Contents

Preface to First Edition xvii
Preface to Second Edition xxi

CHAPTER 1 Introduction 1

1.1 Electromagnetic Environment 1
1.2 Historical Notes 1
 1.2.1 Pre-World War II Era 1
 1.2.2 World War II and the Next Twenty-Five Years 3
 1.2.3 The Last Twenty-Five Years 4
1.3 Concepts of EMI and EMC and Definitions 6
1.4 Practical Experiences and Concerns 8
 1.4.1 Transmission Lines 9
 1.4.2 Mains Power Supply 9
 1.4.3 Switches and Relays 10
 1.4.4 Telephone Equipment 10
 1.4.5 Radio Astronomy 10
 1.4.6 Biological Effects 10
 1.4.7 Aircraft Navigation 11
 1.4.8 Military Equipment 11
 1.4.9 Secure Communications 12
 1.4.10 Integrated Circuits 13
1.5 Frequency Spectrum Conservation 13
 1.5.1 Transmitters and Receivers 13
 1.5.2 Spectrum Space 14
 1.5.3 Telecommunications 15
 1.5.4 Trends 16
1.6 An Overview of EMI and EMC 17
Contents

CHAPTER 4 Probabilistic and Statistical Physical Models 77

4.1 Introduction 77
4.2 Probability Considerations 78
4.3 Statistical Physical Models 78
4.4 Modeling of Interferences 79
 4.4.1 Classification of Interferences 79
 4.4.2 Class A Interference 80
 4.4.3 Class B Interference 82
 4.4.4 Examples 85
4.5 Statistical EMI/EMC Models 85
 4.5.1 EM Noise from the Environment 86
 4.5.2 Electromagnetic Interference in Circuits 88
 4.5.3 Statistical Models for Equipment Emissions 88
4.6 Summary 89
 References 89
 Assignments 90

CHAPTER 5 Open-Area Test Sites 91

5.1 Introduction 91
5.2 Open-Area Test Site Measurements 92
 5.2.1 Measurement of RE 92
 5.2.2 Measurement of RS 92
 5.2.3 Test Site 93
 5.2.4 Test Antennas 93
5.3 Measurement Precautions 93
 5.3.1 Electromagnetic Environment 94
 5.3.2 Electromagnetic Scatterers 94
 5.3.3 Power and Cable Connections 94
6.6.5 Measurement Uncertainties 148
References 148
Assignments 149

CHAPTER 7 Conducted Interference Measurements 151
7.1 Introduction 152
7.2 Characterization of Conduction Currents/Voltages 152
 7.2.1 Common-Mode and Differential-Mode Interferences 152
 7.2.2 Examples of CM and DM Interferences 153
7.3 Conducted EM Noise on Power Supply Lines 154
 7.3.1 Transients on Power Supply Lines 154
 7.3.2 Propagation of Surges in Low-Voltage AC Lines 155
 7.3.3 Conducted EMI in Ships and Aircraft 156
7.4 Conducted EMI from Equipment 157
 7.4.1 Instrumentation for Measuring Conducted EMI 157
 7.4.2 Experimental Setup for Measuring Conducted EMI 161
 7.4.3 Measurement of CM and DM Interferences 164
7.5 Immunity to Conducted EMI 166
7.6 Detectors and Measurement 167
References 168
Assignments 169

CHAPTER 8 Pulsed Interference Immunity 171
8.1 Introduction 171
8.2 Pulsed EMI Immunity 171
8.3 Electrostatic Discharge 172
 8.3.1 ESD Pulse 172
 8.3.2 Electrostatic Discharge Test 174
 8.3.3 ESD Test Generator 178
 8.3.4 ESD Test Levels 181
8.4 Electrical Fast Transients/Burst 182
 8.4.1 EFTs/Burst 182
 8.4.2 Test Bed for EFT Immunity 183
 8.4.3 EFT/Burst Generator 184
 8.4.4 EFT/Burst Tests 186
8.5 Electrical Surges 187
 8.5.1 Surges 187
 8.5.2 Surge Testing 188
 8.5.3 Surge Test Waveforms 189
8.6 Summary 192
References 193
Assignments 193
CHAPTER 11 Cables, Connectors, and Components 277

11.1 Introduction 277
11.2 EMI Suppression Cables 277
 11.2.1 Absorptive Cables 278
 11.2.2 Ribbon Cables 281
11.3 EMC Connectors 282
 11.3.1 Pigtail Effect 282
 11.3.2 Connector Shielding 282
 11.3.3 Connector Testing 283
 11.3.4 Intermodulation Interference (Rusty Bolt Effect) 285
11.4 EMC Gaskets 286
 11.4.1 Knitted Wire-Mesh Gaskets 286
 11.4.2 Wire-Screen Gaskets 287
 11.4.3 Oriented Wire-Mesh 287
 11.4.4 Conductive Elastomer 288
 11.4.5 Transparent Conductive Windows 288
 11.4.6 Conductive Adhesive 288
 11.4.7 Conductive Grease 289
 11.4.8 Conductive Coatings 289
11.5 Isolation Transformers 289
11.6 Opto-Isolators 292
11.7 Transient and Surge Suppression Devices 292
 11.7.1 Gas-Tube Surge Suppressors 293
 11.7.2 Semiconductor Transient Suppressors 297
 11.7.3 Transient Protection Hybrid Circuits 300
11.8 EMC Accessories: An Overview 300
 11.8.1 Cables 301
 11.8.2 Connectors 301
 11.8.3 Ferrite Components 302
 11.8.4 EMC Gaskets 303
 11.8.5 Transient Protection Devices 303
 11.8.6 Concluding Notes 304
References 304

CHAPTER 12 Frequency Assignment and Spectrum Conservation 307

12.1 Introduction 307
12.2 Frequency Allocation and Frequency Assignment 307
 12.2.1 The Discipline 307
 12.2.2 Spectrum Utilization 309
 12.2.3 Evaluation of Spectrum Utilization 310
CHAPTER 13 EMC Computer Modeling and Simulation 333

13.1 Introduction 333
13.2 A Generalized & Comprehensive Assessment Methodology 334
13.3 EMC Analysis of Complex Systems 335
 13.3.1 Modeling Techniques, Physics Formalisms Solution Methods 337
 13.3.2 Electromagnetic Analysis and Prediction Codes 345
13.4 Illustrating an Automated System Level EMC Analysis Procedure 350
 13.4.1 Numerical Code Exterior System Modeling 354
 13.4.2 Interior System Modeling Using Numerical Codes 356
 13.4.3 Modeling and Analysis Procedure 358
13.5 The Future of EMC Computer Modeling and Simulation 358
 13.5.1 Application of Expert Systems and Other Advanced Software Technologies 362
 13.5.2 Expert System Based EMC Packages 363
13.6 Summary 364
 Reference 365
 Exercises 366
 Assignments 367

CHAPTER 14 Signal Integrity 369

14.1 Introduction 369
14.2 SI Problems 370
 14.2.1 Typical SI Problems 370
 14.2.2 Where SI Problems Happen 371
 14.2.3 SI in Electrical Packaging 371
CHAPTER 14
SI Analysis
14.3 SI Analysis 372
14.3.1 SI Analysis in Design Flow 372
14.3.2 Principles of SI Analysis 374
14.4 SI Issues in Design 376
14.4.1 Rise Time and SI 376
14.4.2 Transmission Lines, Reflection, Cross Talk 376
14.4.3 Power Ground Noise 378
14.5 Modeling and Simulation 380
14.5.1 EM Modeling Techniques 380
14.5.2 SI Tools 380
14.5.3 IBIS 382
14.6 An SI Example 383
References 385

CHAPTER 15
EMC Standards
15.1 Introduction 387
15.2 Standards for EMI/EMC 388
15.3 MIL-STD-461/462 389
15.3.1 Conducted Interference Controls 389
15.3.2 Radiated Interference Controls 391
15.3.3 Susceptibility at Intermediate Levels of Exposure 392
15.3.4 Other Military Standards 392
15.4 IEEE/ANSI Standards 392
15.4.1 Test and Evaluation Methods 393
15.5 CISPR/IEC Standards 393
15.5.1 Test and Evaluation Methods 394
15.6 FCC Regulations 394
15.7 British Standards 395
15.8 VDE Standards 395
15.9 Euro Norms 396
15.10 EMI/EMC Standards in Japan 398
15.11 Performance Standards—Some Comparisons 398
15.11.1 Military Standards 398
15.11.2 IEC/CISPR Standards 399
15.11.3 ANSI Standards and FCC Specifications 400
15.11.4 Pulsed Interference Immunity 401
15.12 Summary 402
15.13 Update-2000 402
15.13.1 Military Standards 402
15.13.2 ANSI/IEEE Standards 403
15.13.3 CISPR/IEC Standards and Euronorms 404
15.13.4 Standards and Test Procedures 404
References 405
CHAPTER 16

Selected Bibliography 407

16.1 Practical Effects of EMI and Associated Concerns 407
16.2 Electromagnetic Noise: Sources and Description 408
16.3 Open-Area Test Site Measurements 411
16.4 Laboratory Measurement of RE/RS 411
16.5 Measurement of CE/CS 413
16.6 Pulsed Interference Immunity Measurements 413
16.7 Grounding, Shielding, and Bonding 414
16.8 EMC Filters 417
16.9 EMC Components 417
16.10 Spectrum Management and Frequency Assignment 419
16.11 EMC Computer Models 419
16.12 Signal Integrity 423

APPENDIX 1

EMC Terminology 425

APPENDIX 2

EMI/EMC Units 435

APPENDIX 3

Books On Related Topics 437

APPENDIX 4

EMI/EMC Standards 441

APPENDIX 5

EMC e-Resources 447

INDEX 449

ABOUT THE AUTHOR 453