Index

ACO. See Acyl-CoA oxidase (ACO)
Activated protein kinase (AMPK), 143
regulation of ROS and, 183–184
Acyl-CoA oxidase (ACO), 169
Adipocyte marker proteins, antiadipogenic
effect of green tea and, 186–187
Adipocytes, and obesity, 177–178
Adipocyte-specific secretory factor
(ADSF), 182
Adipogenesis, soy peptides reduces
adiposity by inhibition of, 144–147
Adipose tissue, role in obesity, 97–98
Adiposity reduction, by soy peptides
inhibiting lipid absorption and
regulation of lipid metabolism,
141–143
inhibition of adipogenesis,
144–147
Ad libitum, 12
ADSF. See Adipocyte-specific secretory
factor (ADSF)
Air displacement plethysmography (Bod
Pod), 9
α-lactalbumin, 113–115
Alginate, 243
studies reporting positive effects of,
244
Amino acids arginine (ARG), 129
AMPK. See Activated protein kinase
(AMPK)
Animal models, to study effects of calcium
and dairy intake, 80–81
Anthropometry–skinfold measurements,
for measuring body fat, 9
Antiadipogenic effect
of EGCG
CDK 2 dependent signaling pathway,
182–183
via activation of AMPK, 183
via ERK dependent signaling
pathway, 180–182
via regulation of ROS, 183–184
via resistin, 182
of green tea
via downregulation of adipocyte
marker proteins and its target
genes, 186–187
via inhibition of lipogenic enzymes,
184–186
Appetite, 26
CCK release and effects on, 27
Satiety hormones effects on, 27
serotonin in regulation of, 110
ARG. See Amino acids arginine (ARG)
Barley, 246
studies reporting no significant effects
of, 249
studies reporting positive effects of,
247–248
β-conglycinin hydrolysates, 145,
147
BIA. See Bioelectrical impedance
(BIA)
Bioactive peptides, 136
Bioelectrical impedance (BIA), 9
Black soy peptide (BSP), 140–141
BMI. See Body mass index (BMI)
Body composition. See also Body weight calcium and dairy products effects on, 70–73
calories after consumption of control/high-catechin, 190–191
CLA effects on, 8–9
clinical studies of CLA on, 10–15
exercise subjects with BMI less than 25, 12
long-term studies, 10–11
in subjects with BMI greater than 25, 12–13
methods for measuring, 9–10
satiety of high-protein diet and change in, 128–129
Body fat control, in animals by RD, 222
Body fat mass, CLA mechanism for decreasing, 5–6
Body fat reduction. See also Adiposity reduction by CLA, 6–15
effect on body shape, 13
effects on body composition and body weight, 8–10
meta-analysis study, 14–15
overview, 6–7
quality of material used for, 7–8
effects of high-calcium and high-dairy diets on, 71
Body mass index (BMI)
body weight and, 9
CLA and exercise subjects with less than 25, 12
CLA and subjects with greater than 25, 12–13
Body shape, and CLA, 13
Body weight. See also Body composition calcium and dairy products effects on, 70–73
CLA effects on, 8–9
green tea effects on, 164–166
methods for measuring, 9–10
reduction by soy peptides, 143–144
role of calcium consumption on, 79
β-pancreatic cells, 97
BSP. See Black soy peptide (BSP)

Caffeine. See also Capsaicin
efficiency of long-term experiments for, 166–167
short-term experiments for, 163–164
food/supplement applications of, 170–171
global suppliers of, 171
mechanisms of action of, 167–169
patent of, 171
safety of, 169–170
Calcium. See Dietary calcium
Calcium modulation, of adiposity, 81
Calipers, for measuring body fat, 9
Caloric intake. See also Food intake
in adults during 1971-2000, 44
efficiency of Olibra and, 56–58
PinnoThin FFA effects on, 35
Caloric value, of RD, 219–220
cAMP. See Cyclic amino mono phosphate (cAMP)
Capsaicin, 201–208. See also Caffeine
effects on feeding behaviors, 203–205
efficiency of, 202–206
food/supplement applications of, 207
weight control and, 208
mechanism of actions, 206
overview, 201–202
patents on, 207
role in weight control, 207–208
safety of, 206–207
suppliers of, 208
thermogenic effect of, 203
Capsicum, 202
CARDIA. See Cumulative incidence observational population-based prospective study (CARDIA)
Carnitine palmitoyltransferase (CPT) activity, 6
Casein, 123
effects on satiety long-term, 126–127
short-term, 123–126
food supplement applications of, 130
global suppliers of, 130
patents on, 130
Index

Catechins
and caffeine, 168–169
effect on gene expression of UCP, 169
green tea, 167
Catechol-O-methyltransferase (COMT), 167
CCK. See Cholecystokinin (CCK)
CCK1R. See CCK1 receptor (CCK1R)
CCK receptors, 140
CDK 2. See Cyclin-dependent kinase 2 (CDK 2)
Central nervous system, regulation of satiety and FI by, 229–233
Cheese, 83
Cheese product versus GELITA®, 105
Chocolate dessert, ingredients of, 106
Cholecystokinin (CCK), 26
effects on appetite, 27
PinnoThinTM effects on releasing, 29–30, 31–32
regulation of FI, 232
released in proximal small intestine, 26
c-Jun-N-terminal kinases (JNK), 180
CLA. See Conjugated linoleic acids (CLA)
Claims, on CLA, 16–17
CLA products
GC–MS profile of unpatented and patented, 8
CognisGmbH, 5
Collagen, 102–105
characteristics of, 102
development of calorie-reduced products and, 103
used for fat reduction, 103
used in meat-producing industry, 102–103
water-binding capacity of, 103
COMT. See Catechol-O-methyltransferase (COMT)
COMT^L allele, 167–168
Conjugated linoleic acids (CLA)
absorption and metabolism of, 5
application in functional foods, 17
body fat reduction by, 6–15
effect on body shape, 13
effects on body composition and body weight, 8–10
meta-analysis study, 14–15
overview, 6–7
quality of material used for, 7–8
climite palmitoyltransferase activity and, 6
chemical structure of isomers, 4
claims on, 15–16
and clinical studies on body composition, 10–15
exercise subjects with BMI less than 25, 12
long-term studies, 10–11
in subjects with BMI greater than 25, 12–13
in dairy products and ruminant meat, 4–5
efficacy in foods, 13–14
labeling of, 16
and lipoprotein lipase activity, 5–6
mechanism for decreasing body fat mass, 5–6
mixed isomers and safety evaluation, 15–16
overview, 3–5
regulatory status of, 16–17
sensory impact of, 19
stability of, 18–19
CPT activity. See Carnitine palmitoyltransferase (CPT) activity
Critical Reviews in Food Science and Nutrition, 49
Cumulative incidence observational population-based prospective study (CARDIA), 77
Cyclic amino mono phosphate (cAMP), 168
Cyclin-dependent kinase 2 (CDK 2), 182–183
Dairy products
cheese, 83
food application of, 82–84
nonfat dry milk, 83
overview, 68–69
Dairy products (Cont.)

patent of, 84
scientific evidence on efficacy and mechanism of action of, 69–82
animal models and in vitro studies, 80–81
observational studies and secondary analyses of clinical trials, 75–80
randomized clinical trials, 69–75
summary of, 82
yogurt, 83

DEXA. See Dual energy X-ray absorptiometry (DEXA)

d-fenfluramine, 110

Diet and Health: Implications for Reducing Chronic Disease Risk, 44

Dietary calcium

effect on energy and substrate metabolism, 74
effects on body weight, 70–73
energy expenditure and consumption of, 73–75
food application of, 82–84
overview, 68–69
patent of, 84
scientific evidence on efficacy and mechanism of action of, 69–82
animal models and in vitro studies, 80–81
observational studies and secondary analyses of clinical trials, 75–80
randomized clinical trials, 69–75
summary of, 82

Dietary fiber

alginate, 243
authoritative statements related to, 234–235
barley, 246
guar gum, 235–243
inulin, oligofructose, and polydextrose, 254–259
mechanism of actions, 233–234
oat β-glucan, 243–245
psyllium, 235
resistant starches, 259–265
soy fiber, oat hull fiber, and sugar beet fiber, 246–254
wheat and wheat bran, 246

Dietary proteins, satiating properties of, 113

Dieting versus lifestyle, 49–50

Digestibility, of RD, 218–219

Dual energy X-ray absorptiometry (DEXA), 9

EC. See Epicatechin (EC)

ECG. See Epicatechin-3-gallate (ECG)

EGC. See Epigallocatechin (EGC)

EGCG. See Epigallocatechin-3-gallate (EGCG)

EMS. See Eosinophilia-myalgia syndrome (EMS)

Energy expenditure
calcium and dairy foods consumption, 73–75
catechins and caffeine increase, 168–169
satiety of high-protein diet and increase in, 128
soy peptides reduces body weight by increasing, 143–144

Energy intake. See Caloric intake

Eosinophilia-myalgia syndrome (EMS), 112

Epicatechin (EC), 179
Epicatechin-3-gallate (ECG), 179
Epigallocatechin (EGC), 179
Epigallocatechin-3-gallate (EGCG), 177
antiadipogenic effect of CDK 2 dependent signaling pathway, 182–183
via activation of AMPK, 183
via ERK dependent signaling pathway, 180–182
via regulation of ROS, 183–184
via resistin, 182
antiobesity mechanisms of, 180–187
inhibition of lipid-related enzymes in cell-free systems, 185
structures of, 179

ERK. See Extracellular signal-regulated kinase (ERK)

Extracellular signal-regulated kinase (ERK), 180–182
Index

Fabuless™. See Olibra®
Fat-free mass (FFM), 60
 influence of protein, ARG and LYS on, 129
Fat/oil replacement formulation matrix, of olestra, 51
Fecal excretion, calcium and dairy foods consumption, 73–75
Fermentation, of RD, 219
FFA. See Free fatty acids (FFA)
FFM. See Fat-free mass (FFM)
FI. See Food intake (FI)
Food consumption, regulated by hypothalamus, 100
Food intake (FI). See also Caloric intake mechanism of action of soy peptides regulates, 137–141
 olive oil placebo effects on, 33
 PinnoThin™ effects on, 28–29, 33
 ad libitum, 33–36
 regulation by central nervous system, 229–233
 long-term, 232–233
 short-term, 229–232
 serotonin in regulation of, 110
Four-compartment model, 9
Free fatty acids (FFA), 27
 enzymatic hydrolysis of triglycerides into, 28
 role in release of satiety hormones, 27–28
Functional foods, CLA application in, 17
Garcinia cambogia, 141
Gastric emptying, 230
GDH. See Glutamate dehydrogenase (GDH)
Gelatin, 95–107
 characteristics of, 102
 collagenous peptides and, 102
 dessert created by using, 104
 raw material for, 101
 technological properties of, 101–106
 gelling properties, 105
 used in meat-producing industry, 102–103
GELITA® mayonnaise, composition of, 104
GELITA® versus cheese product, 105
Ghrelin, 26
 regulation of, 232
GLP-1. See Glucagon-like peptide-1 (GLP-1)
Glucagon, 144
 glucagon-like peptide-1 (GLP-1), 26
 effects on appetite, 27
 Olibra® effects on, 59
 regulation of FI and, 231
Glutamate dehydrogenase (GDH), 188
Glycemic response, of RD, 222–223
Glycomacropeptide (GMP), 123, 125
GMP. See Glycomacropeptide (GMP)
Green tea, 178–179
 antiadipogenic effect via downregulation of adipocyte marker proteins and its target genes, 186–187
 via inhibition of lipogenic enzymes, 184–186
 clinical studies of, 189–192
 efficacy of long-term experiments for, 164–166
 short-term experiments for, 162–163
 epidemiological observation of, 189–192
 food/supplement applications of, 170–171
 global suppliers of, 171
 insulin-potentiating activity by, 187–189
 mechanisms of action of, 167–169
 patent of, 171
 safety of, 169–170
Guar gum, 235–243
 studies reporting no significant effects of, 242
 studies reporting positive effects of, 239–241
Gut hormones, related to satiety, 231
HDF. See Human diploid fibroblasts (HDF)
HDL. See High-density lipoproteins (HDL)
High-density lipoproteins (HDL), 97

High-protein diet
- adverse effects of, 129–130
- mechanisms to increase satiety of, 127–129
- change in body composition, 128–129
- changes in concentration of hormones/metabolites, 127–128
- increase in energy expenditure, 128
- during weight loss/maintenance, 122

Hormone-sensitive lipase (HSL), 168

HSL. See Hormone-sensitive lipase (HSL)

5-HTP. See 5-hydroxytryptophan (5-HTP)

Human diploid fibroblasts (HDF), 184

Hunger. See also Satiety
- defined, 26
- ratings after ingestion of α-lactalbumin, 114

Hydrodensitometry weighing, for body fat, 9

5-hydroxytryptamine. See Serotonin

5-hydroxytryptophan (5-HTP), 110, 112–113

Hypothalamus
- arcuate nucleus of, 229
- food consumption regulated by, 100
- serotonin role in regulation of appetite and food intake, 110

IGF-1. See Insulin-like growth factor-1 (IGF-1)

Ileal brake, 230

Insulin-like growth factor-1 (IGF-1), 128

Insulin-potentiating activity, by green tea, 184–186

Insulin release, obesity and, 97–98

Insulin resistance syndrome (IRS), 76–77

Inulin, 254–259
- studies reporting no significant effects of, 259
- studies reporting positive effects of, 258

IRS. See Insulin resistance syndrome (IRS)

JNK. See c-Jun-N-terminal kinases (JNK)

Labeling, of CLA, 16

Large neutral amino acids (LNAA), 111, 113

LDL. See Low-density lipoproteins (LDL)

LDL-R transcription, by soybean, 142–143

Lifestyle versus dieting, 49–50

Lipid absorption, soy peptides reduces adiposity by inhibiting, 141–143

Lipid metabolism, soy peptides reduces adiposity by regulating, 141–143

Lipogenic enzymes, antiadipogenic effect of green tea, 184–186

Lipoprotein lipase (LPL) activity, 5–6

LNAA. See Large neutral amino acids (LNAA)

Low-density lipoproteins (LDL), 97

LPL activity. See Lipoprotein lipase (LPL) activity

L-tryptophan, 111–113
- serotonin synthesized by, 110–111

LYS. See Lysine (LYS)

Lysine (LYS), 129

MAPK. See Mitogen-activated protein kinases (MAPK)

MCAD. See Medium-chain acyl-CoA dehydrogenase (MCAD)

Medium-chain acyl-CoA dehydrogenase (MCAD), 169

Metabolic syndrome. See also Obesity
- defined, 98
- therapeutic options for, 98–101

Metabolizable energy versus net metabolizable energy, 99–100

Mitogen-activated protein kinases (MAPK), 180

Monoglyceride, 28

Monounsaturated fatty acids (MUFA), 28

MUFA. See Monounsaturated fatty acids (MUFA)

National Weight Control Registry, 49

Near-infrared interactance (NIR), 9

Net energy value (NEV), of RD, 219–220
Index

Net metabolizable energy versus metabolizable energy, 99–100
NIR. See Near-infrared interactance (NIR)
Nondialyzed soy protein hydrolysate (NSPH), 141–142
Nonfat dry milk, 83
No-observable adverse effect levels (NOAEL), of RD, 217
Norepinephrine (NE), 167
NSPH. See Nondialyzed soy protein hydrolysate (NSPH)
NUTRIOSE®. See Resistant dextrin (RD)
NUTRIOSE®FB, 216, 217
Nutrition, 96–97
Oat β-glucan, 243
studies reporting no significant effects of, 245
Oat fiber
studies reporting no significant effects of, 255
Oat hull fiber, 246–254
Obesity. See also Metabolic syndrome
adipocytes role in, 177–178
adipose tissue and, 97–98
analysis of, medical perspective, 97–98
olestra and, 47
weight maintenance for, 122
Obesity Reviews, 49
Olestra
dieting versus lifestyle, 49–50
evolution of, 45–47
fat/oil replacement formulation matrix, 51
molecule, 46
potential food applications of, 50
role in cardiovascular and metabolic risk factors, 50–52
role in reducing fat-soluble environmental contaminants in body, 52
role in weight prevention, loss, and maintenance, 47–48
Olibra®
constituents of, 56
efficacy of, 56–60

long-term experiments for, 58–60
short-term experiments for, 56–58
food/supplement applications of, 61–62
global suppliers of, 62
mechanisms of action, 61
patent, 62
safety aspect of, 61
Oligofructose (OF), 254–259
Olive oil placebo
effects on CCK and GLP-1 release, 31
effects on food intake, 33
Oolong tea, insulin activity ratios in, 188
Peptide tyrosine tyrhome (PYY), 26
effects on appetite, 27
regulation of, 231–232
P&G. See Procter & Gamble Company (P&G)
Phosphodiesterase, 168
Pine nut consumption, history of, 37
PinnoThin™, 28
effects on in vitro CCK release, 29–30
effects on satiety and food intake, 28–29
food applications of, 36–37
and history of pine nut consumption, 37
unsaturated fatty acids found in, 29
in vivo effects on satiety hormones, 30–33
PinnoThin™ FFA
effects on caloric intake, 35
effects on CCK and GLP-1 release, 31
effects on food intake, 33, 35
PinnoThin™ TG
effects on CCK and GLP-1 release, 31
effects on food intake, 33
Pinus Koraiensis, 28
Polydextrose, 254–259
studies reporting effects of, 260
Polyunsaturated fatty acids (PUFA), 28
Preadipocyte factor-1 (pref-1), 145
increase by SPP and alcalase soy hydrolysates, 146
Preadipocytes, 145–146
Pref-1. See Preadipocyte factor-1 (pref-1)
Procter & Gamble Company (P&G), 43, 45
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein-based diet exerts, effects on weight loss</td>
<td>99–100</td>
</tr>
<tr>
<td>Psyllium</td>
<td>235</td>
</tr>
<tr>
<td>studies reporting no significant effects of</td>
<td>238</td>
</tr>
<tr>
<td>studies reporting positive effects of</td>
<td>236–237</td>
</tr>
<tr>
<td>PUFA. See Polyunsaturated fatty acids (PUFA)</td>
<td></td>
</tr>
<tr>
<td>Pyruvate</td>
<td>168</td>
</tr>
<tr>
<td>PYY. See Peptide tyrosine tyrosine (PYY)</td>
<td></td>
</tr>
<tr>
<td>RD. See Resistant dextrin (RD)</td>
<td></td>
</tr>
<tr>
<td>Reactive oxygen species (ROS), 183–184</td>
<td></td>
</tr>
<tr>
<td>REE. See Resting energy expenditure (REE)</td>
<td></td>
</tr>
<tr>
<td>Regulatry status, of CLA</td>
<td>16–17</td>
</tr>
<tr>
<td>Resistant dextrin (RD)</td>
<td></td>
</tr>
<tr>
<td>body fat control in animals by, 222</td>
<td>caloric value, 219–220</td>
</tr>
<tr>
<td>digestibility of, 218–219</td>
<td>effects on satiety, 221–222</td>
</tr>
<tr>
<td>fermentation of, 219</td>
<td>glycemic response and, 222–223</td>
</tr>
<tr>
<td>overview, 215–216</td>
<td>safety of, 216–217</td>
</tr>
<tr>
<td>in humans, 217–218</td>
<td></td>
</tr>
<tr>
<td>Resistant starches (RS), 259–265</td>
<td>studies reporting no significant effects of, 263–264</td>
</tr>
<tr>
<td>studies reporting positive effects of</td>
<td>261–262</td>
</tr>
<tr>
<td>Resistin (RSTN), 182</td>
<td></td>
</tr>
<tr>
<td>Resting energy expenditure (REE), 59–60</td>
<td>FFM and, 60</td>
</tr>
<tr>
<td>Resting metabolic rate (RMR), 12</td>
<td></td>
</tr>
<tr>
<td>RMR. See Resting metabolic rate (RMR)</td>
<td></td>
</tr>
<tr>
<td>ROS. See Reactive oxygen species (ROS)</td>
<td></td>
</tr>
<tr>
<td>RSTN. See Resistin (RSTN)</td>
<td></td>
</tr>
<tr>
<td>Satiety. See also Hunger</td>
<td>authoritative statements related to, 234–235</td>
</tr>
<tr>
<td>clinical methods for measuring, 228–229</td>
<td></td>
</tr>
<tr>
<td>definition of, 26, 227–228</td>
<td>gut hormones related to, 231</td>
</tr>
<tr>
<td>mechanisms to increase high-protein diet, 127–129</td>
<td></td>
</tr>
<tr>
<td>PinnoThin™ effects on</td>
<td>28–29, 32</td>
</tr>
<tr>
<td>regulation by central nervous system</td>
<td>229–233</td>
</tr>
<tr>
<td>side effects of, 129–130</td>
<td></td>
</tr>
<tr>
<td>Satiety hormones</td>
<td>activity of, 26–27</td>
</tr>
<tr>
<td>effects on appetite, 27</td>
<td></td>
</tr>
<tr>
<td>FFA role in release of, 27–28</td>
<td>physiological factors affecting, 232–233</td>
</tr>
<tr>
<td>PinnoThin™ in vivo effects on</td>
<td>30–33</td>
</tr>
<tr>
<td>Saturated fatty acids (SFA), 28</td>
<td></td>
</tr>
<tr>
<td>SBF. See Sugar beet fiber (SBF)</td>
<td></td>
</tr>
<tr>
<td>SCFA. See Short-chain fatty acids (SCFA)</td>
<td></td>
</tr>
<tr>
<td>Serotonin</td>
<td>defined, 110</td>
</tr>
<tr>
<td>dietary amino acid interventions to increase precursor, 111–115</td>
<td></td>
</tr>
<tr>
<td>α-lactalbumin, 113–115</td>
<td></td>
</tr>
<tr>
<td>5-HTP, 112–113</td>
<td></td>
</tr>
<tr>
<td>L-tryptophan, 111–113</td>
<td>role in regulation of appetite and food intake, 110</td>
</tr>
<tr>
<td>synthesized by L-tryptophan, 110–111</td>
<td></td>
</tr>
<tr>
<td>SFA. See Saturated fatty acids (SFA)</td>
<td></td>
</tr>
<tr>
<td>Short-chain fatty acids (SCFA), 218, 219, 233</td>
<td></td>
</tr>
<tr>
<td>SNS. See Sympathetic nerve system (SNS)</td>
<td>Soy, 123</td>
</tr>
<tr>
<td>Soy</td>
<td>effects on satiety</td>
</tr>
<tr>
<td>long-term, 126–127</td>
<td>short-term, 123–126</td>
</tr>
<tr>
<td>food supplement applications of, 130</td>
<td>global suppliers of, 130</td>
</tr>
<tr>
<td>patents on, 130</td>
<td></td>
</tr>
<tr>
<td>Soy fiber, 246–254</td>
<td>studies reporting no significant effects of, 256</td>
</tr>
<tr>
<td>Soy hydrolysate products</td>
<td>inhibitory effects on preadipocyte proliferation, 145</td>
</tr>
<tr>
<td>inhibitory effects on preadipocyte proliferation, 145</td>
<td></td>
</tr>
<tr>
<td>Soy peptides</td>
<td>antiobesity effects of, 138–139</td>
</tr>
<tr>
<td>dietary, 142</td>
<td>efficacy and mechanisms of action in weight control, 137–147</td>
</tr>
</tbody>
</table>
by increasing energy expenditure and thermogenesis, 143–144
by suppressing food intake, 137–141
food applications of, 147–148
global suppliers of, 149
role in reducing adiposity
by inhibiting lipid absorption and regulation of lipid metabolism, 141–143
by inhibition of adipogenesis, 144–147
safety of, 148–149
Soy products, 150–151
Soy-purified peptides (SPP), 145
pref-1 increased by, 146
SPP. See Soy-purified peptides (SPP) STAT3 phosphorylation, 141
Substrate oxidation, calcium and dairy foods consumption, 73–75
Sugar beet fiber (SBF), 246–254
studies reporting no significant effects of, 257
Sympathetic nerve system (SNS), 167
capsaicin effects on thermogenesis, 206
Thermogenesis
capsaicin increases, 206
soy peptides reduces body weight by increasing, 143–144
Tonalin® CLA, 7
Tonalin TG 80, chemical structure of CLA isomers of, 4
Total body electrical conductivity (TOBEC), 9
Transient receptor potential vanilloid receptor1 (TRPV1), 206
Triglycerides, enzymatic hydrolysis into FFA, 28
TRPV1. See Transient receptor potential vanilloid receptor1 (TRPV1)
UCP. See Uncoupling proteins (UCP)
Uncoupling proteins (UCP), 169
United States National Research Council, 44
Unsaturated fatty acids, found in
PinnoThin™, 29
VAS. See Visual analogue scales (VAS)
Visual analogue scales (VAS), to evaluate appetite sensations, 31–33
Water-binding capacity, of collagen, 103
Weight control/maintenance
capsaicin for, 207–208
high protein intake during, 122
for obesity, 122
olestra and, 47–48
Olibra® role in, 59
soy peptides in, 137–147
by suppressing food intake, 137–141
Weight loss
caffeine role in, 166–167
dieting versus lifestyle, 49–50
high protein intake during, 122
olestra role in, 47–48
Olibra® role in, 60
protein-based diet exerts effects on, 99–100
Wheat, 246
studies reporting no significant effects of, 251
studies reporting positive effects of, 250
Wheat bran, 246
studies reporting no significant effects of, 253
studies reporting positive effects of, 252
Whey, 123
effects on satiety long-term, 126–127
short-term, 123–126
food supplement applications of, 130
global suppliers of, 130
patents on, 130
Yogurt, 83