Contents

Preface ix

Part I Standard Course-Fundamentals and Typical Phenomena 1

1 Fundamentals of EMTP 3
1.1 Function and Composition of EMTP 3
 1.1.1 Lumped Parameter RLC 3
 1.1.2 Transmission Line 4
 1.1.3 Transformer 6
 1.1.4 Nonlinear Element 6
 1.1.5 Arrester 6
 1.1.6 Switch 7
 1.1.7 Voltage and Current Sources 7
 1.1.8 Generator and Rotating Machine 7
 1.1.9 Control 7
 1.1.10 Support Routines 7
1.2 Features of the Calculation Method 8
 1.2.1 Formulation of the Main Circuit 8
 1.2.2 Calculation in TACS 12
 1.2.3 Features of EMTP 13

References 16

2 Modeling of System Components 17
2.1 Overhead Transmission Lines and Underground Cables 17
 2.1.1 Overhead Transmission Line—Line Constants 17
 2.1.2 Underground Cables—Cable Parameters 37
2.2 Transformer 46
 2.2.1 Single-Phase Two-Winding Transformer 46
 2.2.2 Single-Phase Three-Winding Transformer 50
 2.2.3 Three-Phase One-Core Transformer—Three Legs or Five Legs 53
 2.2.4 Frequency and Transformer Modeling 55

3 Transient Currents in Power Systems 57
3.1 Short-Circuit Currents 57
3.2 Transformer Inrush Magnetizing Current 60
3.3 Transient Inrush Currents in Capacitive Circuits 62
Appendix 3.A: Example of ATPDraw Sheets—Data3-02.acp
Reference

4 Transient at Current Breaking
4.1 Short-Circuit Current Breakings
4.2 Capacitive Current Switching
4.2.1 Switching of Capacitive Current of a No-Load Overhead Transmission Line
4.2.2 Switching of Capacitive Current of a Cable
4.2.3 Switching of Capacitive Current of a Shunt Capacitor Bank
4.3 Inductive Current Switching
4.3.1 Current Chopping Phenomenon
4.3.2 Reignition
4.3.3 High-Frequency Extinction and Multiple Reignition
4.4 TRV with Parallel Capacitance in SLF Breaking
Appendix 4.A: Current Injection to Various Circuit Elements
Appendix 4.B: TRV Calculation, Including ITRV—Current Injection is Applied for TRV Calculation
Appendix 4.C: 550 kV Line Normal Breaking
Appendix 4.D: 300 kV, 150 MVA Shunt Reactor Current Breaking—Current Chopping—Reignition—HF Current Interruption
References

5 Black Box Arc Modeling
5.1 Mayr Arc Model
5.1.1 Analysis of Phenomenon of Short-Line Fault Breaking
5.1.2 Analysis of Phenomenon of Shunt Reactor Switching
5.2 Cassie Arc Model
5.2.1 Analysis of Phenomenon of Current Zero Skipping
Appendix 5.A: Mayr Arc Model Calculating SLF Breaking, 300 kV, 50 kA, L90 Condition
Appendix 5.B: Zero Skipping Current Breaking Near Generator—Fault Current Lasting
Appendix 5.C: Zero Skipping Current Breaking Near Generator—Dynamic Arc Introduced, Still Nonbreaking

6 Typical Power Electronics Circuits in Power Systems
6.1 General
6.2 HVDC Converter/Inverter Circuits
6.3 Static Var Compensator/Thyristor-Controlled Inductor
6.4 PWM Self-Communicated Type Inverter Applying the Triangular Carrier Wave Shape Principle—Applied to SVG (Static Var Generator)
Appendix 6.A: Example of ATPDraw Picture
Reference
Part II Advanced Course-Special Phenomena and Various Applications 149

7 Special Switching 151
7.1 Transformer-Limited Short-Circuit Current Breaking 151
7.2 Transformer Winding Response to Very Fast Transient Voltage 152
7.3 Transformer Magnetizing Current under Geomagnetic Storm Conditions 156
7.4 Four-Armed Shunt Reactor for Suppressing Secondary Arc in Single-Pole Rapid Reclosing 159
7.5 Switching Four-Armed Shunt Reactor Compensated Transmission Line 162
References 163

8 Synchronous Machine Dynamics 165
8.1 Synchronous Machine Modeling and Machine Parameters 165
8.2 Some Basic Examples 167
 8.2.1 No-Load Transmission Line Charging 167
 8.2.2 Power Flow Calculation 169
 8.2.3 Sudden Short-Circuiting 172
8.3 Transient Stability Analysis Applying the Synchronous Machine Model 176
 8.3.1 Classic Analysis (Equal-Area Method) and Time Domain Analysis (EMTP) 176
 8.3.2 Detailed Transients by Time Domain Analysis: ATP-EMTP 180
 8.3.3 Field Excitation Control 183
 8.3.4 Back-Swing Phenomenon 186
Appendix 8.A: Short-Circuit Phenomena Observation in d-q Domain Coordinate 190
Appendix 8.B: Starting as an Induction Motor 193
Appendix 8.C: Modeling by the No. 19 Universal Machine 195
Appendix 8.D: Example of ATPDraw Picture File: Draw8-111.acp (Figure D8.1). 197
References 198

9 Induction Machine, Doubly Fed Machine, Permanent Magnet Machine 199
9.1 Induction Machine (Cage Rotor Type) 199
 9.1.1 Machine Data for EMTP Calculation 200
 9.1.2 Zero Starting 201
 9.1.3 Mechanical Torque Load Application 204
 9.1.4 Multimachines 206
 9.1.5 Motor Terminal Voltage Change 208
 9.1.6 Driving by Variable Voltage and Frequency Source (VVVF) 209
9.2 Doubly Fed Machine 212
 9.2.1 Operation Principle 212
 9.2.2 Steady-State Calculation 213
 9.2.3 Flywheel Generator Operation 213
9.3 Permanent Magnet Machine 215
 9.3.1 Zero Starting (Starting by Direct AC Voltage Source Connection) 217
 9.3.2 Calculation of Transient Phenomena 217
Appendix 9.B: Example of ATPDraw Picture 219
Machine Drive Applications

10.1 Small-Scale System Composed of a Synchronous Generator and Induction Motor
- **Initialization** 221
- **Induction Motor Starting** 223
- **Application of AVR** 225
- **Inverter-Controlled VVVF Starting** 226

10.2 Cycloconverter 233

10.3 Cycloconverter-Driven Synchronous Machine
- **Application of Sudden Mechanical Load** 237
- **Quick Starting of a Cycloconverter-Driven Synchronous Motor** 242
- **Comparison with the Inverter-Driven System** 245

10.4 Flywheel Generator: Doubly Fed Machine Application for Transient Stability Enhancement
- **Initialization** 249
- **Flywheel Activity in Transient Stability Enhancement** 254
- **Active/Reactive Power Effect** 254
- **Discussion** 258

Appendix 10.A: Example of ATPDraw Picture 260

Reference 266

Index 267