Index

A
acoustic comfort 4, 75, 76, 92, 98–100, 153, 268, 298
– health and productivity 76
active charge and discharge (ACD) design 56
adaptation luminance 94, 95
adaptive thermal comfort models 75, 78, 83, 85, 116, 152
– ASHRAE Standard 55, 87, 352
– bases and formulations 85
– behavioral adaptation 85
– limitations 85
– physiological adaptation 82
– psychological adaptation 84
– terms of the canonical equation of 86
admittance-based technique 16
admittance matrix 28, 29
admittance transfer functions 17–21
advanced solar control systems 12
air capacitance 28
airflow
– in critical zones or atria 107
– within and through building envelopes 149–151
airtight insulated opaque envelope 12
annual energy 77, 111, 133, 207, 209, 217, 301, 328, 332
– balance 111, 207, 217
– demand and on-site generation 133
approximations 14, 15, 17, 23, 43, 81, 227, 312
– linked to physical assumptions 23
– for reduction in model complexity 15
– types of 14
Architecture, engineering, and construction (AEC) industry 177, 179, 185, 202
ARMAX model 232, 235
ASHRAE Likelihood of Dissatisfied (ALD) 90–92, 198
ASHRAE seven-point scale of thermal sensation 81, 90
average PPD 89, 90, 92

B
blower door test 246, 260
BPO paired with BPS 176
BPS tools 95, 96, 107, 133–135, 141–144, 147, 149, 151–153, 157, 165, 166, 176–178, 223, 344
building-added photovoltaics (BAPV) 35
building automation system (BAS) 2, 211, 212, 276
building components 57, 61, 62, 111, 126, 227, 302
– conduction heat transfer 227
– tools and associated 302
building design 3, 4, 10, 12, 39, 95, 96, 100, 107–109, 111, 112, 116, 118, 120, 126, 133–138, 151, 153, 154, 155, 158, 163, 164, 175, 177, 179, 181, 182, 184, 186, 189–191, 202, 210, 227, 272, 290, 292, 304, 322, 339, 343, 351, 352
– challenge in passive 322
– complexity in 12
– design of BIPV/T systems 39
– energy-efficient 189
– genomes/simplified representations of 184
– high-performance 151
– integrated approach to 351
– minimal influence over 154
– opportunity to influence 135
– optimal 190
– purposes 272
building energy design 3
– factors and technological developments 3
building information modeling (BIM) 138
building-integrated photovoltaic (BIPV) 9, 13, 35, 36, 123, 139, 145–147, 324
– coefficients for BIPV technologies 40
– roof configurations 146, 327
– air-based systems 37
– collector 139, 144, 247
– system 351
– water high-temperature systems 37, 351
– design 39
– open-loop and closed-loop 37
building-integrated solar systems 3, 11
building-integrated thermal energy storage (BITES) systems 12, 55–61, 63, 289, 320
– direct gain systems 12
– modeling active 58
– finite difference discretization methods 58–61
– mainstream building simulation software, methods used in 62
– transfer function methods 61, 62
building performance optimization (BPO) 175
– defined 175, 176
– experts interview 184–186
– interviewees’ comments and frequency 185
– obstacles categories 184
– importance 176–178
– objectives 179
– opportunities 185
– achieving cost-effective Net ZEBs 186
– allowing optimal systems scheduling through MPC 186
– designing innovative integrated Net ZEBs 186
– supporting the decision making 185
– tools 177, 223
building performance simulation (BPS) 107, 133, 134, 154, 155, 160, 165, 175, 176, 177, 182, 185, 223, 266
– integration of optimization algorithms with 183, 184
– tools (See BPS tools)
building transfer functions 29, 30

C
Canadian net-zero energy house 10, 11
capacitances 28, 29, 33, 59, 61, 116, 233, 234, 235, 309
carbon dioxide 100
– outdoor concentration 100
cascade equation matrix 16, 17
cascade matrix
– for a multilayered wall 19
– for a simple conductance 17
case studies 188
– EcoTerra House 6, 243–269
– ENERPOS 6, 321–343
– Leaf House 6, 269–289
– National Renewable Energy Laboratory–Research Support Facility (RSF) 6, 289–321
CFD. See computational fluid dynamics (CFD)
Chartered Institution of Building Services Engineers (CIBSE) 88
Climate Consultant 136, 157, 158
closed-loop BIPV/T-air 37
cold climate regions 3
combined heat and power (CHP) technologies 3
– for Net ZEBs 66
COMIS 117, 118, 129
commercial buildings 1, 3, 36, 39, 56, 113, 116, 117, 147, 152, 159, 195, 202, 210, 212, 225, 253
computational fluid dynamics (CFD) 55, 107, 125, 150–152
cost (or early) design 9, 14, 108, 109, 112, 113, 115, 116, 126, 132, 133, 134, 136, 141, 144, 147, 157, 158, 159, 164,
Index

165, 166, 177, 244, 256, 272, 292, 304, 305, 320, 343, 344, 352, 353
concrete 15, 20, 55, 61, 124, 247, 267, 293, 272, 324
conductance 18, 19, 32, 59, 140, 263
conduction transfer functions (CTFs) 22, 25, 61, 62, 227
contaminants 100, 140, 150, 151
convection 12, 14, 29, 57, 78, 196, 309–311
  – interzonal 308, 309, 311
  – natural 12, 14, 196
convective conductances 26
cooling energy 1, 12, 39, 112, 118, 120, 122, 129, 141, 142, 161, 162, 193, 256, 261, 302, 317, 318, 322
cooling load temperature differential (CLTD) method 16, 22
cost 3
  – balance 217
  – construction 305, 322
  – control 132
  – energy-generating technologies 3
  – estimation 185
  – and incentives 353
  – optimal curve 187
  – reduction per watt generating capacity 1
  – replacement 191
  – savings 153
Crank–Nicolson approach 59

daylight autonomy (DA) 95
  – continuous 95
daylight(ing)
  – analysis method 147
  – calculations, detailed and intermediate tool for 121
  – comfort 92–94
  – design, rules of thumb and pattern guides 147
  – glare analysis 97
  – glare probability (DGP) 96, 152
    – calculation 96
    – simulation 149
    – accuracy 148
  – algorithms used in 147
  – BPS tools, for analysis 149
  – dynamic 147
  – technologies 12
DAYSIM tool 114, 127, 137, 149, 242
demand abatement, through passive design 3
demand controlled ventilation (DCV) 140
designing Net ZEBs 112, 351
  – building aspects, priorities 112
  – building envelope thermal resistance 118, 119
  – building thermal inertia 115, 116
  – daylight 113, 114
  – natural and hybrid ventilation 116–118
  – solar energy technologies integration 119
  – solar protection 114, 115
  – concept design stage 112
  – design development aspects 119
    – daylight 120–122
    – envelope and thermal inertia 120
    – plug loads and artificial lighting 122
    – RET and HVAC 123
  – technical design 124–126
  – full factorial and fractional factorial design 140
  – key approaches 4
  – operating strategies 113
  – robust design 155–157
  – tools requirements on modeling 133, 134
design stages flow, of information 110
DGP. See daylight, glare probability (DGP)
direct gain zone modeling 15
discomfort index 88, 89, 91, 92, 195, 202
discrete Fourier transform (DFT) 32, 33
discrete-time transfer functions 229–231
distributed parameter model, for multilayered wall 16, 17
distribution system operators (DSOs) 209
domestic hot water (DHW) 51
dynamic daylight simulation 147
dynamic thermal behavior 18, 50, 115
dynamic window shading devices 97
ÉcoTerra 243
- assembly of coTerra house modules 245
- assessment of design process 255, 256
- basement ventilated concrete slab 250
- BIPV/T roof, energy flow 248, 268
- description of 243
- design objectives 243, 252
- design process 252–256
- design team and design process 252, 253
- domestic hot water (DHW) heating 251
- energy balance of roof 249
- floor plans 247
- GSHP, coefficient of performance 251
- heated air from BIPV/T roof
  - to reduce total purchased energy of house 249
- heat recovery ventilator (HRV) 251
- high resolution, of monitoring equipment 268, 269
- house from southwest 243
- measured performance 256–259
- annual breakdown of electricity use 257
- daily power draw, generation, and indoor temperature profiles 259
- modeled and measured PV performance 258
- monthly energy use in 2010 257
- winter day after a snowfall 258
- occupant behavior, influence heating energy 267
- redesign study 259
- boundary conditions 260
- electricity use and generation for successive upgrades 264
- form and fabric 260, 267
- heat losses, distribution 263
- implementation of redesign strategies 262–266
- operations 260
- renewable energy systems 261
- simulation results 261, 262
- thermal loads and BIPV/T useful energy output 265, 266
- system schematic 250
- thermal and acoustic comfort 268
- thermal model with zoning scheme 260
- thermal properties of surfaces 245, 246
- timeline of 244
- trade-off, between thermal performance and daylighting 267
- typical climate for Sherbrooke, Québec 244
- use of design and analysis tools 253–255
- electrical energy 37, 39, 100, 248, 249, 259, 277
- storage 219
- electric grid 195, 209
- electric lighting 1, 12, 94, 95, 96, 98, 100, 110, 112, 113, 147, 148, 149, 152, 268, 293, 303, 305, 308, 323
- energy 147, 152
- schedule profile 149
- simulation 148
- electrochromic windows 149
EN 15251 adaptive thermal comfort model 90
- energy balance 28, 34, 66, 77, 80, 163, 263
- Leaf House 277, 287
- for model 27
- net-zero 10
- for thermal network 34
- energy consumption 1, 3–5, 10, 12, 67, 108, 111, 119, 191, 194, 122, 123, 252, 272, 289, 301, 315, 318, 333, 334, 341, 343
- energy efficiency 1, 3, 4, 10, 12, 111, 139, 209, 242, 325, 328, 351, 353
- energy flows, at a Net ZEB 213
Energy in Buildings and Communities (EBC) Annex 52 9
- Subtask A/Subtask B 9
- energy modeling, proportion of time devoted to different tasks 143
Energy Performance of Buildings Directive (EPBD) framework 177
EnergyPlus 9, 41, 120, 130, 144, 156, 195, 196, 261, 272
energy recovery ventilation 100
frequency domain wall model 16
frequency response (FR) approach 62

G
GenOpt tool 183, 195, 197
geometry, and thermal zoning 141, 142
– approaches, shorten process of geometry input 142
– analyze one zone at a time 142
– import from 3D drafting software 142
– simplify geometry of whole building 142
– limiting factor for zonal configuration 143
– need for resolution of model geometry by building aspect 143
– proportion of time devoted to tasks for building energy modeling 143
– thermal zone configurations, for passive solar house 142
– total heating and cooling energy 142
Green Building XML (gbXML) 138
greenhouse gas (GHG) emissions 2, 67
grid interaction 5, 133, 207, 208, 215, 216, 235, 279
– index 278, 279
groundsourceheatpumps(GSHPs) 65, 241

H
heat balance 22, 62, 77, 78, 80, 82, 85, 227, 272
– of human body 78–80
– model, limitations of 82, 83
heat conduction 13, 15, 62, 196
– two-dimensional 308
heat exchanger 11, 37, 44, 45, 51, 52, 53, 188, 275, 286
heat flux 17, 18, 22, 23, 25, 53, 59, 62, 77, 79, 262
heat index 88
heating/cooling loads 32
– room temperature calculations 32
heating energy 37, 119, 128, 135, 142, 144, 159, 190, 262, 265, 266, 314, 315
heating load 32
heating, ventilation and air conditioning (HVAC) 1, 2, 16, 37, 66, 107, 109, 110, 119, 122, 124, 137, 140, 141, 144, 145, 153, 183, 221, 272, 276, 344
– and active renewable energy systems 144, 145
heat pump systems 35, 58, 63–65
heat recovery 13, 36, 42, 189, 196, 243, 263, 302, 317, 319
heat recovery ventilator (HRV) 163, 190, 251, 263
heat release, in phase change materials 34
heat removal fluid (HRF) 37, 43, 44
heat transfer 1, 11, 13, 14, 22, 59, 140, 308, 310, 315
– convective 16, 56, 79, 309
– envelope 266
– fluid 55
– interzonal 315
– linearization of 14
– nonvisible radiative 147
– one-dimensional 308
– radiant 310
hosting capacity 209
human factors, in the operation of Net ZEBs 352, 353
HVAC/RET system refinement 107
hybrid systems 3, 11
– technologies 3
hybrid ventilation 116, 117, 128, 343, 352
hydronic slab systems 56
hypocaustum 57

I
IAQ. See indoor air quality (IAQ)
IDA-ICE, as a simulation tool 183
illumination-based performance metrics 95
Illuminating Engineering Society (IES) format 148
impedance transfer function 17, 29
indoor air quality (IAQ) 64, 75, 76, 98–100, 140, 150, 175, 196
– methods to ensure 100
Industry Foundation Classes (IFC) 138
insulation in ceilings and walls 182
insulation layer 19, 56
integrated approach
– to building design and operation 4
– to energy efficiency and passive design 4
integrated design process (IDP) 5, 108, 126, 132, 267, 292
– characteristics 126
– design process map 126–131
– and project delivery methods 126, 132
– construction management at-risk (CM@R) 132
– design-build (DB) 132
– integrated project delivery (IPD) 132
– “traditional” design-bid-build project delivery method 132
integrated energy system 1, 3, 9
integrating modeling tools
– in Net ZEB design process 108
International Energy Agency Solar Heating and Cooling Program (IEA SHC) Task 40 9
International Solar Energy Society (ISES) 1
interoperability between multiple tools 138, 165
inverse discrete Fourier transform (IDFT) 32

J
JMSB BIPV/T system 45

L
Laplace transform 16–18, 22, 31, 61, 62, 228, 229
latent/sensible heat 13
Leaf House
– analysis, radiant floor modeling 283
– architectural plans for three levels of house 269
– average monthly air temperatures 281
– average monthly climate parameters 270
– BAS optimizing energy performances 276
– breakdown of cooling load 283
– breakdown of how heating load 284
– building envelope, comprised of 271
– calibration of model 280, 282
– description of design process 272
– description of thermal system plant 272
– efficiency reduction, causes of 274
– energy balance 277
– external structures U-values 271
– features and limits, of employed model 278–280
– GHP simulated and monitored electrical consumption 281
– Leaf House user interface 276
– main features 269
– maximizing solar radiation gain 271
– monitored and simulated
– air temperature data, comparison between 282
– energy production data, comparison between 283
– monitored data 277, 278
– plan of the ground and of the first floor 270
– plan of the second floor 271
– purposes of building design 272
– redesign 284–288
– all options combined 287
– GHP consumption 287
– Leaf House energy balance 287
– results 286
– schematic of solar collector system 275
– scheme of design process 273
– scheme of GHP system 275
– sensitivity analysis of GHP electricity consumption for heating 288
– sensors groups 276
– simplified schematic of the plant 274
– simulated and monitored PV production 280
– subsystems of plant 274
light loss factor (LLF) 148
Likelihood of Dissatisfied indices 89–91, 198
– selected, comparison study 91
linearization
– factor 27
– of heat transfer 14
linear models 226–228, 235
– alternative representations 235
– continuous-time transfer functions 228, 229
– discrete-time transfer functions 229–231
– superposition principle in a MISO system 229
Lines of Influence (LoI) 160
LMGI indicators 212, 213, 215, 216
– balance equation 215
– capacity factor 216
– categorization 215, 216
– choice of 215
– coincidence factor 219
– market matching indicator 217
– mismatch compensation factor 216, 217
– on-site energy flows 212, 213
– profile addition indicators 217
LMGI objectives 207
load management 109, 114, 119, 209, 210, 212, 219, 353
– in grid and buildings 209
– and peak load reduction 209, 210
– strategies for predictive control and 219
– using solar shading devices and thermal mass 114
load matching 207, 208, 211, 215, 216, 277, 289
long-term (thermal) discomfort indices,
applications of 88, 89, 91, 92, 195, 202
– building optimization, as minimization of
thermal discomfort 92
– thermal assessment of buildings 91
Long-term Percentage of Dissatisfied (LPD) index 89, 91, 92, 197–199, 325
– equation 89
low-iron (low-Fe) glass 36, 46
low-VOC paints 100

micromorph (thin film transparent) STPV module 39
model-based predictive control (MPC) in buildings 186, 207, 220, 221, 222, 223, 226
modeling
– for advanced technologies 164
– electrical performance 40–42
– solar thermal collectors 49
– dynamic models 50, 51
– quasi-dynamic models 49, 50
– steady-state models 49
– thermal performance 42–45
model integration and accuracy and computational time 136
– conceptual relationship 136
model resolution 9, 10, 14, 15, 107, 111, 133–135, 137, 141, 163, 351
– for specific building systems and aspects 141
– geometry and thermal zoning 141–143
– technologies, and design stage, 3D matrix representing 10
motorized shading 12
– controlled 241
– devices 117
– louvers 115, 306
– venetian blinds 3, 321
multiple-input, single-output (MISO) systems 229, 232
multiple models/interfaces, of increasing complexity for a single simulation 137

N
natural ventilation 6, 12, 76, 109, 110, 117, 129, 152, 242, 298, 310, 326, 336, 337, 344
near-equatorial-facing windows 12, 16, 351
net-zero energy solar buildings 1, 10, 11
– design tools 133
– energy generation function in 2
net-zero energy solar home concept 11
Nicol et al.’s Overheating Risk (NaOR) 89, 90, 92
night cooling 12, 113, 115, 117, 166, 241, 292, 343
nonlinear heat transfer coefficients 34
Norton equivalents 18, 19, 26, 28
NREL research support facility 115, 156
NREL RSF 5, 93, 94, 99, 136, 147, 150, 154, 155, 289, 290, 320
– abstraction to an archetypal office section 320
– abstraction to archetypes 306
– approaches 306, 307
– daylighting model 310
– model development 307, 308
– natural ventilation 309, 310
– radiosity enclosure 310
– thermal modeling in physical enclosure 308, 309
– active building-integrated thermal energy storage 320
– alternative design and operation for consideration 319
– building-integrated PV 319
– building-integrated PV/T and transpired collector with air-source heat pump 319, 320
– building operation 298
– building simulation software support 302, 303
– case study scopes 289
– comparison of measured and simulated thermal performance 311
– computer modeling role 290
– daylighting and electric lighting 293
– design alternatives using motorized venetian blinds 321
– design and performance of the RSF of the NREL 320
– design process 292
– energy consumption and generation 302
– envelope 292, 293
– floor plan of the RSF, Phase 1, 290
– integrating design, and control for daylighting and solar heat gain 312, 313
– shoulder season 318, 319
– summer design day for cooling-dominated climate 316–318
– winter design period for heating-dominated climate 313–316
– key project design features 291
– model validation and calibration 311, 312
– monitored energy consumption 290
– natural ventilation 298
– outdoor weather conditions with temperature profiles of thermal zone 299
– photovoltaics 301
– schematic of floor plan, and thermal zones of first floor 299
– significance of early design stage 304–306
– simulation at the beginning of design process 320
– software limitations 303, 304
– space conditioning system 293–295
– strategies for daylighting, thermal mass, and natural ventilation/night cooling 292
– supply hot water temperature to the ceiling slabs 301
– temperature profiles of rooms and their ceiling slabs 300
– thermal performance 298
– thermal storage labyrinth 295, 297
– total annual measured energy consumption 291
– total energy consumption 290
– transpired solar thermal collector 297, 298
– typical monitored data 298
– ventilation flow rate and temperature profiles 300
numerical stability 34

O
occupant behavior, role of 97, 114, 151, 153, 154, 155, 256, 262, 264, 267, 343
occupant comfort 75, 76, 93, 99, 125, 151, 352
occupants, approaches to mitigating uncertainty 352, 353
one dimensional heat conduction 15, 22
open-loop ventilated systems 56
operative temperature transfer functions 29
optical properties, of N-layer STPV/T 44
optimization 179
– adopted methodology, and statement of problem 196–198
– algorithms applicable to BPS 180, 181
– hill-climbing search 180, 181
– Hooke–Jeeves search 180, 181
– application 186
– cost-optimal and nearly zero-energy building 186, 187
– cost-optimal curve 186, 187
– comfortable net-zero energy house (See case studies)
– Evolutionary Algorithm (EA) 181–183
– as a holistic approach for multiobjective approach for Net ZEB design 176
– particle swarm optimization (PSO) 182, 183
– population-based algorithms 182
– Genetic Algorithm (GA) 182
– problem definition 179, 180
– single-family house in Finland 183, 188, 189, 194
– systems 55
overheating risk index 89, 90, 189

P
passive design 4, 10, 12, 111, 126, 321, 325, 328, 343, 351
passive energy 12, 163, 220
passive solar buildings 12, 14, 159
passive solar gains 13, 26, 93, 97, 139, 247, 249, 293
passive solar technologies 11, 184, 186, 189, 194
passive technologies 12
– advanced solar control systems 12
– airtight insulated opaque envelope 12
– building-integrated photovoltaics 13
– building-integrated thermal energy storage 12
– daylighting technologies 12
– near-equatorial-facing windows 12
peak electric demand 4, 208
peak heating and cooling loads
– calculation 16
peak renewable electricity 10
Peclet number 60
phase angle 16, 18, 20, 21, 30, 62
phase-change materials (PCMs) 3, 9, 14, 15, 34, 115, 220
phases in Net ZEB realization 108
– design stages flow of information 110
phase variation 30
photovoltaic (PV) 1, 3, 4, 9–13, 35, 37, 40, 44, 113, 123, 137, 145, 188, 190, 194, 207, 212, 241, 243, 247, 271, 277, 290, 301, 352
– array 200, 202, 211, 275
– panels 1
– penetration rates 10
– systems 145, 147
PHPP (iPHA, 2013) 9, 119
PHPP (Passive House Institute, 2010) 119
plastic pipe 57
plug-in hybrid electric vehicle (PHEV) 10, 219, 353
plug loads 4
PMV/PPD model 82
poly-Si (spaced opaque cells) STPV module 39
polystyrene 1, 271, 324
polyvinyl butyral (PVB) 36
polyvinyl fluoride (PVF) 36
polyvinylidene fluoride (PVDF) 36
predicted mean vote (PMV) index 81, 91, 125, 126, 339
predictive control, for buildings 220–222
– development of a control strategy 226
– model-based vs conventional control 221
– modeling of noncontrollable inputs 225, 226
– preliminary steps 222, 223
– requirements of building models
  – for control applications 223, 224
PV cells’ efficiency 36
PV+CHP hybrid system 67
PV systems, higher-efficiency 241
PV/T open loop air system 44

Q
Quantifiable design concept 9

R
RADIANCE tool 114, 137, 149, 302, 303
radiant heating/cooling systems, integrated
  with thermal mass 57, 58
radiant heating installations 57
radiation conductances 27, 28
radiation exchange factors 27
raytracing 147, 148
RC circuit 235
real-time weather prediction 3
renewable energy generation systems
  34–67, 186
renewable energy systems 107, 111, 123,
  144, 189, 254, 259, 344
renewable energy technologies (RET) 5,
  107, 108, 110, 123, 131, 241,
  301, 327
Research Support Facility (RSF) 6, 58,
  156, 241, 242, 289
residential buildings 1, 3, 39, 210, 212,
  241
retrofit STPV installation 39
RETScreen 9, 10, 40, 119, 242, 253–255,
  258, 265
  – role in the design of ÉcoTerra 255
roller shades 149
room interior surface temperatures 17
R-value 34, 324

S
safety regulations 210
Sankey diagram for a passive solar
  house 162, 163
SCATs Project 89, 90
SDD. See solar design days (SDD)
simplified tools, recommended
  – and approaches for early-stage Net ZEB
design 136
  – assessing typical local climate 136
  – databases and case studies 136
  – design charts, or rules of thumb 136
  – simplified tools based on dynamic sub-
    hourly-timestep simulations 137
  – single-component or single-aspect
tools 136
  – tools based on look-up tables 136
simulation
  – advanced building simulation tools 118
  – EnergyPlus 118
  – TRNFLOW 118
  – TRNSYS 118
  – computational fluid dynamics
    (CFD) 125
  – discrete Fourier series (DFS) method 32,
    33
    – complex coefficients 33
    – discrete frequency response 33
  – multiple models/interfaces, of increasing
    complexity for 137
  – natural/hybrid ventilation 352
  – tools, for assessing the natural light
    potential 114
single-input, single-output (SISO) 229
smart grid 211
  – ERGEG definition 211
  – and smart buildings, links between 211,
    351
smart meters 212
smart window systems 3
sol-air temperature 17
  – peak 16
solar air-conditioning 64
solar assisted/source heat pump
  systems 64, 65
solar combi-systems 55, 57
solar design days (SDD) 159, 160, 166
  – drawback 159
  – usage 160
solar domestic hot water heating systems
  (SDHW) 55
solar electric technologies 3
solar energy 1, 107, 247
  – utilization 1
solar gains 3, 10, 12, 13, 15, 26, 32, 93, 97, 98, 114, 115, 117, 159, 220, 225, 245, 249, 251, 259, 263, 267, 268, 306, 323
solar heat gain coefficient (SHGC) 118, 119, 245, 271, 293, 313, 316
solar optimization 4, 351, 353
solar radiation 1–3, 13, 16, 21, 34, 35, 42, 48, 50, 114, 199, 259, 309, 313, 344
  – absorbed 267
  – direct 317
  – beam incident 50
  – thermal analysis 17, 18
  – total incident 42
  – usage 17
solar spectrum 1
solar technology 1, 10, 11, 12, 119, 351
solar thermal collectors 45, 49, 51, 123, 186, 188, 193, 272, 297, 303, 316, 320
  – concentrating collectors 48, 49
  – flat plate collectors 45, 46
  – unglazed transpired collectors 45
  – vacuum solar collectors 46–48
solar thermal systems 9, 34, 45, 64, 138, 139, 271
solar thermal technologies 3, 37
solar thresholds 156
space heating 1, 3, 9, 10, 37, 45, 46, 66, 77, 162, 118–120, 123, 138, 151, 189, 193, 249, 256, 276, 297, 315, 316, 320, spatial and/or temporal discretization 15
SPOT tool 149
SQL interactions 183
star thermal network 26
state-space representation, of linear systems 232–235
  – equations 232, 233
  – matrices 234
Stefan–Boltzmann constant 27
storage tank, for DHW application 52
stress index 88
system identification (SI or “SysID”)
  algorithms 231, 232
T
technical design 107, 109, 112, 124, 126
technologies
  – BIPV components 36
  – BIPV with heat recovery (BIPV/T) 37–39
  – integrated in Net ZEBs 34
  – semitransparent PV (STPV) 39, 351
temperature of PV cells 42
thermal analysis 13
  – and load calculations 14
thermal bridge effects, steady state calculation 15
thermal capacitance. See capacitances
thermal capacity 15, 18–20, 49–51, 311
thermal comfort 13, 56, 75–77, 151, 152
  – adaptive 75
  – analysis 15
  – environmental variables 75
  – equation 80, 81
  – model
  – adaptive 87, 195
  – based on heat-balance of human body 78
  – Fanger 88, 90, 92, 195, 200
  – objectives in Net ZEBs 77
  – personal variables 75
  – principles of 77, 78
  – requirements 15
  – standards regarding 85, 87
thermal conductivity 13, 17, 20, 30, 54
thermal diffusivity 16
thermal discomfort 76, 77, 82, 88, 91, 92, 96, 197
  – in buildings, long-term evaluation of 87, 88
thermal dynamics 4, 10, 22, 139
thermal efficiency 66, 67
thermal energy 11, 12, 66, 100, 112
  – auxiliary 277
  – demand 144
  – output 144
  – renewable 320
  – rate of collection 249
thermal energy storage (TES) 12, 55, 59, 64, 111, 210, 220, 223, 313, 317, 320
– devices to decouple equipment from building 210
– direct gain systems 12
thermal inertia 58, 115, 117, 118, 120, 124, 210, 210
thermal mass integration 116
thermal modeling, 61, 226, 227, 298, 307, 308
– of an entire building 227, 228
– linear model/quasi-linear model 227, 228
thermal network 16, 25, 29, 223, 233
– model of zone 27
thermal output, of a BIPV/T system 42
thermal processes, relevant in assessment of 13
thermal storage 4, 10, 12, 15, 16, 28, 45, 51, 52, 56, 64, 65, 244, 295, 321, 352, 353
– basement for 244
– low-cost 51
– tanks 51
– modeling 52–55
thermal zone models 25
thermo-active (or thermally active) building systems (TABS) 56, 58, 293
time-of-use (TOU) rates 210, 221, 262
time series models 231, 232
– backward shift operator 231, 232
– exogenous input 231, 232
tools
– accuracy and certainty 111
– in climate analysis 157–159
– commercial design 111
– complex 112
– and design processes 111
– multidimensional parametric analysis 162
– multiple 111
– parameters being examined for interactions 161
– parametric analysis 160
– in Ecos 161
– recommended, approaches for early-stage Net ZEB design 136–141
– requirements on Net ZEB modeling 133, 134
– solar design days (SDDs) 159
– visualization 162, 163
transfer admittance 18, 19, 28
transfer function 13, 16–18, 22, 29, 30–32, 61, 62, 227–229, 231
– plots 31
transform methods 13
transient heat conduction 15, 16, 62
transient thermal analysis 33
– objectives 33
transient thermal response, analysis 33, 61
TRNSYS wall simulation model 23
Trombe wall 12
U
useful daylight illuminance (UDI) 95, 96, 113, 122, 330
utility grid 207, 209, 211, 219, 249
utility savings 210
U-value 109, 110, 118–120, 188, 197, 245, 271, 286, 324
V
vacuum insulation panels 3
vacuum tube collector 46–49, 51
VCS. See ventilated concrete slabs (VCS)
Venn diagram, for level of interactions between systems 139
ventilated concrete slabs (VCS) 57, 115, 241, 249, 255, 266
– in cooling applications 56
ventilation 12
– cross 322, 328
– hybrid 4, 116, 128
– mechanical 118, 341
– standards 100
visual comfort 3, 75, 92–94, 109, 152, 182
– affected by 75
– perspectives 75
W
wall effective cascade matrix 17
waste disposal 209
wet installations 57, 58
WINDOW software 149
wind speed loss coefficient 50

Z
zone model 15, 25
– and building transfer functions 25–29
zone setpoints 241
z-transfer function method 13, 22–25, 61, 227, 229–231
– translation theorem 230