Index

Accelerating rate calorimeter, 362–63
Activation enthalpy, protein heat-induced transformations with, 129
Adiabatic measurement methods accelerating rate calorimeter, 362–63
Dewar vessels, 361–62
food-processing safety with, 361–63
Adiabatic temperature rise, 353
ADSC. See Alternating DSC
Aggregation
DSC technique with vessel/heating mode with, 28t
globular proteins in bulk phase system, 124–29, 126f–128f
heat effects of, 88
heating mode with, 36–37, 37f
protein postdenaturation, 110–12
Alcohols, protein denaturation affected by, 99–100, 101f
11S globulin, 99–100, 101f
Setschenow equation for, 100
Alfalfa, 93
Alginate, denaturation temperature of β-lactoglobulin with, 110
Alternating DSC (ADSC), food-processing design with, 204
AMF. See Anhydrous milk fat
Ampoule mixing vessel, mixing and reaction heat flux microcalorimeter with, 30, 31t
Anhydrous milk fat (AMF)
Avrami plots from, 139f
calorimetric parameters observed with, 136t
heat-induced transformations with, 133–41, 135f, 136t, 137f, 139f, 139t, 140f, 184–87, 186f, 187f
heating/cooling curves, 135f
isothermal curves, 137f
protein-stabilized, 135f
surfactant added, 135f, 136t, 137f
Antibiotics, 153–55, 153f, 155f
Apple, heat capacity for, 36t
Arabic gum, denaturation temperature of 11S globulin with, 106t
Autocatalysis, 356
Autoclave, 54, 54f, 55f, 57
Avrami equation, oil-in-water emulsions with, 138–39, 139f, 139t
Bacillus megaterium, DSC analysis of, 149

Bacteria

Bacillus megaterium DSC analysis of, 149
calorimetry with growth of, 43
Citrobacter freundii DSC analysis of, 149
Clostridium perfringens DSC analysis of, 149–53, 151f
results for, 150–52, 151f
sample preparations for, 149–50
DSC analysis of foodborne, 147–64, 151f, 153f, 155f, 157f, 160f, 162t
antibiotics’ effect on, 153–55, 153f, 155f
cold shocking, 148
heat shocking, 148, 151
DSC technique v. vessel/heating mode with, 28t
endothermic/exothermic effects of, 19t
Escherichia coli DSC analysis of, 148, 155–58, 157f
erythromycin treatment of, 154–55, 155f
heat inactivation parameters of, 159–60, 160f
nonthermal treatment of, 162–63, 162t
food-processing’s effect on, 10–11
food-processing treatment evaluation by DSC for, 158–64, 160f, 162f
antimicrobials in, 163–64
heat inactivation parameters of bacteria in, 158–61, 160f, 162f
HHP in, 161
nonthermal treatment of bacteria in, 161–63, 162f
hydrostatic pressure resistance of, 44–45, 44f
inactivation of, 10
Lactobacillus plantarum DSC analysis of, 155–58, 157f
Listeria monocytogenes DSC analysis of, 149–53, 151f
antibiotics’ effect on, 153–54, 153f, 155f
heat inactivation parameters of, 159
results for, 152–53, 152f
sample preparations for, 149–50
Mycoplasma laidlawii DSC analysis of, 149
Staphylococcus aureus
nonthermal treatment, 162–63, 162t
Batch high-pressure vessel, mixing and reaction heat flux microcalorimeter with, 29, 31t
Batch mixing vessel, high sensitivity heat flux calorimeter with, 27, 28t
Batch standard vessel, mixing and reaction heat flux microcalorimeter with, 29, 31t
Benzene, transiometry verification test using, 322, 323f

Binding
data quantifies high-affinity, 75–77
mixing and reaction calorimetry with, 41–42
processes, protein in dilute solution with, 78, 79, 80f
Blank test heat flow equation, 32
Bovine β-lactoglobulin, 94–95
Bovine serum albumin (BSA), protein denaturation affected by, 104
Broad beans, 11S globulin from, 99–100, 101f, 105
BSA. See Bovine serum albumin
Bulk phase system, denaturation-aggregation of globular proteins in, 124–29, 126f–128f
Butter, heat capacity for, 36t
Butyric acid, melting point of, 171f
Cabbage, heat capacity for, 36t
Calibration, 23–25, 24f, 25f
Calvet type calorimeter, 23, 206
Calorimeter accelerating rate, 362–63
symmetrical, two-chamber, 17–18
Calorimetry. See also Calvet type calorimetry; Differential scanning calorimetry; Heat flux calorimeters; Heat flux microcalorimetry; High pressure calorimetry; High pressure differential scanning calorimetry; High-sensitivity calorimetry; High sensitivity heat flux calorimeter; Isothermal calorimetry; Isothermal solution calorimetry; Isothermal titration calorimetry; Microcalorimetry; Mixing and reaction calorimetry; Mixing and reaction heat flux microcalorimeter; Pressure calorimetry
advantages for using, 7
applications of, 15–45
under controlled relative humidity, 45
food dehydration understood with, 289–309
calorimetric glass transition measurement for, 293–96, 294f, 296f
dielectric and mechanical relaxations with, 296f, 297–98
freeze-drying for, 290, 306–7
freezing in, 301–3, 302f, 303f
glass transition and stability of, 307–8, 308f
phase and state transitions of, 290, 292–93, 293f
Calorimetry (continued)
spray-drying for, 290, 305–6, 306f
state diagrams with, 303–7, 304f
thermal analysis in, 298–301, 299f, 300f
food industry interest in, 226
food-processing design in, 202–6
alternating DSC, 204
Calvet type calorimetry, 203, 206
differential scanning calorimetry, 202–6
differential thermal analysis, 203
dynamical mechanical analysis, 225
dynamical mechanical thermal analysis, 225
methods, 205–6
modulated DSC, 204
samples, 206
techniques, 203–5, 204f
food-processing safety evaluated with, 351–66, 354f, 355f, 357f–359f
adiabatic measurement methods for, 361–63
applications for, 364–66
concepts for, 352–56, 354f, 355f
critical conditions in, 354–56, 355f
critical heat release rate in, 354–55
critical temperature, 355–56, 355f
estimation of q’(T) in, 357–60, 359f
formation of hot spots in dryers, 364
high-sensitivity calorimetry in, 361
isoconversional methods in, 360–61
open v. closed measurement methods in, 357, 357f, 358f
prevention of molasses incidents, 365
reactions with oxygen in, 363–64
screening in, 356–57
storage and hot discharge, 364–65
transport safety, 365–66
isothermal, 38
isothermal performance of, 19
isothermal solution, 220
methods with food using, 5–13
parameters of, 8
interpretation of overlapping peaks, 8
magnitude of heat flow, 8
moisture loss, 8
time scale, 8
pressure, 43–45, 44f
scanning mode, 35–36, 44
solution, 218
step heating in, 40, 40f
suitability for food of, 52
ultrasensitive to proteins, 8
Calvet principle, 22–23, 22f, 23f, 26
Calvet type calorimetry, 22–23, 22f, 23f, 203
calibration of, 23, 206
food-processing design with, 203, 206
Capric acid, melting point of, 171f
Caproic acid, melting point of, 171f, 172f
Caprylic acid, melting point of, 171f
Carbohydrates
C80 technique v. vessel/heating mode with, 31t
Cereal with, 12
endothermic/exothermic effects of, 19t
gelatinization of starch-water systems, 207
glass transition with, 294
hydrophilic component of, 291
thermal analysis of cereal
nonstarch, 276–78, 277f
thermal behavior of food constituents in, 206–8, 207f, 208f
Carboxymethylcellulose, denaturation temperature of 11S globulin with, 106t
Carp, heat capacity for, 36t
κ-Carrageenan
denaturation temperature of 11S globulin with, 106t
denaturation temperature of β-lactoglobulin with, 110
λ-Carrageenan
denaturation temperature of 11S globulin with, 106t
denaturation temperature of β-lactoglobulin with, 110
Carrots, isothermal traces at temperatures for, 39f
Caseins, 122–23
CB. See Cocoa butter
Cellulobiose, calorimetric curves of, 208f
Centre National de la Recherche Scientifique (CNRS), 176
Cereal, 12
C80 technique v. vessel/heating mode with, 31t
Cereal processing, thermal analysis to design/monitor, 265–85
nonstarch carbohydrates, 276–78, 277f
process applications, 278–85, 280f–284f
proteins, 272–76, 274f, 275f
starch, 268–72, 289f–272f
Chaotropic salts (Salting-in salts), 95
Chocolate
C80 technique v. vessel/heating mode with, 31t
DSC technique v. vessel/heating mode with, 28t
Citrobacter freundii, DSC analysis of, 149
Closed measurement method, 357, 357f, 358f
Clostridium perfringens
DSC analysis of, 149–53, 151f
results for, 150–52, 151f
sample preparations for, 149–50
CNRS. See Centre National de la Recherche Scientifique
Cocoa butter (CB)
DSC and XRD with, 179–84, 180f, 183f
MICROCALIX for, 182–84, 183f
polymorphism, 181–82f
polymorphism of 1,2-dipalmitoyl-3-oleoylglycerol, 182–84, 183f
Coffee, C80 technique v. vessel/heating mode with, 31t
Cold denaturation, protein in dilute solution with, 75
Cold shocking, 148
Complete reaction, test for, 255
Cream, heat capacity for, 36t
Critical conditions, food-processing safety with, 354–56, 355f
heat release rate, 354–55
temperature, 355–56, 355f
Crystallization
 DSC technique v. vessel/heating mode with, 28t
 heating mode with, 36
 isothermal, 39
 lard, 190, 191f, 191t
 lipids, 210–11
 milk fat, 189–90
 oil-in-water emulsions, 132–36, 135f, 136t
 water in pork muscle with, 327f
CSC, 21

Dairy, heat capacity for, 36t
Debye-Höckel approximation, 98, 99t
Dehydration. See Food dehydration
Denaturation
 cold, protein in dilute solution with, 75
defined, 122
 DSC technique v. vessel/heating mode with, 28t
 globular proteins in bulk phase system, 124–29, 126f–128f
11S globulin, 89–92, 91f
 alcohol’s effect on, 99–100, 101f
different pH values in, 91f, 92
 polysaccharides’ effect on, 105–6, 106t, 110
 salt’s effect on, 96–98, 97f, 99t
two-state model to analyze, 89
 heat effects of, 88
 heating mode with, 36–37, 37f
 Kunitz inhibitor, polysaccharides’ effect on, 107–10, 108f
 β-lactoglobulin, 125
methodological approaches to study, 89
 of protein, 87–113, 91f, 97f, 99t, 101f, 103f, 106t, 108f
 effects of alcohols on, 99–100, 101f
effects of odorants on, 102–4, 103f
effects of pH on, 89–95, 91f
effects of polysaccharides on, 104–10, 106t, 108f
effects of salts on, 95–99, 97f, 99t
 reversibility of, 123
two-state model of, 123
Dewar vessels, 361–62
Dextran, denaturation temperature of 11S globulin with, 106t, 108f
Dextran sulfate, 106t, 108f
Differential scanning calorimetry (DSC), 6–7, 9, 16, 265
 Bacillus megaterium analysis by, 149
calibration of, 23–25, 24f, 25f
Calvet principle with, 22–23, 22f, 23f, 26
Calvet type of, 22–23, 22f, 23f, 203, 206
calibration of, 23, 206
efficiency ratio of, 23f
schematic of, 22f
Citrobacter freundii analysis by, 149
Clostridium perfringens analysis by, 149–53, 151f
 results for, 150–52, 151f
sample preparations for, 149–50
cold denaturation with, 75
data quantifies high-affinity binding with, 75–77
assumptions of, 75
concentration in, 77
equilibrium in, 76–77
Index

hydrogen ion buffer selection in, 77
purity in, 77
two-state, reversible transitions in, 76–77
efficiency ratio of flat-shaped, 21f
Escherichia coli analysis by, 148, 155–58, 157f
erthyromycin treatment of, 154–55, 155f
heat inactivation parameters of, 159–60, 160f
nonthermal treatment of, 162–63, 162t
foodborne bacteria analysis by, 147–64, 151f, 153f, 155f, 157f, 160f, 162t
antibiotics’ effect on, 153–55, 153f, 155f
cold shocking, 148
heat shocking, 148, 151
food-processing design in, 202–6
methods, 205–6
samples, 206
techniques, 203–5, 204f
with XRD, 225
food-processing safety with, 355f, 356–61, 357f–359f
estimation of q’(T) for, 357–60, 359f
high-sensitivity calorimetry for, 361
isoconversional methods for, 360–61
open v. closed measurement methods for, 357, 357f, 358f
screening for, 356–57
food-processing treatment evaluation by, 158–64, 160f, 162f
antimicrobials in, 163–64
heat inactivation parameters of bacteria in, 158–61, 160f, 162f
HHP in, 161
nonthermal treatment of bacteria in, 161–63, 162f
glass transition with, 294f
heat flux type of, 20–21, 26–30, 27f, 28t
heating’s role in, 88
high pressure, 51–64, 54f–56f, 60f, 62f
applications of, 63
calibration of, 57–63, 60f, 62f
construction of, 53–57, 54f–56f
Lactobacillus plantarum analysis by, 155–58, 157f
Listeria monocytogenes analysis by, 149–53, 151f
antibiotics’ effect on, 153–54, 153f
heat inactivation parameters of, 159
results for, 152–53, 152f
sample preparations for, 149–50
microcalorimetry v., 16, 19–25, 20f–25f
heat flux microcalorimetry, 19–25, 20f–25f
Mycoplasma laidlawii analysis by, 149
power compensated type of, 20–22
protein in dilute solution with, 68–77, 71f
equations, 70–74, 71f
heat capacity change origins for, 74
information content, 68–69
instrumentation, 69–70
Differential scanning calorimetry (DSC) (continued)
simulated DSC thermogram of, 70, 71f
van’t Hoff enthalpy change, 72–74
schematic of plate-shaped sensor for, 20f
schematic representation of, 299f
sensor plate thickness in efficiency of, 21f
Staphylococcus aureus
nonthermal treatment with, 162–63, 162t
starch analysis with, 268–72, 289f–272f
starch gelatinization by heat monitored with, 342, 343f
two types of, 20
X-ray diffraction with, 169–94, 171t, 172t, 173f, 177f, 180f, 183f, 186f, 187f, 189f, 191f, 192f
applications for, 179–93, 180f, 183f, 186f, 187f, 189f, 191f, 192f
cocoa butter in, 179–84, 180f, 183f
lard in, 190–93, 191f, 192f
MICROCALIX using, 170, 176–79, 177f, 180f, 183f, 186f, 187f, 189f, 191f, 192f
milk fat in, 184–90, 186f, 187f, 189f
results using, 179–93, 180f, 183f, 186f, 187f, 189f, 191f, 192f
triacylglycerols in, 169–76, 171t, 172t, 173f
Differential thermal analysis (DTA), 53, 173
food-processing design with, 203
Dilute solution, calorimetry of protein in, 67–84, 71f, 80f, 83f
Dilute systems, 10
Dissolution, mixing and reaction calorimetry with, 41
DMA. See Dynamical mechanical analysis
DMTA. See Dynamical mechanical thermal analysis
Drying
freeze-, 290, 306–7
hot spots with, 13
spray-, 290, 305–6, 306f
DSC. See Differential scanning calorimetry
DTA. See Differential thermal analysis
Dynamical mechanical analysis (DMA)
food dehydration with, 296f, 297–98
food-processing design in, 225
glass transition detected with, 296f, 297
thermal analysis with, 266
Dynamical mechanical thermal analysis (DMTA)
food dehydration with, 296f, 297–98
food-processing design in, 225
glass transition detected with, 296f, 297
thermal analysis with, 266
Eggs, isothermal traces at temperatures for, 39f
Electromotive force (Emf), 23, 25
Electron spin resonance (ESR), 301
Emulsions
lipids, 214
oil-in-water, 132–41, 135f, 136t, 137f, 139f, 139t, 140f
anhydrous milk fat, 133–41, 135f, 136t, 137f, 139f, 139t, 140f, 184–87, 186f, 187f
Avrami equation for, 138–39, 139f, 139t
crystallization in, 132–36, 135f, 136t
fat crystal growth in, 138
Gompertz model for, 139–40, 139t, 140f
melting of fat droplets in, 132–36, 135f, 136t
triacylglycerols, 133
whipped cream, 133
protein’s role in, 10

Enthalpy, 265
activation, 129
estimate of apparent denaturation, 112
reaction, 255
van’t Hoff enthalpy change, 72–74

Entropy, protein heat-induced transformations with, 129

Enzymatic reactions, mixing and reaction calorimetry with, 42, 42f, 43f

Enzyme
C80 technique v. vessel/heating mode with, 31t
DSC technique v. vessel/heating mode with, 28t
endothermic/exothermic effects of, 19t

Erythromycin, *Escherichia coli* treatment with, 154–55, 155f

Escherichia coli DSC analysis of, 148, 155–58, 157f
erthyromycin treatment of, 154–55, 155f
heat inactivation parameters of, 159–60, 160f
hydrostatic pressure resistance of, 44–45
nonthermal treatment of, 162–63, 162t

ESR. See Electron spin resonance

Exothermic decomposition, 13

Fat. See also Lipids
C80 technique v. vessel/heating mode with, 31t
DSC technique v. vessel/heating mode with, 28t
endothermic/exothermic effects of, 19t
oxidative stability of, 211–12
Fatty acids, 170–73, 171t, 172t, 173f
crystallographic/energetic properties of, 172f
hexagonal, 172, 172f, 173f
melting point of, 171f, 172f
orthorhombic perpendicular, 172, 172f, 173f
triclinic parallel, 172, 172f, 173f

Fermentation, mixing and reaction calorimetry with, 43

Fish, heat capacity for, 36t

Fluid mixing vessel, high sensitivity heat flux calorimeter with, 27, 28t

Foams, protein’s role in, 10

Food dehydration, 289–309 calorimetric glass transition measurement for, 293–96, 294f, 296f
Food dehydration (continued)
dielectric and mechanical relaxations with, 296f, 297–98
freezing in, 301–3, 302f, 303f
glass transition and stability of, 307–8, 308f
phase and state transitions of, 290, 292–93, 293f
state diagrams with, 303–7, 304f
freeze-drying, 290, 306–7
spray-drying, 290, 305–6, 306f
thermal analysis in, 298–301, 299f, 300f
Food flavorings, 89
odorants with, 102
Food-processing design, 201–27
food industry interest in calorimetry for, 226
related techniques for, 225
DMA, 225
DMTA, 225
DSC combined with XRD, 225
safety aspects for, 217–18
thermal analysis/calorimetry on, 203–6, 204f
methods, 205–6
samples, 206
techniques, 203–5, 204f
thermal behavior of food constituents in, 206–17, 207f, 208f, 210f, 213f, 215f, 216f
carbohydrates, 206–8, 207f, 208f
lipids, 208–14, 210f, 213f
proteins, 214–16, 215f, 216f
sugars, 206–8, 207f, 208f
water, 216–17
thermal behavior of raw/reconstituted food in, 217
thermodynamic parameters for, 218–25, 221f–223f
heat of combustion, 225
heat of solution, 218–24, 221f–223f
specific heat, 224–25
Food-processing safety
adiabatic measurement methods with, 361–63
accelerating rate calorimeter, 362–63
Dewar vessels, 361–62
applications for, 364–66
formation of hot spots in dryers, 364
prevention of molasses incidents, 365
storage and hot discharge, 364–65
transport safety, 365–66
calorimetry for, 351–66, 354f, 355f, 357f–359f
concepts with, 352–56, 354f, 355f
adiabatic temperature rise, 353
autocatalysis, 356
probability, 353–54, 354f
severity, 353
time to maximum rate, 353–54, 354f
critical conditions with, 354–56, 355f
heat release rate, 354–55
temperature, 355–56, 355f
differential scanning calorimetry for, 355f, 356–61, 357f–359f
estimation of q’(T) with, 357–60, 359f
high-sensitivity calorimetry with, 361
isoconversional methods with, 360–61
open v. closed measurement methods with, 357, 357f, 358f
screening with, 356–57
reactions with oxygen in, 363–64
determination of self-ignition temperature for, 364
screening test for, 363
Formal autocatalysis, 356
Fourier transform infrared spectroscopy, 11
Free protein, denaturation temperature of 11S globulin with, 106t
Freeze-drying, 290, 306–7
Fruit, heat capacity for, 36t
Galactose, calorimetric curves of, 208f
Gas-flow vessel, mixing and reaction heat flux microcalorimeter with, 29, 31t
Gelatin, endothermic/exothermic effects of, 19t
Gelatin gels, frozen water ratio in, 326–29, 328f
Gelatinization
DSC technique v. vessel/heating mode with, 28t
heating mode with, 38
starch, 12, 274, 278–79, 280f
calorimetric analysis by HPP of, 341–49, 343f, 346f
heat in, 342, 343f
high pressure calorimetry on, 330–36, 332f–334f, 335t
storage of, 347–48
thermodynamic data for, 335t
wheat, 344–47, 346f
starch-water systems, 207
Gelatin molecules, 122
Gelation, heating mode with, 37–38
Gibbs function, 267
Glass transition, 290–92
behavior of lactose with, 300f
calorimetric measurement for, 293–96, 294f, 296f
cooling/heating with, 295
DSC technique v. vessel/heating mode with, 28t
DSC with, 294f
Gordon-Taylor equation with, 300
mechanical/dielectric relaxations in, 296f, 297
stability of dehydrated materials with, 307–8, 308f
studies referring to, 291
sugar/carbohydrates with, 294
two or more components with, 295
Globulin, 7S, different pH values in denaturation of, 93
Globulin, 11S
alcohols effect on protein denaturation using, 99–100, 101f
broad beans, 99–100, 101f, 105
denaturation of, 89–92, 91f
different pH values in, 91f, 92
two-state model to analyze, 89
polysaccharides effect on protein denaturation using, 105–6, 106t, 110
β-glucosidase, ITC of binding inhibitors to, 80f
Gompertz model, oil-in-water emulsions with, 139–40, 139t, 140f
Gordon-Taylor equation, 300, 304
Grapefruit, heat capacity for, 36t
Guar gum, denaturation temperature of β-lactoglobulin with, 110
Heat calibration procedure, HP-DSC, 60f, 61–63, 62f
Heat capacity
 constant pressure processes with, 30
 defined as ratio, 30
 determination, 30–35, 33f, 34f, 36t
 foods in, 35, 36t
 liquids in, 34–35, 34f
 temperature-scanning mode in, 31–33, 33f
 temperature step mode in, 33–34
DSC with, 6
 formula for heat flux with, 17
Heat flow
 blank test heat flow equation, 32
 magnitude of, 8
Heat flux
 electrical signal’s correlation with, 24
 pork muscle crystallization with, 327f
 pork muscle thawing with, 326f
 power dissipation’s correlation with, 24
 pressure shift freezing with, 330f
 ratio of measured to total, 20–21, 21f
Heat flux calorimeters, 20–21, 26–30, 27f, 28t
 high sensitivity, 26–27, 27f, 28t
 batch mixing vessel for, 27, 28t
 fluid mixing vessel for, 27, 28t
 mixing vessels for, 27, 27f
 temperature control in, 26
 thermal conductive block of, 26
 mixing and reaction, 29–30, 31t
 ampoule mixing vessel for, 30, 31t
 batch high-pressure vessel for, 29, 31t
 batch standard vessel for, 29, 31t
 gas-flow vessel for, 29, 31t
 membrane mixing vessel for, 29–30, 31t
 mixing vessel for, 29, 31t
Heat flux calorimetric principle, 17–19, 18f, 19t
 parts of, 17
 temperature equivalent formula for, 17
 thermal contribution due to heat capacity formula for, 17
Heat flux microcalorimetry, DSC v., 19–25, 20f–25f
 calibration in, 23–25, 24f, 25f
 Calvet principle in, 22–23, 22f, 23f, 26
Heat-induced transformations
 oil-in-water emulsions with, 132–41, 135f, 136t, 137f, 139f, 139t, 140f
 anhydrous milk fat, 133–41, 135f, 136t, 137f, 139f, 139t, 140f, 184–87, 186f, 187f
 Avrami equation for, 138–39, 139f, 139t
 crystallization in, 132–36, 135f, 136t
 fat crystal growth in, 138
 Gompertz model for, 139–40, 139t, 140f
 ice cream, 133
 kinetics of, 136–41, 137f, 139f, 139t, 140f
 melting of fat droplets in, 132–36, 135f, 136t
triacylglycerols, 133
whipped cream, 133
peak temperatures and heat of reaction in, 128f
protein solutions with, 119–32, 126f–128f, 130f, 131t, 132f, 141
activation enthalpy of, 129
denaturation-aggregation of globular proteins in, 124–29, 126f–128f
entropy of, 129
kinetics of, 129–32, 130f, 131t, 132f
Lumry-Eyring model for, 129, 130f, 131t
protein structures in, 121–23
thermodynamics of, 123–24, 129–32, 130f, 131t, 132f
whey protein isolate in, 125, 126f, 128f, 132f
Heating mode, 35–40, 37f, 39f, 40f
aggregation, 36–37, 37f
crystallization, 36
denaturation, 36–37, 37f
gelatinization, 38
gelation, 37–38
isothermal calorimetry, 38
isothermal crystallization, 39
oxidative stability, 38
retrogradation, 28t, 38
scanning calorimetry, 35–36
shelf life, 38, 39f
step heating in calorimetry, 40, 40f
Heat of combustion, parameters for food-processing design of, 225
Heat of solution, parameters for food-processing design of, 218–24, 221f–223f
Heat release rate, critical, 354–55
Heat shocking, 148, 151
HHP. See High hydrostatic pressure processing
High hydrostatic pressure processing (HHP), 9
food-processing treatment DSC evaluation with, 161
starch gelatinization by, 341–49, 343f, 346f
starch gelatinization with, 12
wheat starch suspensions by, 344–47, 346f
results with, 345–47, 346f
sample preparation for, 345
High pressure calorimetry, 311–38, 313f–315f
applications of, 324–37
frozen water ratio in gelatin gels, 326–29, 328f
gelatinization of starch, 330–36, 332f–334f, 335t
phase stability of lipid containing systems, 336–37, 337f
pressure shift freezing, 329–30, 329f–331f
water in pork muscle, 324–26, 326f, 327f
calibration of, 314
calorimetric signal processing in, 313f
calorimetric vessels in, 313f
differential calorimetric detector in, 313f
experimental setup of, 314f
experimental vessel for, 315f
high-pressure pump in, 313f
hydraulic fluid reservoir in, 313f
pressure detector in, 313f
pressure-transmitting fluid with, 316
schematic diagram of, 313f
High pressure differential scanning calorimetry (HP-DSC), 51–64, 54f–56f, 60f, 62f
advantages of, 63–64
applications of, 63
autoclave of, 54, 54f, 55f, 57
availability of, 63
calibration of, 57–63, 60f, 62f
heat calibration procedure for, 60f, 61–63, 62f
necessity for, 57
parameters for, 58
reference substances for, 58
table of corrections for, 58
temperature calibration procedure for, 58–61
uncertainty with, 58
ceramic housing of, 54, 55f
construction of, 53–57, 54f–56f
danger with, 54
differential thermal analysis with, 53
disadvantages of, 64
fluid medium as limit to, 52
furnace of, 54, 56, 56f
operating temperature range of, 56
power compensation principle with, 53
setup of, 54f
spindle pump of, 54, 54f
High-sensitivity calorimetry,
food-processing safety with, 361
High sensitivity heat flux calorimeter, 26–27, 27f, 28t
batch mixing vessel for, 27, 28t
fluid mixing vessel for, 27, 28t
mixing vessels for, 27, 27f
temperature control in, 26
thermal conductive block of, 26
Hot spots dryers with, 364
drying and, 13
HP-DSC. See High pressure differential scanning calorimetry
Hydrocolloid
C80 technique v. vessel/heating mode with, 31t
DSC technique v. vessel/heating mode with, 28t
endothermic/exothermic effects of, 19t
IC. See Isothermal calorimetry
Ice cream
heat capacity for, 36t
heat-induced transformations with, 133
ICTAC. See International Confederation for Thermal Analysis and Calorimetry
Indium, HP-DSC calibration using, 58, 60, 61
Initial calorimetric signal θ₀, calculation of, 252
International Confederation for Thermal Analysis and Calorimetry (ICTAC), 20
Interpolyelectrolyte complex formation, 107
Isoconversional methods, food-processing safety with, 360–61
Isothermal calorimetry (IC), 265
heating mode with, 38
shelf life analysis with, 237–61
calculation for rate constant, 254–55
calculation for reaction enthalpy, 255
calculation for reaction half-life, 254
calculation for reaction order, 252–53
calculation for total heat released, 253–54
calculation of initial calorimetric signal θ_0, 252
calculation of Q_T, 256–60, 260f
determination of K, 255–56
empirical model fitting for, 246–49, 246f, 249f, 250f
qualitative studies on, 239–45, 241f
quantitative studies on, 245
reaction kinetics based model of, 249–51
reactions that proceed to completion for, 252–55
reactions that proceed to equilibrium for, 255–60, 260f
test for complete reaction, 255
Isothermal crystallization, heating mode with, 39
Isothermal solution calorimetry, 220
Isothermal titration calorimetry (ITC), 9–10
dependence of model with, 82
heat of interaction measured with, 84
protein in dilute solution with, 68, 77–84, 80f, 83f
binding processes in, 78, 79, 80f
data analysis for, 79–82
information content, 77–78
instrumentation, 78–79, 80f
power compensation design in, 78
range of applicability with, 82–83, 83f
shape of titration curve with, 82–83, 83f
ITC. See Isothermal titration calorimetry
Joule effect, 23–24, 24f, 25f, 32
K, determination of, 255–56
KCl, salt-protein interaction with, 98, 99t
KI. See Kunitz inhibitor
Kirchhoff’s law, 93, 96, 100
Kosmotropic salts (Salting-out salts), 95
Kunitz inhibitor (KI), 94
interpolyelectrolyte complex formation’s effects on, 107
polysaccharides’ effect on protein denaturation with, 107–10, 108f
dextran sulfate with, 108f
soybean seeds with, 107
$Lactobacillus plantarum$, DSC analysis of, 155–58, 157f
β-lactoglobulin
κ-carrageenan with, 110
λ-carrageenan with, 110
denaturation of, 125
milk protein with, 94–95
porcine, 95
salt’s effect on protein denaturation using, 96–98, 97f, 99t
Lactose
glass transition behavior of, 300f
state diagrams of, 304f
Lard
crystallization in, 190, 191f, 191t
DSC and XRD with, 190–93, 191f, 192f
DSC curves of, 191f
SAXS of, 191t, 192f
WAXS of, 191t, 192f
Lauric acid
 melting point of, 171f
 MICROCALIX calibration with, 177
Lead, HP-DSC calibration using, 58
Linoleic acid, melting point of, 171f
Linolenic acid, melting point of, 171f, 172f
Lipids, 169. See also
 Triacylglycerols
 antioxidant efficacy of, 212
 crystallization kinetics of, 210–11
 emulsifier-water systems with, 212–14
 emulsions, 214
 melting profile of, 209
 oxidative stability of, 211–12
 polymorphism of, 209–10, 210f
 quality control for, 211
 thermal behavior of food constituents in, 208–14,
 210f, 213f
Liquids, heat capacity determination for, 34–35, 34f
Listeria monocytogenes
 antibiotics’ effect on, 153–54, 153f
 DSC analysis of, 149–53, 151f
 heat inactivation parameters of, 159
 results for, 152–53, 152f
 sample preparations for, 149–50
Lumry-Eyring model, 104
 protein heat-induced transformations with, 129,
 130f, 131t
Lyophilization, DSC technique v.
 vessel/heating mode with, 28t
Maltodextrin (MD), moisture content of, 222–24, 223f
MASC. See Modulated adiabatic
 scanning calorimetry
MD. See Maltodextrin
MDSC. See Modulated DSC
Meat, heat capacity for, 36t
Membrane mixing vessel, mixing and reaction heat flux
 microcalorimeter with, 29–30, 31t
Methyl cellulose, denaturation temperature of 11S globulin with, 106t
MicroCal, 21
MICROCALIX, 170, 176–79, 177f,
 180f, 186f, 187f, 189f, 191f,
 192f
cocoa butter in, 182–84, 183f
 experimental setup of, 179
 experiments using, 179
 laboratory with conventional x-ray source and, 177–78
 lauric acid for calibration of, 177
 synchrotron radiation XRD bench with, 178–79
 temperature-controlled cryostat for, 177f
 temperature controller for, 177f
Microcalorimetry
 DSC v., 16, 19–25, 20f–25f
 calibration in, 23–25, 24f, 25f
 Calvet principle in, 22–23, 22f, 23f, 26
 heat flux, 16, 19–25, 20f–25f
 methods of, 30–45, 33f, 34f, 36t, 37f–44f
 controlled relative humidity in, 45
 heat capacity determination, 30–35, 33f, 34f, 36t
 heating mode in, 35–40, 37f, 39f, 40f
Index

mixing and reaction calorimetry, 40–43, 41f–43f
pressure calorimetry, 43–45, 44f

Milk
bovine β-lactoglobulin of, 94–95
DSC technique v. vessel/heating mode with, 28t
endothermic/exothermic effects of, 19t
heat capacity for, 36t
isothermal traces at temperatures for, 39f
protein, 94–95, 131
skim milk powder, 222–24, 223f

Milk fat
anhydrous, 133–41, 135f, 136t, 137f, 139f, 139t, 140f, 184–87, 186f, 187f
crystallization properties of, 189–90
DSC and XRD with, 184–90, 186f, 187f, 189f
globules, 188–89, 189f

Mixing and reaction calorimetry, 40–43, 41f–43f
batch mixing in, 40
binding, 41–42
dissolution, 41
enzymatic reactions, 42, 42f, 43f
fermentation, 43
flow mixing in, 41
neutralization, 41, 41f
solubility, 41

Mixing and reaction heat flux microcalorimeter, 29–30, 31t
ampoule mixing vessel for, 30, 31t
batch high-pressure vessel for, 29, 31t
batch standard vessel for, 29, 31t
gas-flow vessel for, 29, 31t

membrane mixing vessel for, 29–30, 31t
mixing vessel for, 29, 31t

Mixing vessel, mixing and reaction heat flux microcalorimeter with, 29, 31t

Modulated adiabatic scanning calorimetry (MASC), 265

Modulated DSC (MDSC), food-processing design with, 204

Moisture content
maltodextrin, 222–24, 223f
skim milk powder, 222–24, 223f
thermodynamic response with, 219–20

Moisture loss, calorimetry with, 8

Molasses incident, 365

Mycoplasma laidlawii, DSC analysis of, 149

Myristic acid, melting point of, 171f

NaCl
denaturation temperature of 11S globulin with, 106t
salt-protein interaction with, 98, 99t

Neutralization, mixing and reaction calorimetry with, 41, 41f
(NH4)2SO4, salt-protein interaction with, 98, 99t

NMR. See Nuclear magnetic resonance

Nuclear magnetic resonance (NMR), 301

Odorants
food flavorings with, 102
protein denaturation effected by, 102–4, 103f
BSA in, 104
Lumry-Eyring model in, 104
ovalbumin in, 102–4, 103f
Oersted law, 25
Oil. See also Lipids
 C80 technique v. vessel/heating mode with, 31t
 DSC technique v. vessel/heating mode with, 28t
 endothermic/exothermic effects of, 19t
 oxidative stability of, 211–12
Oil-in-water emulsions, 132–41,
 135f, 136t, 137f, 139f, 139t,
 140f
 anhydrous milk fat, 133–41, 135f,
 136t, 137f, 139f, 139t, 140f,
 184–87, 186f, 187f
 Avrami equation for, 138–39,
 139f, 139t
 crystallization in, 132–36, 135f,
 136t
 fat crystal growth in, 138
 Gompertz model for, 139–40,
 139t, 140f
 ice cream, 133
 kinetics of, 136–41, 137f, 139f,
 139t, 140f
 melting of fat droplets in,
 132–36, 135f, 136t
 triacylglycerols, 133
 whipped cream, 133
Oleic acid, melting point of, 171f
One-cell calorimetric principle,
 18f
Open measurement method, 357,
 357f, 358f
Orange juice, heat capacity for,
 36t
Ovalbumin, protein denaturation
 effected by, 102–4, 103f
Overlapping peaks, interpretation of, 8
Oxidative stability, heating mode with, 38
Oxygen, reactions with, 363–64
determination of self-ignition temperature for, 364
screening test for, 363
Palmitic acid, melting point of,
 171f, 172f
Parameter Be, salt-protein interaction with, 98, 99t
Pectin, denaturation temperature of
 11S globulin with, 106t
pH
denaturation temperature of 11S globulin with, 106t
7S globulin denaturation with different values of, 93
11S globulin denaturation with different values of, 91f, 92
protein denaturation affected by, 89–95, 91f
RBPC denaturation with different values of, 92
Phaseolin, 93
Phase transitions, food dehydration in, 290, 292–93, 293f
Polypeptide chains, 121
Polysaccharides
denaturation temperature of 11S globulin with, 106t
protein denaturation affected by, 104–10, 106t, 108f
11S globulin in, 105–6, 106t,
 110
 Kunitz inhibitor in, 107–10,
 108f
protein thermodynamic incompatibility with, 109–10
Pork
 heat capacity for, 36t
 muscle
 heat flux of crystallization for,
 327f
Index

thawing heat flux of, 326f
water in, 324–26, 326f, 327f
Postdenaturation aggregation
aggregation rate determined by
denaturation rate with, 111
estimate of apparent denaturation
enthalpy with, 112
irreversible, 110
kinetic parameters of, 111
of protein, 110–12
reversible, 110
Potato, heat capacity for, 36t
Power compensation principle, 53
Pressure calorimetry, 43–45, 44f
Pressure shift freezing (PSF)
 basic procedure of, 329f
 heat flux during, 330f
 high pressure calorimetry with, 329–30, 329f–331f
 ice crystal/sample mass ratio
 formed during, 331f
 pressure during, 330f
 temperature during, 330f
Propylene glycol, denaturation
temperature of
 β-lactoglobulin with, 110
Protein
 20 amino acids constituting, 120
 behavior upon heating of, 89
 bovine β-lactoglobulin of milk, 94–95
 calorimetry of dilute solution of,
 67–84, 71f, 80f, 83f
 cold denaturation with, 75
 DSC data quantifies high-
 affinity binding with, 75–77
 DSC for, 68–77, 71f
 ITC for, 68, 77–84, 80f, 83f
 cereal with, 12
 conformation stability of, 121
 DSC technique v. vessel/heating
 mode with, 28t
 emulsions/foams, role in, 10
 free, 106f
 heat-induced transformations in
 solutions of, 119–32,
 126f–128f, 130f, 131t, 132f,
 141
 denaturation-aggregation of
 globular proteins with,
 124–29, 126f–128f
 kinetics of, 129–32, 130f, 131t,
 132f
 protein structures with, 121–23
 thermodynamics of, 123–24,
 129–32, 130f, 131t, 132f
 hydrophilic component of, 291
 milk, 94–95, 131
 polysaccharides’ thermodynamic
 incompatibility with, 109–10
 postdenaturation aggregation of,
 110–12
 structures, 121–23
 caseins, 122–23
 gelatin molecules, 122
 polypeptide chains, 121
 secondary structures, 121
 tertiary structures, 121–22
 thermal analysis of cereal
 processing with, 272–76,
 274f, 275f
 gluten fix of water molecules
 for, 273
 soluble in aqueous media for,
 273
 starch gelatinization with, 274
 thermal behavior of food
 constituents in, 214–16,
 215f, 216f
 thermal denaturation of, 87–113,
 91f, 97f, 99t, 101f, 103f,
 106t, 108f
 effects of alcohols on, 99–100,
 101f
Protein (continued)
effects of odorants on, 102–4, 103f
effects of pH on, 89–95, 91f
effects of polysaccharides on, 104–10, 106t, 108f
effects of salts on, 95–99, 97f, 99t
reversibility of, 123
two-state model of, 123
thermodynamic compatibility of denatured/native, 89
ultrasensitive calorimetry to, 8
Protein-protein interactions
(Exothermic reaction), 127–28
PSF. See Pressure shift freezing
Q, calculation of, 256–60, 260f
Rate constant, calculation for, 254–55
RBPC. See Ribulose 1,5 biphosphate carboxylase
Reaction enthalpy, calculation for, 255
Reaction half-life, calculation for, 254
Reaction kinetics, model of based on, 249–51
Reaction order, calculation for, 252–53
Retrogradation
DSC technique v. vessel/heating mode with, 28t
heating mode with, 28t, 38
starch, 270
Ribulose 1,5 biphosphate carboxylase (RBPC),
different pH values in denaturation of, 93
Saccharides, dissolution behavior of, 219
Safety. See Food-processing safety; Transport safety
Salmon, heat capacity for, 36t
Salting-in salts. See Chaotropic salts
Salting-out salts. See Kosmotropic salts
Salts
C80 technique v. vessel/heating mode with, 31t
chaotropic, 95
kosmotropic, 95
protein denaturation affected by, 95–99, 97f, 99t
Debye-Höckel approximation for, 98
β-lactoglobulin, 96–98, 97f, 99t
Scanning mode, 35–36, 44. See also Temperature-scanning mode
heating curves for different rates of, 127f
Scanning transitiometry, 311–38, 317f–319f, 321f, 323f, 324f
applications of, 324–37
frozen water ratio in gelatin gels, 326–29, 328f
gelatinization of starch, 330–36, 332f–334f, 335t
phase stability of lipid containing systems, 336–37, 337f
pressure shift freezing, 329–30, 329f–331f
water in pork muscle, 324–26, 326f, 327f
benzene as verification test for, 322, 323f
calibration of, 322–23
calorimetric vessels in, 319–20
piston pump in, 320
precautions for, 321–22
pressure detector in, 320
schematic diagram of, 319f
scheme of basic principles of, 317f
temperature and energy scales of, 322
thermodynamic scheme of, 318f
transitiometric vessels for, 321f

Self-ignition temperature, 364
Setschenow equation, 100
SFC. See Solid fat content
Shelf life, 237–61
empirical model fitting for analysis of, 246–49, 246f, 249f, 250f
heating mode with, 38, 39f
qualitative studies on, 239–45, 241f
quantitative studies on, 245
reaction kinetics based model of, 249–51
reactions that proceed to completion for analysis of, 252–55
calculation for rate constant, 254–55
calculation for reaction enthalpy, 255
calculation for reaction half-life, 254
calculation for reaction order, 252–53
calculation for total heat released, 253–54
calculation of initial calorimetric signal θ_0, 252
reactions that proceed to equilibrium in analysis of, 255–60, 260f
calculation of Q_T, 256–60, 260f
determination of K, 255–56
test for complete reaction, 255

Skim milk powder (SMP), moisture content of, 222–24, 223f
Small-angle X-ray diffraction (SXRD), 176
lard in, 191t, 192f
SMP. See Skim milk powder
Sodium alginate, denaturation temperature of 11S globulin with, 106t

Solid fat content (SFC), 209–10
Solubility, mixing and reaction calorimetry with, 41
Solution calorimetry, 218
Specific heat
moisture content’s effect on thermodynamic response with, 219–20
parameters for food-processing design of, 224–25
pharmaceutical substances, 219
solution calorimetry with, 218
Spindle pump, HP-DSC, 54f
Spray-drying, 290, 305–6, 306f

Staphylococcus aureus
hydrostatic pressure resistance of, 44, 44f
nonthermal treatment of, 162–63, 162t

Starch
C80 technique v. vessel/heating mode with, 31t
cereal with, 12
DSC technique v. vessel/heating mode with, 28t
endothermic/exothermic effects of, 19t
gelatinization, 12, 274, 278–79, 280f
calorimetric analysis by HPP of, 341–49, 343f, 346f
heat in, 342, 343f
Starch (continued)
 high pressure calorimetry on, 330–36, 332f–334f, 335t
 storage of, 347–48
 thermodynamic data for, 335t
 wheat, 344–47, 346f
 HHP’s effects on, 12
 retrogradation, 270
 thermal analysis of cereal processing with, 268–72, 289f–272f
 aqueous suspension of starch granules for, 268
 DSC for, 268–72, 289f–272f
 State diagrams
 food dehydration in, 303–7, 304f
 freeze-drying, 290, 306–7
 lactose, 304f
 spray-drying, 290, 305–6, 306f
 State transitions, food dehydration in, 290, 292–93, 293f
 Stearic acid, melting point of, 171f, 172f
 Step heating, calorimetry with, 40, 40f
 Sucrose, calorimetric curves of, 207f, 208f
 Sugar
 C80 technique v. vessel/heating mode with, 31t
 calorimetric curves of sucrose, 207f, 208f
 DSC technique v. vessel/heating mode with, 28t
 glass transition with, 294
 thermal behavior of food constituents in, 206–8, 207f, 208f
 SXRD. See Small-angle X-ray diffraction
 TCC. See Temperature-controlled cryostat
 Temperature, critical, 355–56, 355f
 Temperature calibration procedure, HP-DSC, 58–61
 Temperature-controlled cryostat (TCC), 177f
 Temperature modulated DSC (TMDSC), 265
 Temperature-scanning mode
 blank test heat flow equation, 32
 heat capacity determination using, 31–33, 33f
 Temperature step mode, heat capacity determination using, 33–34
 TG. See Triacylglycerols
 TGA. See Thermogravimetry
 Thermal analysis (TA). See also
 Differential thermal analysis;
 Dynamical mechanical thermal analysis
 design/monitor of cereal processing, 265–85
 nonstarch carbohydrates, 276–78, 277f
 process applications, 278–85, 280f–284f
 proteins, 272–76, 274f, 275f
 starch, 268–72, 289f–272f
 food dehydration understood with, 298–301, 299f, 300f
 food-processing design with, 203–6, 204f
 methods, 205–6
 samples, 206
 techniques, 203–5, 204f
 Thermogravimetry (TGA), 265
 Time scale, calorimetry with, 8
 Tin, HP-DSC calibration using, 58, 59
 TA. See Thermal analysis
TMDSC. See Temperature modulated DSC
Total heat released, calculation for, 253–54
Transiometry scanning technique, 12
Transition state theory, 111
Transport safety, 365–66
Triacylglycerols (TG)
composition of, 169
DSC and XRD in study of, 169–76, 171t, 172t, 173f
fatty acids, 170–73, 171t, 172t, 173f
crystallographic/energetic properties of, 172f
hexagonal, 172, 172f, 173f
melting point of, 171f, 172f
orthorhombic perpendicular, 172, 172f, 173f
triclinic parallel, 172, 172f, 173f
heat-induced transformations with, 133
main types of, 173f
melting profile of, 209
polymorphism of, 170–73, 171t, 172t, 173f, 209–10, 210f
Trypsin inhibitor, 94
Vanillin, 102
Van’t Hoff enthalpy change, DSC measured, 72–74
Vegetable, heat capacity for, 36t
Water. See also Oil-in-water emulsions
emulsifier-water systems with lipids, 212–14
frozen water ratio in gelatin gels, 326–29, 328f
gluten fix with molecules of, 273
pork muscle with, 324–26, 326f, 327f
starch-water systems, 207
thermal behavior of food constituents in, 216–17
Wheat, starch gelatinization by HHP for, 344–47, 346f
results with, 345–47, 346f
sample preparation for, 345
Whey protein isolate, heat-induced transformations with, 125, 126f, 128f, 132f
Whipped cream, heat-induced transformations with, 133
Wide-angle X-ray diffraction (WXRD), 175
lard in, 191t, 192f
WXRD. See Wide-angle X-ray diffraction
Xanthan, denaturation temperature of β-lactoglobulin with, 110
X-ray diffraction (XRD), 11
applications with DSC and, 179–93, 180f, 183f, 186f, 187f, 189f, 191f, 192f
cocoa butter in DSC and, 179–84, 180f, 183f
DSC with, 169–94, 171t, 172t, 173f, 177f, 180f, 183f, 186f, 187f, 189f, 191f, 192f
food-processing design with DSC and, 225
lard in DSC and, 190–93, 191f, 192f
MICROCALIX using DSC and, 170, 176–79, 177f
milk fat in DSC and, 184–90, 186f, 187f, 189f
X-ray diffraction (XRD) (continued) results using DSC and, 179–93, 180f, 183f, 186f, 187f, 189f, 191f, 192f triacylglycerols in DSC and, 169–76, 171t, 172t, 173f X-ray diffraction with temperature function (XRDT), 11, 176 X-ray diffraction with time function (XRDt), 11, 176 XRD. See X-ray diffraction XRDT. See X-ray diffraction with temperature function XRDt. See X-ray diffraction with time function

Yeast
- C80 technique v. vessel/heating mode with, 31t
- DSC technique v. vessel/heating mode with, 28t
- endothermic/exothermic effects of, 19t
- Yogurt processing, DSC technique v. vessel/heating mode with, 28t
- Young’s modulus E, 265

Zinc, HP-DSC calibration using, 58