Contents

List of Contributors xiii
Preface xv
Acknowledgements xvii

1 Animal Manure – From Waste to Raw Materials and Goods 1
Sven G. Sommer
References 4

2 Animal Production and Animal Manure Management 5
Sven G. Sommer and Morten L. Christensen
2.1 Introduction 5
2.2 Housing, Feedlots and Exercise Areas 7
 2.2.1 Cattle 7
 2.2.2 Pigs 11
 2.2.3 Poultry 12
 2.2.4 Integrated Production Systems 14
2.3 Management of Manure 15
 2.3.1 Deep Litter Management 15
 2.3.2 Slurry Management 16
 2.3.3 Separation of Slurry 17
2.4 Systems Analysis Method for Assessing Mass Flows 18
 2.4.1 Mass Balance and Process Specifications 19
2.5 Summary 23
References 23

3 Regulations on Animal Manure Management 25
Sven G. Sommer, Oene Oenema, Teruo Matsunaka and Lars S. Jensen
3.1 Introduction 25
3.2 Environmental Issues 26
3.3 Need for Government Regulations 29
3.4 Global Regulation – Multilateral Environmental Agreements 30
3.5 Regional Regulations – Exemplified with EU Directives and Regulations 31
 3.5.1 EU CAP and its Reforms 31
 3.5.2 EU Environmental Directives 32
 3.5.3 Reducing Ammonia Emissions from Manure Management in Europe 33
3.6 National Regulations on Agricultural Pollution 34
 3.6.1 United States 34
Contents

3.6.2 Japan 35
3.6.3 Denmark 37
3.7 Summary 38
References 39

4 Manure Characterisation and Inorganic Chemistry

Morten L. Christensen and Sven G. Sommer

4.1 Introduction 41
4.2 Livestock Manure Categories 42
4.3 Physical Characterisation of Manure 45
4.3.1 Particle Size 45
4.3.2 Manure Density and Viscosity 46
4.3.3 Electrochemical Properties 47
4.4 Manure Inorganic Chemistry 49
4.4.1 Ions in Solution 50
4.4.2 pH Buffer System 51
4.4.3 Volatile Components 55
4.4.4 Absorbed Exchangeable Cations 58
4.4.5 Crystals and Adsorbed Ions 59
4.5 Summary 63
References 63

5 Manure Organic Matter – Characteristics and Microbial Transformations

Lars S. Jensen and Sven G. Sommer

5.1 Introduction 67
5.2 Manure Organic Matter Composition 68
5.2.1 Carbon 69
5.2.2 Nitrogen 70
5.2.3 Characterisation of Manure Organic Matter 71
5.3 Manure Microbiology 73
5.4 Microbial and Biochemical Transformations in Manure 75
5.4.1 Aerobic Decomposition of Organic Matter 78
5.4.2 Anaerobic Decomposition of Organic Matter 80
5.5 Transformations of Nitrogen 82
5.5.1 Urea and Uric Acid Transformation 83
5.5.2 Ammonification or Mineralisation – Organic Nitrogen Transformation to Ammonium 84
5.5.3 Immobilisation 84
5.5.4 Nitrification 85
5.5.5 Nitrification–Denitrification Coupling 86
5.6 Summary 87
References 87

6 Sanitation and Hygiene in Manure Management

Björn Vinnerås

6.1 Hygiene Risks Associated with Manure Management 91
6.2 Why Must the Pathogens in Manure be Managed? 92
6.2.1 Manure Treatment 93
6.2.2 Expression of Pathogen Reduction 93
6.3 Manure Treatment Alternatives 95
6.3.1 Storage 96
6.3.2 Anaerobic Treatment 96
6.3.3 Composting 97
6.4 Chemical Treatment 99
6.4.1 Ammonia Treatment 99
6.4.2 Ammonia Sanitisation at the Farm Level 102
6.5 Summary 102
References 103

7 Solid–Liquid Separation of Animal Slurry 105
Morten L. Christensen, Knud V. Christensen and Sven G. Sommer
7.1 Introduction 105
7.2 Removal and Separation Efficiency 106
7.3 In-House Separation 107
7.4 Solid–Liquid Separation of Manure Slurry 108
7.4.1 Sedimentation 108
7.4.2 Centrifugation 111
7.4.3 Drainage 113
7.4.4 Filtration with Pressure 116
7.4.5 User Demand on Performance of the Technology 118
7.5 Pre-Treatment: Chemical Additives 119
7.5.1 Precipitation, Coagulation and Flocculation 119
7.5.2 Struvite Crystallisation 122
7.6 Post-Treatment: Separation Techniques 124
7.6.1 Evaporation of Water and Stripping of Ammonia 124
7.6.2 Membranes 125
7.7 Summary 129
References 129

8 Gaseous Emissions of Ammonia and Malodorous Gases 131
Sven G. Sommer and Anders Feilberg
8.1 Introduction 131
8.2 Characteristics of Ammonia and Hydrogen Sulfide 132
8.3 Processes Involved in Emission 133
8.3.1 Liquid and Air Diffusion Processes 134
8.3.2 Air–Water Equilibrium 136
8.3.3 Acid–Base Equilibrium 138
8.4 Two-Layer Transport and Release Model 141
8.4.1 Gas or Liquid Film Controlling Transfer 144
8.5 Assessment of Gas Release and Emission 147
8.5.1 Calculations Using Emission Coefficients 147
8.5.2 Gas Release and Chemical Equilibrium 148
8.5.3 Effects of Air Turbulence and Surface Component Concentration on Emissions 149
8.6 Summary 150
References 151

9 Ammonia and Malodorous Gases: Sources and Abatement Technologies 153
Anders Feilberg and Sven G. Sommer
9.1 Introduction 153
9.2 Measurement Methods 154
9.2.1 Odour Measurement 155
9.2.2 Relationships Between Odour and Odorants 156
9.3 Ammonia Emissions 157
9.3.1 Pig and Cattle Houses – Slatted Floor and Slurry Pits 157
9.3.2 Pig and Cattle Houses – Solid Floor and Deep Litter 159
9.3.3 Poultry Houses 159
9.3.4 Ammonia Emissions from Manure Storage 161
9.3.5 Field-Applied Manure 162
9.4 Odour Emissions 164
9.4.1 Livestock Buildings 165
9.4.2 Volatile Organic Compounds and Hydrogen Sulphide Emissions from Livestock Production 166
9.5 Technologies and Additives to Reduce NH3 and Odour Emissions 167
9.5.1 Air Treatment Techniques 167
9.5.2 Aeration 170
9.5.3 Additives 171
9.6 Summary 172
References 173

10 Greenhouse Gas Emissions from Animal Manures and Technologies for Their Reduction 177
Sven G. Sommer, Tim J. Clough, David Chadwick and Søren O. Petersen
10.1 Introduction 177
10.2 Processes of Methane and Nitrous Oxide Production 179
10.3 Methane Production from Manure 180
10.3.1 Effect of Temperature 181
10.3.2 Manure Storage Methods 181
10.3.3 Field-Applied Manure 182
10.4 Nitrous Oxide Production from Manure 183
10.4.1 Stored Manure 183
10.4.2 Field-Applied Manure 185
10.5 Reduction in Greenhouse Gas Emissions 186
10.5.1 Reduced Inoculum 188
10.5.2 Mitigation Technologies and Management 188
10.5.3 Reducing Volatile Solids and Nitrogen 188
10.5.4 Additives 189
10.5.5 Covers 190
10.5.6 Whole System Analysis of Technologies to Reduce Greenhouse Gases 190
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6 Summary</td>
<td>191</td>
</tr>
<tr>
<td>References</td>
<td>192</td>
</tr>
<tr>
<td>11 Nutrient Leaching and Runoff from Land Application of Animal Manure and Measures for Reduction</td>
<td>195</td>
</tr>
<tr>
<td>Peter Sørensen and Lars S. Jensen</td>
<td></td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>195</td>
</tr>
<tr>
<td>11.2 Leaching and Runoff of Manure Nitrogen</td>
<td>199</td>
</tr>
<tr>
<td>11.2.1 Leaching of Manure Nitrogen in the First Year after Application and Methods for Reducing the Risk</td>
<td>199</td>
</tr>
<tr>
<td>11.2.2 Long-Term Leaching of Manure Nitrogen</td>
<td>201</td>
</tr>
<tr>
<td>11.2.3 Nitrogen Losses via Runoff and Strategies for Reducing the Risk</td>
<td>203</td>
</tr>
<tr>
<td>11.3 Leaching and Runoff of Manure Phosphorus</td>
<td>203</td>
</tr>
<tr>
<td>11.3.1 Leaching of Manure Phosphorus</td>
<td>204</td>
</tr>
<tr>
<td>11.3.2 Phosphorus Losses via Runoff and Strategies for Reducing the Risk</td>
<td>206</td>
</tr>
<tr>
<td>11.4 Leaching and Runoff of Potassium</td>
<td>207</td>
</tr>
<tr>
<td>11.5 Summary</td>
<td>207</td>
</tr>
<tr>
<td>References</td>
<td>208</td>
</tr>
<tr>
<td>12 Technologies and Logistics for Handling, Transport and Distribution of Animal Manures</td>
<td>211</td>
</tr>
<tr>
<td>Claus A.G. Sørensen, Sven G. Sommer, Dionysis Bochtis and Alan Rotz</td>
<td></td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>211</td>
</tr>
<tr>
<td>12.2 Overview of Manure Systems</td>
<td>213</td>
</tr>
<tr>
<td>12.3 Animal Manure Characteristics</td>
<td>213</td>
</tr>
<tr>
<td>12.4 Removal from Animal Houses</td>
<td>214</td>
</tr>
<tr>
<td>12.4.1 Solid Manure</td>
<td>214</td>
</tr>
<tr>
<td>12.4.2 Liquid Manure and Slurry</td>
<td>217</td>
</tr>
<tr>
<td>12.5 Manure Storage</td>
<td>217</td>
</tr>
<tr>
<td>12.5.1 Solid Manure Stores</td>
<td>217</td>
</tr>
<tr>
<td>12.5.2 Liquid Manure Stores</td>
<td>218</td>
</tr>
<tr>
<td>12.5.3 Stirring – Homogenising Liquid Manure</td>
<td>219</td>
</tr>
<tr>
<td>12.6 Transport of Manure</td>
<td>219</td>
</tr>
<tr>
<td>12.6.1 Liquid Manure Transport by Gravity</td>
<td>219</td>
</tr>
<tr>
<td>12.6.2 Transport of Slurry by Pumping</td>
<td>219</td>
</tr>
<tr>
<td>12.6.3 Tanker Transport</td>
<td>220</td>
</tr>
<tr>
<td>12.7 Application of Manure in the Field</td>
<td>220</td>
</tr>
<tr>
<td>12.7.1 Solid Manure Application</td>
<td>220</td>
</tr>
<tr>
<td>12.7.2 Liquid Manure Application</td>
<td>220</td>
</tr>
<tr>
<td>12.8 Manure Operations Management</td>
<td>222</td>
</tr>
<tr>
<td>12.8.1 Emptying the Animal House</td>
<td>222</td>
</tr>
<tr>
<td>12.8.2 Transport of Manure</td>
<td>224</td>
</tr>
<tr>
<td>12.8.3 Application in the Field</td>
<td>228</td>
</tr>
<tr>
<td>12.9 Farm Scenarios</td>
<td>232</td>
</tr>
<tr>
<td>12.10 Summary</td>
<td>234</td>
</tr>
<tr>
<td>References</td>
<td>234</td>
</tr>
</tbody>
</table>

x Contents

13 Bioenergy Production 237
Sven G. Sommer, Alastair J. Ward and James J. Leahy

13.1 Introduction 237
13.2 Biomass and Energy 240
13.2.1 Operation of Combustion Plant 247
13.2.2 Pre-Treatment of Biomass 250
13.2.3 Energy Production Using Straw Residues 251
13.2.4 Residues from Incineration 252
13.3 Biogas Production 252
13.3.1 Biogas Process 253
13.3.2 Inhibition of the Biogas Production Process 256
13.3.3 Gas Production Rates 260
13.3.4 Biogas Digester Design 261
13.3.5 Sizing Digesters 264
13.3.6 Water Removal 266
13.3.7 Dihydrogen Sulfide Removal 266
13.3.8 Carbon Dioxide Removal and Upgrading Biogas for the Natural Gas Network and Transport Fuels 266
13.4 Summary 267
References 267

14 Animal Manure Residue Upgrading and Nutrient Recovery in Biofertilisers 271
Lars S. Jensen

14.1 Introduction 271
14.2 Manure Upgrading Options 272
14.3 Composting of Manures 276
14.3.1 Basic Composting Concepts 276
14.3.2 Control of the Composting Process 279
14.3.3 Biofertiliser Value of Manure-Based Composts in Agriculture 281
14.3.4 Use of Compost Products in the Non-Agricultural Sector 282
14.4 Drying and Pelletising Solid Manures 283
14.5 Manure Combustion and Gasification Ash 284
14.5.1 Ash Extraction and Conversion 285
14.6 Biochar from Pyrolysis or Carbonisation of Solid Manures 287
14.7 Precipitates and Mineral Concentrates from Liquid Manures 288
14.7.1 Struvite 288
14.7.2 Mineral Concentrates 288
14.8 Summary 290
References 291

15 Animal Manure Fertiliser Value, Crop Utilisation and Soil Quality Impacts 295
Lars S. Jensen

15.1 Introduction 295
15.2 Fertilisation and Crop Nutrient Use Efficiency 296
15.2.1 Source of Nitrogen Supply to Crops 297
15.2.2 Crop Yield Response to Fertiliser Nitrogen and the Economic Optimum 298
15.2.3 Crop Nitrogen Uptake Efficiency 299

15.3 Use of Animal Manures as Organic Fertilisers 302
15.3.1 Manure Chemical Properties and Effects on Soil Fertility 302
15.3.2 Manure Effects on Soil Biological Activity and Nutrient Turnover 304
15.3.3 Manure Effects on Soil Physical Properties 308

15.4 Manure Fertiliser Value as Affected by Application Method, Manure Type and Treatment 308
15.4.1 MFE Value 309
15.4.2 Manure Application Methods 311
15.4.3 First-Year N-MFE Value for Various Manure Types 314
15.4.4 Long-Term Manure Nitrogen Turnover and Residual MFE Value 320
15.4.5 Strategies for Combined Manure and Mineral Fertiliser Use 323

15.5 Summary 324

References 325

16 Life Cycle Assessment of Manure Management Systems 329
Sander Bruun, Marieke T. Hoeve and Morten Birkved

16.1 Introduction 329

16.2 Introduction to the Life Cycle Assessment Methodology 330

16.3 Four Phases of a Life Cycle Assessment 330

16.4 Goal and Scope 330
16.4.1 System Boundaries 331
16.4.2 Allocation Problems 331
16.4.3 Consequential versus Attributional Life Cycle Assessments 333

16.5 Inventory Analysis 334

16.6 Impact Assessment 336
16.6.1 Impact Category Definition, Classification and Characterisation 336
16.6.2 Normalisation 337
16.6.3 Weighting 338

16.7 Interpretation 340

16.8 Summary 340

References 341

17 Innovation in Animal Manure Management and Recycling 343
Thomas Schmidt

17.1 Introduction – Why is Innovation Important? 343
17.2 Innovation Typology 345

17.3 Identifying New Innovations 347
17.4 Assessing the Potential of New Innovations 350
17.5 Commercialisation of New Innovations 352

17.6 Summary 355

References 355

Index 357