Contents

Preface XI

List of Contributors XXIII

1 Wetting of Surfaces and Interfaces: a Conceptual Equilibrium Thermodynamic Approach 1
Jarl B. Rosenholm

1.1 Introduction 1
1.2 Thermodynamic Reference Parameters 2
1.3 Wetting in Idealized Binary Systems 6
1.3.1 Models for Dispersive Solid–Liquid Interactions 6
1.3.2 Contribution from the Surface Pressure of (Gaseous) Molecules and Spreading of Liquid Films 14
1.3.3 Models for Specific Polar (Lewis) Interactions 21
1.3.4 Partial Acid and Base Components 24
1.4 Wetting in Idealized Ternary Systems 37
1.4.1 Preferential Spreading at Three-component Interfaces 41
1.4.2 Models for Dispersive Solid–Liquid–Liquid Interaction 43
1.4.3 Contribution from the Surface Pressure of a Monomolecular (Gaseous) Film 45
1.4.4 Models for Lewis (Polar) Solid–Liquid–Liquid Interaction 46
1.5 Adsorption from Solution 47
1.5.1 Determination of Lewis (Polar) Interactions with Surface Sites 48
1.5.2 Determination of Brønsted (Charge) Interactions with Surface Sites 50
1.5.3 Adsorption Isotherms for Competitive Interaction at Surface Sites 58
1.6 Contributions from Surface Heterogeneities 65
1.6.1 Non-ideal Solid–Liquid Brønsted (Charge) Interactions 66
1.6.2 Surface Energy of Coexisting Crystal Planes 68
1.6.3 Competing Multi-site Adsorption 69
1.6.4 Structural Heterogeneities of the Surface 71
1.7 Contributions from External Stimuli 75
1.7.1 External Electrostatic Potential 75
1.7.2 External Illumination 77
1.8 Conclusions 81
References 82

2 Surface Forces and Wetting Phenomena 85
Victor M. Starov

2.1 Wetting and Neumann-Young’s Equation 85
2.2 When is the Neumann-Young Equation Valid? 88
2.3 Hysteresis of Contact Angle 90
2.3.1 Line Tension 91
2.4 Surface Forces 93
2.5 Components of the Disjoining Pressure 95
2.5.1 Molecular or Dispersion Component 95
2.5.2 Double Electrical Layers 96
2.5.3 Electrostatic Component of the Disjoining Pressure 97
2.5.4 Structural Component of the Disjoining Pressure 98
2.6 Thin Liquid Films 100
2.7 Disjoining Pressure and Equilibrium Contact Angles 102
2.8 Hysteresis of Contact Angles from a Microscopic Point of View: Surface Forces 106
References 108

3 Investigation of Plateau Border Profile Shape with Flow of Surfactant Solution Through Foam Under Constant Pressure Drop Using the FPDT Method 109
Pyotr M. Kruglyakov and Natalia G. Vilkova

3.1 Theoretical Background 109
3.1.1 Foam Drainage 109
3.1.2 Foam Pressure Drop Technique 111
3.1.3 Hydroconductivity 112
3.2 Experimental Investigation of the Liquid Flow Through the Foam 114
3.3 Results and Discussion 115
3.3.1 Liquid Flow Through the Foam with Constant Plateau Border Radius 115
3.3.2 Comparison of Experimental Plateau Border Profile with that Calculated on the Assumption of a Mobile Border 117
3.3.3 Influence of Surface Tension Decrease on the Plateau Border Profile 120
3.3.4 Comparison of the Experimental and Calculated Volume Flow-rates 121
3.4 Foam Drainage Investigations Using the Pressure Established When Pressure Drop Is Created in the Liquid Phase of Foam 123

3.5 Conclusions 124

References 124

4 Physical Chemistry of Wetting Phenomena 127

Nicolay V. Churaev and Vladimir D. Sobolev

4.1 The State of the Theory of Wetting 127

4.2 Non-polar Liquids 130

4.3 Low Energetic Surfaces 132

4.4 High-energy Surfaces 136

4.5 Polar Liquids 137

4.6 Hydrophobic Surfaces 138

4.7 Hydrophilic Surfaces 142

4.8 Methods of Control of Surface Wetting 146

References 150

5 The Intrinsic Charge at the Hydrophobe/Water Interface 153

James K. Beattie

5.1 Introduction 153

5.2 Oil Droplets 153

5.3 Gas Bubbles 156

5.4 Thin Films 156

5.5 Solid Hydrophobic Surfaces 156

5.6 Self-assembled Monolayers 157

5.7 Surface Tension 158

5.8 Theory 159

5.9 The Autolysis Hypothesis 159

5.10 Excluded Explanations 161

5.11 Conclusions and Outstanding Questions 162

References 163

6 Surface Forces in Wetting Phenomena in Fluid Systems 165

Hiroki Matsubara and Makoto Aratono

6.1 Overview of Wetting Transition of Alkanes on a Water Surface 165

6.2 Transition from Partial to Pseudo-partial Wetting Induced by Surfactant Adsorption at the Air–Water Interface 168

6.3 Generality of Surfactant-induced Wetting Transition and Theoretical Prediction of the Wetting Transition Using a 2D Lattice Model 172

6.4 Line-tension Behavior Near the Transition from Partial to Pseudo-partial Wetting 177

6.5 Conclusion 181

References 181
7 Aggregation of Microgel Particles 183
Brian Vincent and Brian Saunders

7.1 Introduction to Microgel Particles 183
7.2 Stability and Aggregation of Microgel Particles:
 Theoretical Background 185
7.2.1 Interparticle Forces 185
7.2.2 Criteria for Dispersion Stability 187
7.3 Experimental Studies of Microgel Aggregation 189
7.3.1 Temperature- and Electrolyte-induced Homoaggregation 189
7.3.2 Depletion-induced Aggregation 198
7.3.3 Heteroaggregation 199
References 201

8 Progress in Structural Transformation in Lyotropic
Liquid Crystals 203
Idit Amar-Yuli and Nissim Garti

8.1 Introduction 204
8.2 Liquid Crystal Mesophases 204
8.2.1 Lamellar Mesophases 204
8.2.2 Hexagonal Mesophases (H_I, H_{II}) 205
8.2.3 Cubic Mesophases 207
8.3 Mesophase Transformations 208
8.3.1 Correlation Between Molecular Structure and Phase Behavior 212
8.3.2 The Tail Volume and/or Length (Binary System) 212
8.3.3 The Area per Head Group (Binary System) 214
8.3.4 Guest Molecule Effect (Ternary System) 219
8.3.4.1 Hydrophilic Guest Molecule 219
8.3.4.2 Lipophilic Guest Molecule 221
8.3.5 Co-surfactant 226
8.4 Microstructure and Transformation Identification Techniques 229
8.4.1 Optical Microscopy 229
8.4.2 X-ray Diffraction 229
8.4.3 Differential Scanning Calorimetry (DSC) 234
8.4.4 Infrared (IR) Spectroscopy 236
8.4.5 Nuclear Magnetic Resonance (NMR) Spectroscopy 239
8.4.6 Rheology 241
8.5 Conclusions 243
References 244
9 Particle Deposition as a Tool for Studying Hetero-interactions
Zbigniew Adamczyk, Katarzyna Jaszczółt, Aneta Michna, Maria Zembala, and Jakub Barbasz

Abstract 247
9.1 Introduction 248
9.2 Specific Interactions 250
9.2.1 Electrostatic Interactions 250
9.2.2 Van der Waals Interactions 258
9.2.3 Interactions in Dispersing Media, Hamaker Constant Calculations 267
9.2.4 Superposition of Interactions and the Energy Profiles 269
9.3 Phenomenological Transport Equations 271
9.3.1 Near-surface Transport 275
9.3.2 Limiting Solutions for the Perfect Sink Model 278
9.3.3 Convective-diffusion Transport to Various Interfaces 282
9.4 Illustrative Experimental Results 291
9.4.1 Initial Deposition Rates 291
9.4.2 Particle Deposition on Heterogeneous Surfaces 298
9.5 Conclusions 308
References 309

10 Recent Developments in Dilational Viscoelasticity of Surfactant Layers
Libero Liggieri, Michele Ferrari, and Francesca Ravera

10.1 Introduction 313
10.2 Surface Rheology of Surfactant Layers 314
10.2.1 Adsorption Kinetics and Interfacial Rheology 314
10.2.2 Main Surface Dilational Rheology Concepts 319
10.3 Dilational Rheology with Multiple Relaxation Processes 321
10.3.1 General Approach 321
10.3.2 Adsorbed Layers with Variable Average Molar Area 325
10.3.3 Interfacial Phase Transition with Aggregation 331
10.3.4 Insoluble Surfactant Layers 334
10.3.5 Interfacial Reactions in Insoluble Monolayers 337
10.4 Conclusions and Perspectives 341
References 342

11 Rapid Brownian and Gravitational Coagulation
Andrei S. Dukhin and Stanislav S. Dukhin 345

11.1 Introduction 345
11.2 Population Balance Equations 347
11.3 Smoluchowski Solution for Brownian Coagulation 349
11.4 Collision Frequency for Gravitational Aggregation 352