Contents

Preface XV
List of Contributors XVII

1 **Dirigent Effects in Biocatalysis** 1
 Bettina M. Nestl, Bernd A. Nebel, and Bernhard Hauer
 1.1 Introduction 1
 1.2 Dirigent Proteins 3
 1.3 Solvents and Unconventional Reaction Media 4
 1.3.1 Ionic Liquids 7
 1.3.2 Microemulsions and Reversed Micelles Systems 10
 1.4 Structure and Folding 12
 1.5 Structured and Unstructured Domains 14
 1.6 Isozymes, Moonlighting Proteins, and Promiscuity: Supertalented Enzymes 19
 1.7 Conclusions 22
 Acknowledgment 23
 References 23

2 **Protein Engineering Guided by Natural Diversity** 29
 James T. Kratzer, Megan F. Cole, and Eric A. Gaucher
 2.1 Approaches 29
 2.1.1 Ancestral Sequence Reconstruction (ASR) 30
 2.1.2 Ancestral Mutation Method 31
 2.1.3 Reconstructing Evolutionary Adaptive Paths (REAP) 32
 2.2 Protocols 34
 2.2.1 Practical Steps to Using ASR 34
 2.2.2 Reconstructing Evolutionary Adaptive Paths: A Focused Application of ASR 36
 2.3 Future Directions 38
 2.3.1 Industrial Applications 40
 2.3.2 Biomedical 41
 2.3.3 Drug Discovery 41
 2.3.4 Paleobiology 42
2.3.5 Synthetic Biology 43
2.3.6 Experimental Validation of ASR 43
2.4 Conclusions 44
References 44

3 Protein Engineering Using Eukaryotic Expression Systems 47
Martina Geier and Anton Glieder
3.1 Introduction 47
3.2 Eukaryotic Expression Systems 48
3.2.1 Yeast Expression Platforms 48
3.2.1.1 Saccharomyces cerevisiae 48
3.2.1.2 Pichia pastoris 51
3.2.1.3 Pichia angusta 54
3.2.1.4 Alternative Yeasts 55
3.2.2 Filamentous Fungi 56
3.2.3 Insect Cells 58
3.2.4 Mammalian Cell Cultures 59
3.2.5 Transgenic Animals and Plants 61
3.2.6 Cell-Free Expression Systems 61
3.3 Conclusions 63
References 65

4 Protein Engineering in Microdroplets 73
Yolanda Schaerli, Balint Kintses, and Florian Hollfelder
4.1 Introduction 73
4.2 Droplet Formats 75
4.2.1 “Bulk” Emulsions 75
4.2.1.1 Catalytic Selections Involving DNA Substrates 76
4.2.1.2 Using the Droplet Compartment to Form a Permanent Genotype-Phenotype Linkage for Selections of Binders 77
4.2.2 Double “Bulk” Emulsions 78
4.2.3 Microfluidic Droplets 79
4.3 Perspectives 83
Acknowledgments 84
References 84

5 Folding and Dynamics of Engineered Proteins 89
Michelle E. McCully and Valerie Daggett
5.1 Introduction 89
5.2 Proof-of-Principle Protein Designs 90
5.2.1 FSD-1, a Heterogeneous Native State and Complicated Folding Pathway 91
5.2.2 α, D, a Dynamic Core Leads to Fast Folding and Thermal Stability 94
5.2.3 Three-Helix Bundle Thermostabilized Proteins 96
5.2.4 Top7, a Novel Fold Topology 97
5.2.5 Other Rosetta Designs 100
5.3 Proteins Designed for Function 102
5.3.1 Ligands 103
5.3.1.1 Metal-Binding Four-Helix Bundles, the Effectiveness of Negative Design 103
5.3.1.2 Peptide Binding 105
5.3.2 Enzymes 106
5.3.2.1 Retro-Aldol Enzyme, Accommodating a Two-Step Reaction 106
5.3.2.2 Kemp Elimination Enzyme, Rigid Active Site Geometry Promotes Catalysis 108
5.4 Conclusions and Outlook 110
Acknowledgments 111
References 112

6 Engineering Protein Stability 115
Ciarán Ó’Fágáin
6.1 Introduction 115
6.2 Power and Scope of Protein Engineering to Enhance Stability 116
6.2.1 Thermal Stabilizations 116
6.2.1.1 Potential Therapeutics: Rational Design with Computational Support 116
6.2.1.2 Analytical Tools: Green Fluorescent Protein and Luciferase 128
6.2.1.3 “Stiffening” a Protein by Gly-to-Pro Replacement: Methyl Parathion Hydrolase 128
6.2.2 Thermal Is Not the Only Stability: Oxidative and Other Chemical Stabilities 129
6.2.2.1 Oxidative Stability 129
6.2.2.2 Stabilization against Aldehydes and Solvents 130
6.2.2.3 Alkaline Tolerance 131
6.3 Measurement of a Protein's Kinetic Stability 132
6.3.1 Materials and General Hints 132
6.3.2 Thermal Stability 132
6.3.2.1 Thermal Profile 132
6.3.2.2 Thermal Inactivation 133
6.3.3 Measurement of Oxidative Stability 134
6.3.4 Stability Analysis and Accelerated Degradation Testing 135
6.3.4.1 Set-Up 136
6.3.4.2 Analysis of Results 137
6.4 Developments in Protein Stabilization 137
References 139

7 Enzymes from Thermophilic Organisms 145
Tamotsu Kanai and Haruyuki Atomi
7.1 Introduction 145
7.2 Hyperthermophiles 146
Contents

7.3 Enzymes from Thermophiles and Their Reactions 146
7.4 Production of Proteins from (Hyper)Thermophiles 148
7.5 Protein Engineering of Thermophilic Proteins 154
7.6 Cell Engineering in Hyperthermophiles 156
7.7 Future Perspectives 157
References 157

8 Enzyme Engineering by Cofactor Redesign 163
Malgorzata M. Kopacz, Frank. Hollmann, and Marco W. Fraaije

8.1 Introduction 163
8.2 Natural Cofactors: Types, Occurrence, and Chemistry 164
8.3 Inorganic Cofactors 165
8.4 Organic Cofactors 168
8.5 Redox Cofactors 169
8.5.1 Nicotinamide Cofactor Engineering 170
8.5.2 Heme Cofactor Engineering 173
8.5.2.1 Reconstitution of Myoglobin 174
8.5.2.2 Artificial Metalloproteins Based on Serum Albumins 175
8.5.3 Flavin Cofactor Engineering 176
8.6 Concluding Remarks 180
References 181

9 Biocatalyst Identification by Anaerobic High-Throughput Screening of Enzyme Libraries and Anaerobic Microorganisms 193
Helen S. Toogood and Nigel S. Scrutton

9.1 Introduction 193
9.2 Oxygen-Sensitive Biocatalysts 194
9.2.1 Flavoproteins 194
9.2.2 Iron-Sulfur-Containing Proteins 195
9.2.3 Other Causes of Oxygen Sensitivity 197
9.3 Biocatalytic Potential of Oxygen-Sensitive Enzymes and Microorganisms 198
9.3.1 Old Yellow Enzymes (OYEs) 198
9.3.2 Enoate Reductases 200
9.3.3 Other Enzymes 202
9.3.4 Whole-Cell Anaerobic Fermentations 202
9.4 Anaerobic High-Throughput Screening 203
9.4.1 Semi-Anaerobic Screening Protocols 204
9.4.2 Anaerobic Robotic High-Throughput Screening 205
9.4.2.1 Purified Enzyme versus Whole-Cell Extracts 207
9.4.2.2 Indirect Kinetic Screening versus Direct Product Determination 208
9.4.3 Potential Extensions of Robotic Anaerobic High-Throughput Screening 209
9.5 Conclusions and Outlook 210
References 210
10 Organometallic Chemistry in Protein Scaffolds 215
Yvonne M. Wilson, Marc Dürrenberger, and Thomas R. Ward

10.1 Introduction 215
10.1.1 Concept 215
10.1.2 Considerations for Designing an Artificial Metalloenzyme 216
10.1.2.1 Organometallic Complex 216
10.1.2.2 Biomolecular Scaffold 218
10.1.2.3 Anchoring Strategy 219
10.1.2.4 Advantages and Disadvantages of the Different Anchoring Modes 221
10.1.2.5 Spacer 222
10.1.3 Other Key Developments in the Field 223
10.1.4 Why Develop Artificial Metalloenzymes? 223
10.2 Protocol/Practical Considerations 226
10.2.1 Protein Scaffold 226
10.2.1.1 Determination of Free Binding Sites 226
10.2.2 Organometallic Catalyst 228
10.2.2.1 Synthesis of \([\text{Cp}^*\text{Ir}(\text{biot-p-L})\text{Cl}]\) 229
10.2.2.2 \(\text{N’-}(4\text{-Biotinamidophenylsulfonyl})\text{-Ethylenediamine TFA Salt}\) 230
10.2.3 Combination of Biotinylated Metal Catalyst and Streptavidin Host 231
10.2.3.1 Binding Affinity of the Biotinylated Complex to Streptavidin 231
10.2.4 Catalysis 232
10.2.4.1 Catalysis Controls 232
10.3 Goals 234
10.3.1 Rate Acceleration 234
10.3.2 High-Throughput Screening 234
10.3.2.1 Considerations for Screening of Artificial Metalloenzymes 235
10.3.3 Expansion of Substrate Scope 236
10.3.4 Upscaling 236
10.3.5 Potential Applications 237
10.4 Summary 237
Acknowledgments 237
References 238

11 Engineering Protease Specificity 243
Philip N. Bryan

11.1 Introduction 243
11.1.1 Overview 243
11.1.2 Some Basic Points 244
11.1.2.1 Mechanism for a Serine Protease 244
11.1.2.2 Measuring Specificity 244
11.1.2.3 Binding Interactions 245
11.1.3 Nature versus Researcher 247
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.3.1 P1 Specificity of Chymotrypsin-like Proteases</td>
<td>247</td>
</tr>
<tr>
<td>11.1.3.2 The S1 Site of Subtilisin</td>
<td>247</td>
</tr>
<tr>
<td>11.1.3.3 The S4 Site of Subtilisin</td>
<td>250</td>
</tr>
<tr>
<td>11.1.3.4 Other Subsites in Subtilisin</td>
<td>250</td>
</tr>
<tr>
<td>11.1.3.5 Kinetic Coupling and Specificity</td>
<td>251</td>
</tr>
<tr>
<td>11.2 Protocol and Practical Considerations</td>
<td>251</td>
</tr>
<tr>
<td>11.2.1 Remove and Regenerate</td>
<td>251</td>
</tr>
<tr>
<td>11.2.2 Engineering Highly Stable and Independently Folding Subtilisins</td>
<td>252</td>
</tr>
<tr>
<td>11.2.3 Engineering of P4 Pocket to Increase Substrate Specificity</td>
<td>253</td>
</tr>
<tr>
<td>11.2.4 Destroying the Active Site in Order to Save It</td>
<td>254</td>
</tr>
<tr>
<td>11.2.5 Identifying a Cognate Sequence for Anion-Triggered Proteases</td>
<td>255</td>
</tr>
<tr>
<td>Using the Subtilisin Prodomain</td>
<td></td>
</tr>
<tr>
<td>11.2.6 Tunable Chemistry and Specificity</td>
<td>257</td>
</tr>
<tr>
<td>11.2.7 Purification Proteases Based on Prodomain–Subtilisin Interactions and Triggered Catalysis</td>
<td>258</td>
</tr>
<tr>
<td>11.2.8 Design of a Mechanism-Based Selection System</td>
<td>259</td>
</tr>
<tr>
<td>11.2.8.1 Step 1: Ternary Complex Formation</td>
<td>259</td>
</tr>
<tr>
<td>11.2.8.2 Step 2: Acylation</td>
<td>263</td>
</tr>
<tr>
<td>11.2.8.3 Steps 3 and 4: Deacylation and Product Release</td>
<td>265</td>
</tr>
<tr>
<td>11.2.9 Evolving Protease Specificity Regulated with Anion Cofactors by Phage Display</td>
<td>266</td>
</tr>
<tr>
<td>11.2.9.1 Construction and Testing of Subtilisin Phage</td>
<td>266</td>
</tr>
<tr>
<td>11.2.9.2 Random Mutagenesis and Transformation</td>
<td>267</td>
</tr>
<tr>
<td>11.2.9.3 Selection of Anions</td>
<td>267</td>
</tr>
<tr>
<td>11.2.9.4 Evolving the Anion Site</td>
<td>267</td>
</tr>
<tr>
<td>11.2.9.5 Catch-and-Release Phage Display</td>
<td>267</td>
</tr>
<tr>
<td>11.2.9.6 Conclusions</td>
<td>269</td>
</tr>
<tr>
<td>11.2.10 Evolving New Specificities at P4</td>
<td>269</td>
</tr>
<tr>
<td>11.3 Concepts, Challenges, and Visions on Future Developments</td>
<td>270</td>
</tr>
<tr>
<td>11.3.1 Design Challenges</td>
<td>270</td>
</tr>
<tr>
<td>11.3.2 Challenges in Directed Evolution</td>
<td>271</td>
</tr>
<tr>
<td>11.3.2.1 One Must Go Deep into Sequence Space</td>
<td>271</td>
</tr>
<tr>
<td>11.3.2.2 Methods Which Maximize Substrate Binding Affinity Are Not Productive</td>
<td>272</td>
</tr>
<tr>
<td>11.3.2.3 The Desired Protease May Be Toxic to Cells</td>
<td>272</td>
</tr>
<tr>
<td>11.3.3 The Quest for Restriction Proteases</td>
<td>272</td>
</tr>
<tr>
<td>11.3.3.1 Not All Substrate Sequences Are Created Equal</td>
<td>273</td>
</tr>
<tr>
<td>11.3.4 Final Thoughts: Gilded or Golden?</td>
<td>273</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>274</td>
</tr>
</tbody>
</table>

12 Polymerase Engineering: From PCR and Sequencing to Synthetic Biology 279

Vitor B. Pinheiro, Jennifer L. Ong, and Philipp Holliger

12.1 Introduction 279

12.2 PCR 281
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>Sequencing</td>
<td>281</td>
</tr>
<tr>
<td>12.3.1</td>
<td>First-Generation Sequencing</td>
<td>282</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Next-Generation Sequencing Technologies</td>
<td>284</td>
</tr>
<tr>
<td>12.4</td>
<td>Polymerase Engineering Strategies</td>
<td>288</td>
</tr>
<tr>
<td>12.5</td>
<td>Synthetic Informational Polymers</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>295</td>
</tr>
<tr>
<td>13</td>
<td>Engineering Glycosyltransferases</td>
<td>303</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction to Glycosyltransferases</td>
<td>303</td>
</tr>
<tr>
<td>13.2</td>
<td>Glycosyltransferase Sequence, Structure, and Mechanism</td>
<td>304</td>
</tr>
<tr>
<td>13.3</td>
<td>Examples of Glycosyltransferase Engineering</td>
<td>307</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Chimeragenesis and Rational Design</td>
<td>307</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Directed Evolution</td>
<td>310</td>
</tr>
<tr>
<td>13.3.2.1</td>
<td>Fluorescence-Based Screening</td>
<td>311</td>
</tr>
<tr>
<td>13.3.2.2</td>
<td>Reverse Glycosylation Reactions</td>
<td>312</td>
</tr>
<tr>
<td>13.3.2.3</td>
<td>ELISA-Based Screens</td>
<td>313</td>
</tr>
<tr>
<td>13.3.2.4</td>
<td>pH Indicator Assays</td>
<td>314</td>
</tr>
<tr>
<td>13.3.2.5</td>
<td>Chemical Complementation</td>
<td>314</td>
</tr>
<tr>
<td>13.3.2.6</td>
<td>Low-Throughput Assays</td>
<td>314</td>
</tr>
<tr>
<td>13.4</td>
<td>Practical Considerations for Screening Glycosyltransferases</td>
<td>315</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Enzyme Expression and Choice of Expression Vector</td>
<td>315</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Provision of Acceptor and NDP-donor Substrate</td>
<td>315</td>
</tr>
<tr>
<td>13.4.3</td>
<td>General Considerations for Microplate-Based Screens</td>
<td>317</td>
</tr>
<tr>
<td>13.4.4</td>
<td>Promiscuity, Proficiency, and Specificity</td>
<td>317</td>
</tr>
<tr>
<td>13.5</td>
<td>Future Directions and Outlook</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>319</td>
</tr>
<tr>
<td>14</td>
<td>Protein Engineering of Cytochrome P450 Monooxygenases</td>
<td>327</td>
</tr>
<tr>
<td>14.1</td>
<td>Cytochrome P450 Monooxygenases</td>
<td>327</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Introduction</td>
<td>327</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Catalytic Cycle of Cytochrome P450 Monooxygenases</td>
<td>328</td>
</tr>
<tr>
<td>14.1.3</td>
<td>Redox Partner Proteins</td>
<td>329</td>
</tr>
<tr>
<td>14.2</td>
<td>Engineering of P450 Monooxygenases</td>
<td>330</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Molecular Background for P450 Engineering</td>
<td>330</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Altering Substrate Selectivity and Improving Enzyme Activity</td>
<td>332</td>
</tr>
<tr>
<td>14.2.2.1</td>
<td>Rational and Semi-Rational Design</td>
<td>332</td>
</tr>
<tr>
<td>14.2.2.2</td>
<td>Directed Evolution and Its Combination with Computational Design</td>
<td>336</td>
</tr>
<tr>
<td>14.2.2.3</td>
<td>Decoy Molecules</td>
<td>338</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Improving Solvent and Temperature Stability of P450 Monooxygenases</td>
<td>340</td>
</tr>
<tr>
<td>14.2.3.1</td>
<td>Solvent Stability</td>
<td>341</td>
</tr>
<tr>
<td>14.2.3.2</td>
<td>Thermostability</td>
<td>342</td>
</tr>
</tbody>
</table>
15.6 Computational Redesign of DNA Binding and Specificity 394
15.7 Conclusions 396
References 396

16 Simulation of Enzymes in Organic Solvents 407
Tobias Kulchevski and Jürgen Pleiss
16.1 Enzymes in Organic Solvents 407
16.2 Molecular Dynamics Simulations of Proteins and Solvents 408
16.3 The Role of the Solvent 410
16.4 Simulation of Protein Structure and Flexibility 411
16.5 Simulation of Catalytic Activity and Enantioselectivity 413
16.6 Simulation of Solvent-Induced Conformational Transitions 414
16.7 Challenges 415
16.8 The Future of Biocatalyst Design 416
References 417

17 Engineering of Protein Tunnels: The Keyhole–Lock–Key Model for Catalysis by Enzymes with Buried Active Sites 421
Zbynek Prokop, Artur Gora, Jan Brezovsky, Radka Chaloupkova, Veronika Stepankova, and Jiri Damborsky
17.1 Traditional Models of Enzymatic Catalysis 421
17.2 Definition of the Keyhole–Lock–Key Model 422
17.3 Robustness and Applicability of the Keyhole–Lock–Key Model 424
17.3.1 Enzymes with One Tunnel Connecting a Buried Active Site to the Protein Surface 424
17.3.2 Enzymes with More than One Tunnel Connecting a Buried Active Site to the Protein Surface 433
17.3.3 Enzymes with One Tunnel Between Two Distinct Active Sites 436
17.4 Evolutionary and Functional Implications of the Keyhole–Lock–Key Model 437
17.5 Engineering Implications of the Keyhole–Lock–Key Model 438
17.5.1 Engineering Activity 442
17.5.2 Engineering Specificity 443
17.5.3 Engineering Stereoselectivity 443
17.5.4 Engineering Stability 443
17.6 Software Tools for the Rational Engineering of Keyholes 444
17.6.1 Analysis of Tunnels in a Single Protein Structure 445
17.6.2 Analysis of Tunnels in the Ensemble of Protein Structures 445
17.6.3 Analysis of Tunnels in the Ensemble of Protein–Ligand Complexes 447
17.7 Case Studies with Haloalkane Dehalogenases 448
17.8 Conclusions 450
References 452

Index 465