Contents

Chapter 1. Introduction

- **1.1 Historical Overview**
- **1.2 Analogy Between Photonic and Semiconductor Crystals**
- **1.3 Analyzing Photonic-Bandgap Structures**

References: 11

Chapter 2. Preliminary Concepts of Electromagnetic Waves and Periodic Media

- **2.1 Electromagnetic Waves**
 - 2.1.1 Maxwell’s Equations in Linear, Homogeneous Media
 - 2.1.2 Electromagnetic Waves
 - 2.1.3 Optical Waves
 - 2.1.4 Guided Waves
 - 2.1.5 Group Velocity in Homogeneous Media
- **2.2 Periodic Media**
 - 2.2.1 Real-Space Lattices, Lattice Vectors
 - 2.2.2 Reciprocal Lattice and Brillouin Zone
- **2.3 Waves in Periodic Media**
 - 2.3.1 Wave Equation in Periodic Dielectric Structures
 - 2.3.2 Group Velocity in Periodic Media
 - 2.3.3 Dispersion Surfaces and Band Diagrams

References: 60

Chapter 3. Numerical Methods

- **3.1 Overview**
- **3.2 Plane-Wave Expansion Method**
 - 3.2.1 Preliminaries
 - 3.2.2 One-Dimensional Plane-Wave Expansion Method
 - 3.2.3 Two-Dimensional Plane-Wave Expansion Method
 - 3.2.4 Three-Dimensional Plane-Wave Expansion Method
 - 3.2.5 Practical Considerations in the Implementation of the Plane-Wave Expansion Method
 - 3.2.6 Photonic-Crystal Slab by Plane-Wave Expansion Method

References: 63
3.2.7 Revised Plane-Wave Method for Dispersive Material and its Application to Band-Structure Calculations of Photonic-Crystal Slabs 102

3.3 Finite-Difference Time-Domain (FDTD) Method 108
3.3.1 Central-Difference Expressions of Maxwell’s Equations 109
3.3.2 Two-Dimensional FDTD Method 110
3.3.3 Three-Dimensional FDTD Method 112
3.3.4 Numerical Stability and Dispersion 114
3.3.5 Simulating Transient and Steady-State System Response 116
3.3.6 Absorbing Boundary Conditions 118
3.3.7 FDTD for Photonic Crystals 122

References 125

Chapter 4. Devices and Applications Based on Photonic Bandgaps 133

4.1 Introduction 133
4.2 Point Defects 134
4.2.1 Numerical Analysis of Point Defects 134
4.2.2 Design Criteria for Photonic-Crystal Cavities 137
4.3 Line Defects 139
4.3.1 Photonic-Crystal Line Defects for Waveguiding 140
4.3.2 Line Defects in Photonic-Crystal Slabs 144
4.3.3 Extracting Dispersion Properties Using a Single-Frequency Source 147
4.4 Applications that Use Strong Confinement in PhC 150
4.4.1 Waveguide Bends 150
4.4.2 Zero-Cross-Talk Waveguide Crossing 154
4.4.3 Narrow-Band Beam Splitter 156
4.4.4 Air-Bridge Microcavity 157
4.4.5 Channel-Drop Filters in Photonic Crystals 159
4.4.6 Optical Spectrometer 160
4.4.7 Hybrid Photonic-Crystal Structures 163
4.4.8 Electrically and Thermally Tunable Photonic Crystals 168
4.4.9 Photonic-Crystal Optical Networks 169
4.4.10 Coupled Photonic-Crystal Waveguides 171
4.4.11 Other Applications of Photonic Bandgap 188

References 189

Chapter 5. Engineering Photonic-Crystal Dispersion Properties 197

5.1 Introduction 197
5.2 Dispersion in Photonic Crystals 198
5.3 Superprism Effect 201
5.4 Self-Collimation 205
5.4.1 Experimental Demonstration of Self-Collimation 208
5.4.2 Self-Guiding Heterolattice 211
Chapter 6. Fabrication

6.1 Two-Dimensional Photonic Crystals
 6.1.1 Fabrication of Planar Photonic Crystals
 6.1.2 Fabrication of 2D Photonic Crystals

6.2 Three-Dimensional Photonic Crystals: Micromachining
 6.2.1 Layer-by-Layer Fabrication
 6.2.2 Woodpile Photonic Crystals
 6.2.3 Autocloning Technique
 6.2.4 Glancing Angle Deposition (GLAD)
 6.2.5 Macroporous Silicon
 6.2.6 Realizing Yablonovite for Near Infrared with Chemically Assisted Ion-Beam Etching
 6.2.7 Sculpting Bulk Silicon with Reactive Plasma

6.3 Three-Dimensional Photonic Crystals: Holographic Lithography
 6.3.1 Interference of Coherent Waves
 6.3.2 Patterning PhCs with Interference Lithography
 6.3.3 Engineering the Interference Pattern
 6.3.4 Holographic Fabrication Methods for 3D PhCs
 6.3.5 Summary

6.4 Three-Dimensional Photonic Crystals: Multiphoton Polymerization
 6.4.1 Stereolithography/Laser Rapid Prototyping to Fabricate Arbitrary 3D Structures
 6.4.2 Multiphoton Absorption
 6.4.3 PhC Fabrication Using Multiphoton Absorption

6.5 Three-Dimensional Photonic Crystals: Self-Assembly
 6.5.1 Monodisperse Colloidal Suspensions
 6.5.2 Colloidal Crystallization
 6.5.3 Self-Assembly Methods

References

Index