduction 103
9.2 Background and Significance 104
9.3 Materials and Methods 105
9.4 Results 107
9.5 Conclusions 113
Acknowledgment 113
References 113

10. Methods for Assessing Neurotoxicity in Zebrafish 117

10.1 Introduction 117
10.2 Limitations of Current Neurotoxicity Testing 118
10.3 Assessing Neurotoxicity in Zebrafish 118
10.4 Summary 130
Acknowledgments 131
References 131

11. Zebrafish: A Predictive Model for Assessing Cancer Drug-Induced Organ Toxicity 135

11.1 Introduction 135
11.2 Materials and Methods 136
11.3 Results 139
11.4 Conclusions 149
Reference 149

12. Locomotion and Behavioral Toxicity in Larval Zebrafish: Background, Methods, and Data 151

12.1 Introduction 151
12.2 Background 152
12.3 Locomotion 153
12.4 Zebrafish Models 154
12.5 Analyzing Larval Locomotion 155
12.6 Chemical Effects on Larval Locomotion 158
12.7 Conclusions 161
Acknowledgments 162
References 162

13. Zebrafish: A Predictive Model for Assessing Seizure Liability 165

13.1 Introduction 165
13.2 Materials and Methods 167
<table>
<thead>
<tr>
<th>14. Zebrafish: A New In Vivo Model for Identifying P-Glycoprotein Efflux Modulators</th>
<th>177</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>177</td>
</tr>
<tr>
<td>14.2 Materials and Methods</td>
<td>179</td>
</tr>
<tr>
<td>14.3 Results</td>
<td>182</td>
</tr>
<tr>
<td>14.4 Conclusions</td>
<td>188</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>188</td>
</tr>
<tr>
<td>References</td>
<td>189</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Assessment of Effects on Visual Function in Larval Zebrafish</th>
<th>191</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>191</td>
</tr>
<tr>
<td>15.2 Development of Visual System in Zebrafish</td>
<td>192</td>
</tr>
<tr>
<td>15.3 Methods for Assessing Visual Function in Larval Zebrafish</td>
<td>194</td>
</tr>
<tr>
<td>15.4 Conclusions</td>
<td>202</td>
</tr>
<tr>
<td>References</td>
<td>202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Development of a Hypoxia-Induced Zebrafish Choroidal Neovascularization Model</th>
<th>205</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Introduction</td>
<td>205</td>
</tr>
<tr>
<td>16.2 Materials and Methods</td>
<td>207</td>
</tr>
<tr>
<td>16.3 Results</td>
<td>210</td>
</tr>
<tr>
<td>16.4 Discussion</td>
<td>215</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>217</td>
</tr>
<tr>
<td>References</td>
<td>217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Zebrafish Xenotransplant Cancer Model for Drug Screening</th>
<th>219</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Introduction</td>
<td>219</td>
</tr>
<tr>
<td>17.2 Background and Significance</td>
<td>219</td>
</tr>
<tr>
<td>17.3 Materials and Methods</td>
<td>221</td>
</tr>
<tr>
<td>17.4 Results</td>
<td>226</td>
</tr>
<tr>
<td>17.5 Conclusions</td>
<td>230</td>
</tr>
<tr>
<td>References</td>
<td>231</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Zebrafish Assays for Identifying Potential Muscular Dystrophy Drug Candidates</th>
<th>233</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Introduction</td>
<td>233</td>
</tr>
<tr>
<td>18.2 Materials and Methods</td>
<td>238</td>
</tr>
</tbody>
</table>
19. Cytoprotective Activities of Water-Soluble Fullerenes in Zebrafish Models

19.1 Introduction 257
19.2 Materials and Methods 261
19.3 Results 265
19.4 Discussion 277
19.5 Conclusions 278
Acknowledgments 278
References 279

20. Fishing to Design Inherently Safer Nanoparticles

20.1 Introduction 283
20.2 Application of Embryonic Zebrafish 284
20.3 Tier 1: Rapid Toxicity Screening 286
20.4 Tier 2: Cellular Toxicity and Distribution 288
20.5 Tier 3: Molecular Expression 289
20.6 Embryonic Zebrafish Data to Design “Safer” Nanoparticles 291
20.7 Conclusions 292
References 292

21. Radiation-Induced Toxicity and Radiation Response Modifiers in Zebrafish

21.1 Introduction 295
21.2 Materials and Methods 296
21.3 Validation of Zebrafish Embryos as a Model System for Radiation Protectors/Sensitizers 298
21.4 Gross Morphological Alterations Associated with Radiation Exposure 299
21.5 Radiation-Associated Apoptosis Incidence 299
21.6 Radiation-Associated Gastrointestinal Toxicity 300
21.7 Radiation-Associated Nephrotoxicity 301
21.8 Otitotoxicity in Irradiated Zebrafish 301
21.9 Radiation Protectors in Zebrafish 302
21.10 Summary 303
References 304