Contents

Preface ix
Acknowledgments xiii

1 Complex Electricity Markets 1
1.1 Liberalization 1
1.2 The Marketplace 3
1.2.1 Power Pools and Power Exchanges 3
1.2.2 Nodal and Zonal Pricing 6
1.2.3 Market Structure 7
1.2.4 Traded Products 7
1.3 Europe 9
1.3.1 The England and Wales Electricity Market 9
1.3.2 The Nordic Market 11
1.3.3 Price Setting at Nord Pool 11
1.3.4 Continental Europe 13
1.4 North America 18
1.4.1 PJM Interconnection 19
1.4.2 California and the Electricity Crisis 20
1.4.3 Alberta and Ontario 21
1.5 Australia and New Zealand 22
1.6 Summary 23
1.7 Further Reading 23

2 Stylized Facts of Electricity Loads and Prices 25
2.1 Introduction 25
2.2 Price Spikes 25
2.2.1 Case Study: The June 1998 Cinergy Price Spike 28
2.2.2 When Supply Meets Demand 29
2.2.3 What is Causing the Spikes? 32
2.2.4 The Definition 32
Contents

2.3 Seasonality
- 2.3.1 Measuring Serial Correlation
- 2.3.2 Spectral Analysis and the Periodogram
- 2.3.3 Case Study: Seasonal Behavior of Electricity Prices and Loads

2.4 Seasonal Decomposition
- 2.4.1 Differencing
- 2.4.2 Mean or Median Week
- 2.4.3 Moving Average Technique
- 2.4.4 Annual Seasonality and Spectral Decomposition
- 2.4.5 Rolling Volatility Technique
- 2.4.6 Case Study: Rolling Volatility in Practice
- 2.4.7 Wavelet Decomposition
- 2.4.8 Case Study: Wavelet Filtering of Nord Pool Hourly System Prices

2.5 Mean Reversion
- 2.5.1 R/S Analysis
- 2.5.2 Detrended Fluctuation Analysis
- 2.5.3 Periodogram Regression
- 2.5.4 Average Wavelet Coefficient
- 2.5.5 Case Study: Anti-persistence of Electricity Prices

2.6 Distributions of Electricity Prices
- 2.6.1 Stable Distributions
- 2.6.2 Hyperbolic Distributions
- 2.6.3 Case Study: Distribution of EEX Spot Prices
- 2.6.4 Further Empirical Evidence and Possible Applications

2.7 Summary

2.8 Further Reading

3 Modeling and Forecasting Electricity Loads

3.1 Introduction

3.2 Factors Affecting Load Patterns
- 3.2.1 Case Study: Dealing with Missing Values and Outliers
- 3.2.2 Time Factors
- 3.2.3 Weather Conditions
- 3.2.4 Case Study: California Weather vs Load
- 3.2.5 Other Factors

3.3 Overview of Artificial Intelligence-Based Methods

3.4 Statistical Methods
- 3.4.1 Similar-Day Method
- 3.4.2 Exponential Smoothing
- 3.4.3 Regression Methods
- 3.4.4 Autoregressive Model
- 3.4.5 Autoregressive Moving Average Model
- 3.4.6 ARMA Model Identification
- 3.4.7 Case Study: Modeling Daily Loads in California
3.4.8 Autoregressive Integrated Moving Average Model 95
3.4.9 Time Series Models with Exogenous Variables 97
3.4.10 Case Study: Modeling Daily Loads in California with Exogenous Variables 98

3.5 Summary 100
3.6 Further Reading 100

4 Modeling and Forecasting Electricity Prices 101
4.1 Introduction 101
4.2 Overview of Modeling Approaches 102
4.3 Statistical Methods and Price Forecasting 106
4.3.1 Exogenous Factors 106
4.3.2 Spike Preprocessing 107
4.3.3 How to Assess the Quality of Price Forecasts 107
4.3.4 ARMA-type Models 109
4.3.5 Time Series Models with Exogenous Variables 111
4.3.6 Autoregressive GARCH Models 113
4.3.7 Case Study: Forecasting Hourly CalPX Spot Prices with Linear Models 114
4.3.8 Case Study: Is Spike Preprocessing Advantageous? 125
4.3.9 Regime-Switching Models 127
4.3.10 Calibration of Regime-Switching Models 132
4.3.11 Case Study: Forecasting Hourly CalPX Spot Prices with Regime-Switching Models 132
4.3.12 Interval Forecasts 136
4.4 Quantitative Models and Derivatives Valuation 136
4.4.1 Jump-Diffusion Models 137
4.4.2 Calibration of Jump-Diffusion Models 139
4.4.3 Case Study: A Mean-Reverting Jump-Diffusion Model for Nord Pool Spot Prices 140
4.4.4 Hybrid Models 143
4.4.5 Case Study: Regime-Switching Models for Nord Pool Spot Prices 144
4.4.6 Hedging and the Use of Derivatives 147
4.4.7 Derivatives Pricing and the Market Price of Risk 148
4.4.8 Case Study: Asian-Style Electricity Options 150
4.5 Summary 153
4.6 Further Reading 154

Bibliography 157

Subject Index 171