Contents

Preface XV

List of Contributors XVII

Polymer Brushes: On the Way to Tailor-Made Surfaces 1

Jürgen Rühe

1 Growth of Polymer Molecules at Surfaces: Introductory Remarks 1
2 Coatings: From First Principles to High-Tech Applications 3
3 Surface-Coating Techniques 6
4 Surface-Attached Polymers 10
5 Polymer Brushes: General Features 13
6 Theory of Polymer Brushes 15
7 Synthesis of Polymer Brushes 18
8 Polymer Brushes as Functional Materials 22
9 Microstructured Polymer Brushes 24
10 Surface-Initiated Polymerization: The Overall Picture 28

Part I Synthesis 33

1 Recent Advances in Polymer Brush Synthesis 35
Anthony M. Granville and William J. Brittain
1.1 Introduction 35
1.2 “Grafting To” Synthesis Technique 37
1.3 “Grafting From” Synthesis Technique 41

2 Polymer Brushes by Atom Transfer Radical Polymerization 51
Jeffrey Pyun, Tomasz Kowalewski, and Krzysztof Matyjaszewski
2.1 Introduction 51
2.2 Polymer Brushes on Flat Surfaces 52
2.2.1 Controlled ATRP from Flat Surfaces 53
2.2.2 Block Copolymer Brushes on Flat Surfaces 54
2.2.3 Stimuli-Responsive Ultrathin Films from “Grafting To” Approach 55
2.3 Polymer Brushes from Particles
 2.3.1 Spherical Brushes from Inorganic Colloids
 2.3.2 Multilayered Core-Shell Colloids
 2.3.3 Imaging of Individual Spherical Brushes
 2.3.4 Modification of Carbon Black Fillers
 2.4 Molecular Brushes
 2.4.1 Synthesis of Molecular Brushes from Linear Polymeric Macroinitiators
 2.4.2 Molecular Brushes from Dendritic Macroinitiators

3 Polymer Brushes by Atom Transfer Radical Polymerization Initiated from
Macroinitiator Synthesized on the Surface
Viktor Klep, Bogdan Zdyrko, Yong Liu, and Igor Luzinov
3.1 Introduction
3.2 Experimental
3.3 Results and Discussion
3.3.1 Synthesis of Macroinitiator for ATRP
3.3.2 ATRP from Macroinitiator

4 Synthesis of Polypeptide Brushes
Henning Menzel and Peter Witte
4.1 Introduction
4.2 Preparation of Peptide Brushes by “Grafting To”
4.3 Preparation of Peptide Brushes by Grafting From Polymerization
4.3.1 Mechanisms of NCA Polymerization
4.3.2 Amine-Initiated Grafting From Polymerizations in Solution
4.3.3 Other Techniques for Amine-Initiated Grafting From Polymerizations
4.4 Preparation of Peptide Brushes by Living Grafting From
Polymerization
4.4.1 Copolymerization Approach
4.4.2 Alloc-Amide Approach

5 Bottle Brush Brushes: Ring-Opening Polymerization
of Lactide from Poly(hydroxyethyl methacrylate) Surfaces
Jong-Bum Kim, Wenxi Huang, Chun Wang, Merlin Bruening, and Gregory L. Baker
5.1 Introduction
5.2 Synthesis of PHEMA-g-PLA
5.3 Conclusions and Implications for Future Studies
5.4 Experimental Section
5.4.1 Materials
5.4.2 Preparation of Monomer Solution and Substrates
5.4.3 Ring-Opening Polymerization from PHEMA Surface
5.4.4 Analytical Methods
Contents

6 Preparation of Well-Defined Organic-Inorganic Hybrid Nanostructures using Living Cationic Surface-Initiated Polymerization from Silica Nanoparticles

Il-Jin Kim, Su Chen, and Rudolf Faust

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>119</td>
</tr>
<tr>
<td>6.2 Experimental Section</td>
<td>120</td>
</tr>
<tr>
<td>6.2.1 Materials</td>
<td>120</td>
</tr>
<tr>
<td>6.2.2 Characterization</td>
<td>120</td>
</tr>
<tr>
<td>6.2.3 Synthesis of Immobilized Macroinitiators</td>
<td>121</td>
</tr>
<tr>
<td>6.3 Results and Discussion</td>
<td>122</td>
</tr>
<tr>
<td>6.3.1 Living Cationic Surface-Initiated Polymerization of IB from Silica Nanoparticles in the Presence of Sacrificial Free Initiator</td>
<td>122</td>
</tr>
<tr>
<td>6.3.2 Living Cationic Surface-Initiated Polymerization of IB from Silica Macroinitiators</td>
<td>125</td>
</tr>
</tbody>
</table>

7 Photoinitiated Polymerization from Self-Assembled Monolayers

Daniel J. Dyer, Jianxin Feng, Charles Fivelson, Rituparna Paul, Rolf Schmidt, and Tongfeng Zhao

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>129</td>
</tr>
<tr>
<td>7.2 Substrates</td>
<td>131</td>
</tr>
<tr>
<td>7.2.1 Silicon, Silica and Glass</td>
<td>131</td>
</tr>
<tr>
<td>7.2.2 Planar Gold</td>
<td>131</td>
</tr>
<tr>
<td>7.2.3 Nanoparticles</td>
<td>133</td>
</tr>
<tr>
<td>7.3 Photoinitiated Radical Polymerization Mechanisms</td>
<td>133</td>
</tr>
<tr>
<td>7.3.1 Free Radicals</td>
<td>133</td>
</tr>
<tr>
<td>7.3.2 Photosensitizers</td>
<td>134</td>
</tr>
<tr>
<td>7.3.3 Photo-Iniferters</td>
<td>135</td>
</tr>
<tr>
<td>7.4 Polymerization from AIBN-type SAMs</td>
<td>135</td>
</tr>
<tr>
<td>7.4.1 Design and Synthesis</td>
<td>135</td>
</tr>
<tr>
<td>7.4.2 Monolayer Characterization</td>
<td>137</td>
</tr>
<tr>
<td>7.4.3 Polymerization of Styrene</td>
<td>138</td>
</tr>
<tr>
<td>7.5 Conclusions and Future Studies</td>
<td>143</td>
</tr>
<tr>
<td>7.6 Experimental</td>
<td>144</td>
</tr>
<tr>
<td>7.6.1 Initiator Synthesis</td>
<td>144</td>
</tr>
<tr>
<td>7.6.2 Polymerizations</td>
<td>145</td>
</tr>
<tr>
<td>7.6.3 Reflection Absorption Infrared Spectroscopy (FT-RAIRS) Measurements</td>
<td>146</td>
</tr>
<tr>
<td>7.6.4 Ellipsometry</td>
<td>146</td>
</tr>
<tr>
<td>7.6.5 X-Ray Photoelectron Spectroscopy (XPS)</td>
<td>146</td>
</tr>
<tr>
<td>7.6.6 Molecular Weight Measurements</td>
<td>147</td>
</tr>
<tr>
<td>7.6.7 Molecular Modeling</td>
<td>147</td>
</tr>
</tbody>
</table>
10.3.2 Investigating the Different Regimes of Polymer Brush Conformation on Surfaces 199
10.3.3 Investigating Phase Segregation and Formation of Patterns 200
10.3.4 Polymerization Mechanism 201
10.3.5 Patterning Using Nonlithographic Methods 204
10.4 The Importance of Characterizing Particles and Nanoparticles 204
10.5 Characterization and Analysis Methods for Polymer Brushes on Particles 205
10.5.1 In-Situ Investigations on Particles 206
10.5.2 Degrafted Polymers from Particles 208

11 Characterization of Polymer Brushes on Nanoparticle Surfaces 213
 Thomas A. P. Seery, Mark Jordi, Rosette Guino, and Dale Huber
 11.1 Introduction 213
 11.2 Experimental 215
 11.2.1 Materials 215
 11.2.2 Instrumentation 215
 11.2.3 Pyrolysis GC-MS 216
 11.2.4 Infrared Monitoring of Polymer Formation 216
 11.2.5 Synthesis of Alkanethiol-Stabilized Gold Nanoparticles 217
 11.2.6 Synthesis of Stober Silica Nanoparticles 218
 11.2.7 Synthesis of NCSEOS 218
 11.2.8 Synthesis of BCH, NCSEOS, and TMEOS-Coated Nanoparticles 218
 11.2.9 Synthesis of TMEOS Silica-Polymer Mixture 219
 11.2.10 Synthesis of Silica-Poly(norbornene) Nanocomposites 219
 11.2.11 Isolation of Grafted Polymer Chains 220
 11.2.12 Polymer Stability Test 220
 11.3 Results and Discussion 221

12 Spherical Polyelectrolyte Brushes 231
 Matthias Ballauff
 12.1 Introduction 231
 12.2 Synthesis and Characterization 234
 12.2.1 Determination of Core Radius R, Contour Length L_C, and Grafting Density α 234
 12.2.2 Titration Curve 235
 12.3 Experimental Verification of Theoretical Predictions 236
 12.3.1 Confinement of the Counterions 237
 12.3.2 Correlation of the Counterions to the Macroion 238
 12.4 Flow Behavior 240
 12.5 Applications 242
 12.5.1 Interaction with Charged Surfaces 242
 12.5.2 Interaction with Proteins in Solution 243
16 Kinetics of Polymer Brush Formation With and Without Segmental Adsorption

Lynn S. Penn, Heqing Huang, Roderic P. Quirk, and Tae H. Cheong

16.1 Introduction
16.2 Experimental
16.2.1 Synthesis and Characterization of Amine Chain-End Functionalized Polystyrene
16.2.2 Introduction of Active Sites to Surface of Solid
16.2.3 Tethering Reactions in Good Solvent
16.2.4 Tethering Reactions in Poor Solvent
16.2.5 Monitoring the Tethering Reactions
16.3 Results and Discussion
16.3.1 Results in Absence of Segmental Adsorption
16.3.2 Results in the Presence of Segmental Adsorption

Part III Applications

17 Applications of Polymer Brushes and Other Surface-Attached Polymers

Kenneth C. Caster

17.1 Introduction
17.2 Surface Modification and Functionalization
17.2.1 Polymerization Methodologies for Surface-Attached Polymers
17.2.2 Property Control
17.2.3 Impact on Types of Materials
17.3 Applications
17.3.1 Adhesion
17.3.2 Tribology
17.3.3 Stabilization and Compatibilization
17.3.4 Surface Coatings
17.3.5 Stimuli-Responsive and Switchable Surfaces
17.3.6 Separations
17.3.7 Nanofabrication
17.3.8 Surfaces for Electronics
17.3.9 Other Uses
17.4 Future Prospects

Appendix

18 Polymer Brushes: Towards Applications

Gregory L. Whiting, Tamer Farhan, and Wilhelm T. S. Huck

18.1 Introduction
18.2 Experimental
18.2.1 Materials
18.2.2 Characterization
18.2.3 Synthesis of Triphenylamine Acrylate (TPAA) Monomer
18.2.4 Synthesis and Deposition of Trichlorosilane ATRP Initiator 373
18.2.5 Surface-Initiated Polymerizations 373
18.3 Results and Discussion 374
18.3.1 Kinetics of Surface-Initiated ATRP of MMA from Silicon 374
18.3.2 Surface-Initiated ATRP from Polymeric Substrates 375
18.3.3 Synthesis of Conjugated Polymer Brushes from ITO 377

19 Polymerization, Nanopatterning and Characterization of Surface-Confined, Stimulus-Responsive Polymer Brushes 381
Marian Kaholek, Woo-Kyung Lee, Bruce LaMattina, Kenneth C. Caster, and Stefan Zauscher
19.1 Introduction 381
19.2 Experimental 382
19.2.1 Materials 382
19.2.2 Substrates 383
19.2.3 Preparation of Initiator Monolayers 383
19.2.4 Nanopatterning of Initiator 383
19.2.5 NIPAAM Polymerization 384
19.2.6 Polymer Characterization 385
19.3 Results and Discussion 386
19.3.1 Surface-Initiated Bulk Polymerization 386
19.3.2 Phase Behavior and Mechanical Characterization 390
19.3.3 Surface Force Measurements 393
19.3.4 Nano-Patterning 396

20 Mixed Polymer Brushes: Switching of Surface Behavior and Chemical Patterning at the Nanoscale 403
Sergiy Minko, Marcus Müller, Valeriy Luchnikov, Mikhail Motornov, Denys Usov, Leonid Ionov, and Manfred Stamm
20.1 Introduction 403
20.2 Theory of Mixed Polymer Brushes 404
20.3 Synthesis of Mixed Brushes 409
20.3.1 The “Grafting To” Method 409
20.3.2 The “Grafting From” Method 411
20.4 Experimental Study of Phase Segregation in Mixed Brushes 412
20.5 Adaptive Responsive Behavior: Regulation of Wetting and Adhesion 417
20.6 Patterning of Mixed Brushes 420

21 Local Chain Organization of Switchable Binary Polymer Brushes in Selective Solvents 427
Melbs C. LeMieux, Denys Usov, Sergiy Minko, Manfred Stamm, and Vladimir V. Tsukruk
21.1 Introduction 427
21.1.1 Polymer Surface Modification 427
21.1.2 Polymer Brushes 428
21.1.3 Binary Polymer Brushes 429