Contents

Preface xxi

Acknowledgments xxv

Contributors xxvii

PART I CLINICAL TRIALS 1

1. Phase I Clinical Trials 3

Anastasis Ivanova and Nancy Flournoy

1.1 Introduction, 3
1.2 Phase I Trials in Healthy Volunteers, 3
1.3 Phase I Trials with Toxic Outcomes Enrolling Patients, 5
 1.3.1 Parametric versus Nonparametric designs, 6
 1.3.2 Markovian-Motivated Up-and-Down Designs, 6
 1.3.3 Isotonic Designs, 9
 1.3.4 Bayesian Designs, 9
 1.3.5 Time-to-Event Design Modifications, 10
1.4 Other Design Problems in Dose Finding, 11
1.5 Concluding Remarks, 12

2. Phase II Clinical Trials 15

Nigel Stallard

2.1 Introduction, 15
 2.1.1 Background, 15
 2.1.2 The Role of Phase II Clinical Trials in Clinical Evaluation of a Novel Therapeutic Agent, 16
 2.1.3 Phase II Clinical Trial Designs, 17
2.2 Frequentist Methods in Phase II Clinical Trials, 18
2.2.1 Review of Frequentist Methods and Their Applications in Phase II Clinical Trials, 18
2.2.2 Frequentist Methods for Single-Treatment Pilot Studies, 19
2.2.3 Frequentist Methods for Comparative Studies, 21
2.2.4 Frequentist Methods for Screening Studies, 22

2.3 Bayesian Methods in Phase II Clinical Trials, 22
2.3.1 Review of Bayesian Methods and Their Application in Phase II Clinical Trials, 22
2.3.2 Bayesian Methods for Single-Treatment Pilot Studies, Comparative Studies and Selection Screens, 24

2.4 Decision-Theoretic Methods in Phase II Clinical Trials, 25
2.5 Analysis of Multiple Endpoints in Phase II Clinical Trials, 26
2.6 Outstanding Issues in Phase II Clinical Trials, 27

3. Response-Adaptive Designs in Phase III Clinical Trials 33

3.1 Introduction, 33
3.2 Adaptive Designs for Binary Treatment Responses, 34
 3.2.1 Play-the-Winner Design, 34
 3.2.2 Randomized Play-the-Winner Design, 34
 3.2.3 Generalized Pólya’s Urn (GPU), 35
 3.2.4 Randomized Pólya Urn Design, 36
 3.2.5 Birth-and-Death Urn Design, 37
 3.2.6 Birth-and-Death Urn with Immigration Design, 37
 3.2.7 Drop-the-Loser Urn Design, 37
 3.2.8 Sequential Estimation-Adjusted Urn Design, 38
 3.2.9 Doubly Adaptive Biased Coin Design, 39
3.3 Adaptive Designs for Binary Treatment Responses Incorporating Covariates, 40
 3.3.1 Covariate-Adaptive Randomized Play-the-Winner Design, 40
 3.3.2 Treatment Effect Mappings, 41
 3.3.3 Drop-the-Loser Design with Covariate, 41
3.4 Adaptive Designs for Categorical Responses, 41
3.5 Adaptive Designs for Continuous Responses, 42
 3.5.1 Nonparametric-Score-Based Allocation Designs, 42
 3.5.2 Link-Function-Based Allocation Designs, 43
 3.5.3 Continuous Drop-the-Loser Design, 43
3.6 Optimal Adaptive Designs, 43
3.7 Delayed Responses in Adaptive Designs, 44
3.8 Biased Coin Designs, 45
3.9 Real Adaptive Clinical Trials, 45
3.10 Data Study for Different Adaptive Schemes, 46
 3.10.1 Fluoxetine Trial, 46
 3.10.2 Pregabalin Trial, 47
 3.10.3 Simulated Trial, 48
3.11 Concluding Remarks, 49

4. Inverse Sampling for Clinical Trials: A Brief Review of Theory and Practice
Atanu Biswas and Uttam Bandyopadhyay
4.1 Introduction, 55
 4.1.1 Inverse Binomial Sampling, 56
 4.1.2 Partial Sequential Sampling, 58
4.2 Two-Sample Randomized Inverse Sampling for Clinical Trials, 59
 4.2.1 Use of Mann–Whitney Statistics, 59
 4.2.2 Fixed-Width Confidence Interval Estimation, 60
 4.2.3 Fixed-Width Confidence Interval for Partial Sequential Sampling, 61
4.3 An Example of Inverse Sampling: Boston ECMO, 62
4.4 Inverse Sampling in Adaptive Designs, 62
4.5 Concluding Remarks, 63

5. The Design and Analysis Aspects of Cluster Randomized Trials
Hrishikesh Chakraborty
5.1 Introduction: Cluster Randomized Trials, 67
5.2 Intracluster Correlation Coefficient and Confidence Interval, 69
5.3 Sample Size Calculation for Cluster Randomized Trials, 71
5.4 Analysis of Cluster Randomized Trial Data, 73
5.5 Concluding Remarks, 75

PART II EPIDEMIOLOGY

6. HIV Dynamics Modeling and Prediction of Clinical Outcomes in AIDS Clinical Research
Yangxin Huang and Hulin Wu
6.1 Introduction, 83
6.2 HIV Dynamic Model and Treatment Effect Models, 84
 6.2.1 HIV Dynamic Model, 84
 6.2.2 Treatment Effect Models, 85
6.3 Statistical Methods for Predictions of Clinical Outcomes, 87
 6.3.1 Bayesian Nonlinear Mixed-Effects Model, 87
 6.3.2 Predictions Using the Bayesian Mixed-Effects Modeling Approach, 89
6.4 Simulation Study, 90
6.5 Clinical Data Analysis, 91
6.6 Concluding remarks, 92

7. Spatial Epidemiology
Lance A. Waller
7.1 Space and Disease, 97
7.2 Basic Spatial Questions and Related Data, 98
7.3 Quantifying Pattern in Point Data, 99
7.4 Predicting Spatial Observations, 107
7.5 Concluding Remarks, 118

8. Modeling Disease Dynamics: Cholera as a Case Study
Edward L. Ionides, Carles Bretó, and Aaron A. King
8.1 Introduction, 123
8.2 Data Analysis via Population Models, 124
8.3 Sequential Monte Carlo, 126
8.4 Modeling Cholera, 130
8.4.1 Fitting Structural Models to Cholera Data, 132
8.5 Concluding Remarks, 136

9. Misclassification and Measurement Error Models in Epidemiologic Studies
Surupa Roy and Tathagata Banerjee
9.1 Introduction, 141
9.2 A Few Examples, 143
9.2.1 Atom Bomb Survivors Data, 143
9.2.2 Coalminers Data, 143
9.2.3 Effect of Maternal Dietary Habits on Low Birth Weight in Babies, 143
9.3 Binary Regression Models with Two Types of Error, 144
9.4 Bivariate Binary Regression Models with Two Types of Error, 146
9.5 Models for Analyzing Mixed Misclassified Binary and Continuous Responses, 149
9.6 Atom Bomb Data Analysis, 151
9.7 Concluding Remarks, 152

PART III SURVIVAL ANALYSIS

10. Semiparametric Maximum-Likelihood Inference in Survival Analysis
Michael R. Kosorok
10.1 Introduction, 159
10.2 Examples of Survival Models, 160
10.3 Basic Estimation and Limit Theory, 162
10.4 The Bootstrap, 163
 10.4.1 The Regular Case, 165
 10.4.2 When Slowly Converging Nuisance Parameters are Present, 166
10.5 The Profile Sampler, 166
10.6 The Piggyback Bootstrap, 168
10.7 Other Approaches, 170
10.8 Concluding Remarks, 171

11. An Overview of the Semi–Competing Risks Problem 177
 Limin Peng, Hongyu Jiang, Rick J. Chappell, and Jason P. Fine
 11.1 Introduction, 177
 11.2 Nonparametric Inferences, 179
 11.3 Semiparametric One-Sample Inference, 181
 11.4 Semiparametric Regression Method, 184
 11.4.1 Functional Regression Modeling, 185
 11.4.2 A Bivariate Accelerated Lifetime Model, 187
 11.5 Concluding Remarks, 189

12. Tests for Time-Varying Covariate Effects within Aalen’s
 Additive Hazards Model 193
 Torben Martinussen and Thomas H. Scheike
 12.1 Introduction, 193
 12.2 Model Specification and Inferential Procedures, 194
 12.2.1 A Pseudo–Score Test, 197
 12.3 Numerical Results, 199
 12.3.1 Simulation Studies, 199
 12.3.2 Trace Data, 202
 12.4 Concluding Remarks, 204
 12.5 Summary, 204
 Appendix 12A, 205

13. Analysis of Outcomes Subject to Induced Dependent Censoring:
 A Marked Point Process Perspective 209
 Yijian Huang
 13.1 Introduction, 209
 13.2 Induced Dependent Censoring and Associated
 Identifiability Issues, 210
 13.3 Marked Point Process, 212
16. Tree-Based Methods for Survival Data
Mousumi Banerjee and Anne-Michelle Noone

16.1 Introduction, 265
16.2 Review of CART, 266
16.3 Trees for Survival Data, 268
 16.3.1 Methods Based on Measure of Within-Node Homogeneity, 268
 16.3.2 Methods Based on Between-Node Separation, 271
 16.3.3 Pruning and Tree Selection, 272
16.4 Simulations for Comparison of Different Splitting Methods, 272
16.5 Example: Breast Cancer Prognostic Study, 274
16.6 Random Forest for Survival Data, 278
 16.6.1 Breast Cancer Study: Results from Random Forest Analysis, 280
16.7 Concluding Remarks, 281

17. Bayesian Estimation of the Hazard Function with Randomly Right-Censored Data
Jean-François Angers and Brenda MacGibbon

17.1 Introduction, 287
 17.1.1 The Random Right-Censorship Model, 289
 17.1.2 The Bayesian Model, 290
17.2 Bayesian Functional Model Using Monotone Wavelet Approximation, 292
17.3 Estimation of the Subdensity F^*, 295
17.4 Simulations, 296
17.5 Examples, 298
17.6 Concluding Remarks, 300
Appendix 17A, 301

PART IV BIOINFORMATICS

18. The Effects of Intergene Associations on Statistical Inferences from Microarray Data
Kerby Shedden

18.1 Introduction, 309
18.2 Intergene Correlation, 310
18.3 Differential Expression, 314
18.4 Timecourse Experiments, 315
18.5 Meta-Analysis, 319
18.6 Concluding Remarks, 321
19. A Comparison of Methods for Meta-Analysis of Gene Expression Data

Hyungwon Choi and Debashis Ghosh

19.1 Introduction, 325
19.2 Background, 326
 19.2.1 Technology Details and Gene Identification, 326
 19.2.2 Analysis Methods, 327
19.3 Example, 328
19.4 Cross-Comparison of Gene Signatures, 329
19.5 Best Common Mean Difference Method, 329
19.6 Effect Size Method, 331
19.7 POE Assimilation Method, 332
19.8 Comparison of Three Methods, 334
 19.8.1 Signatures, 335
 19.8.2 Classification Performance, 335
 19.8.3 Directionality of Differential Expression, 336
19.9 Conclusions, 336

20. Statistical Methods for Identifying Differentially Expressed Genes in Replicated Microarray Experiments: A Review

Lynn kuo, Fang Yu, and Yifang Zhao

20.1 Introduction, 341
20.2 Normalization, 344
20.3 Methods for Selecting Differentially Expressed Genes, 349
 20.3.1 BH-T, 350
 20.3.2 SAM, 351
 20.3.3 SPH, 352
 20.3.4 LIMMA, 354
 20.3.5 MAANOVA, 355
20.4 Simulation Study, 357
 20.4.1 Results of Simulation Studies, 359
 20.4.2 Other Considerations, 360
20.5 Concluding Remarks, 360

21. Clustering of Microarray Data via Mixture Models

Geoffrey J. McLachlan, Richard W. Bean, and Angus Ng

21.1 Introduction, 365
21.2 Clustering of Microarray Data, 367
21.3 Notation, 367
21.4 Clustering of Tissue Samples, 369
21.5 The EMMIX-GENE Clustering Procedure, 370
 21.5.1 Step 1. Screening of Genes, 370
 21.5.2 Step 2. Clustering of Genes: Formation of Metagenes, 371
 21.5.3 Step 3. Clustering of Tissues, 372
21.6 Clustering of Gene Profiles, 372
21.7 EMMIX-WIRE, 373
21.8 Maximum-Likelihood Estimation via the EM Algorithm, 374
21.9 Model Selection, 376
21.10 Example: Clustering of Timecourse Data, 377
21.11 Concluding Remarks, 379

22. Censored Data Regression in High-Dimensional and Low-Sample-Size Settings for Genomic Applications 385

 Hongzhe Li

22.1 Introduction, 385
22.2 Censored Data Regression Models, 386
 22.2.1 The Cox Proportional Hazards Model, 386
 22.2.2 Accelerated Failure-Time Model, 387
 22.2.3 Additive Hazard Regression Models, 388
22.3 Regularized Estimation for Censored Data Regression Models, 388
 22.3.1 L_2 Penalized Estimation of the Cox Model Using Kernels, 389
 22.3.2 L_1 Penalized Estimation of the Cox Model Using Least- Angle Regression, 390
 22.3.3 Threshold Gradient Descent Procedure for the Cox Model, 391
 22.3.4 Regularized Buckley–James Estimation for the AFT Model, 391
 22.3.5 Regularization Based on Inverse Probability of Censoring Weighted Loss Function for the AFT Model, 392
 22.3.6 Penalized Estimation for the Additive Hazard Model, 393
 22.3.7 Use of Other Penalty Functions, 394
22.4 Survival Ensemble Methods, 394
 22.4.1 The Smoothing-Spline-Based Boosting Algorithm for the Nonparametric Additive Cox Model, 394
 22.4.2 Random Forests and Gradient Boosting Procedure for the AFT Model, 395
22.5 Nonparametric-Pathway-Based Regression Models, 395
22.6 Dimension-Reduction-Based Methods and Bayesian Variable Selection Methods, 396
22.7 Criteria for Evaluating Different Procedures, 397
22.8 Application to a Real Dataset and Comparisons, 397
22.9 Discussion and Future Research Topics, 398
22.9.1 Test of Treatment Effect Adjusting for High-Dimensional Genomic Data, 399
22.9.2 Development of Flexible Models for Gene–Gene and Gene–Environment Interactions, 399
22.9.3 Methods for Other Types of Genomic Data, 400
22.9.4 Development of Pathway- and Network-Based Regression Models for Censored Survival Phenotypes, 400

22.10 Concluding Remarks, 400

23. Analysis of Case–Control Studies in Genetic Epidemiology 405
Nilanjan Chatterjee

23.1 Introduction, 405
23.2 Maximum-Likelihood Analysis of Case–Control Data with Complete Information, 406
23.2.1 Background, 407
23.2.2 Maximum-Likelihood Estimation under HWE and Gene–Environment Independence, 408
23.2.3 An Example, 410
23.3 Haplotype-based Genetic Analysis with Missing Phase Information, 410
23.3.1 Background, 410
23.3.2 Methods, 412
23.3.3 Application, 414
23.4 Concluding Remarks, 415

Denise Scholtens, Raji Balasubramanian, and Robert Gentleman

24.1 Introduction, 419
24.2 Graphs of Biological Data, 420
24.2.1 Integrating Multiple Data Types, 421
24.3 Statistics on Graphs, 421
24.4 Graph-Theoretic Models, 422
24.5 Types of Measurement Error, 425
24.5.1 Stochastic Error, 426
24.5.2 Systematic Error, 426
24.5.3 Sampling, 426
24.6 Exploratory Data Analysis, 426
24.6.1 Reciprocity, 427
24.6.2 Sampling, 427
24.6.3 Underlying Network Structure, 428
24.7 Influence of Measurement Error on Graph Statistics, 429
24.7.1 Path Length: L, 429
24.7.2 Clustering Coefficient: C, 431
24.7.3 Node Degree Distribution, 436
24.8 Biological Implications, 436
25. **Prediction of RNA Splicing Signals**
Mark R. Segal

25.1 Introduction, 443
25.1.1 Biologic Overview of Splicing, 444
25.2 Existing Approaches to Splice Site Identification, 445
25.2.1 Maximum-Entropy Models, 445
25.2.2 Permuted Variable-Length Markov Models, 447
25.2.3 Bayesian Network Approaches, 448
25.3 Splice Site Recognition via Contemporary Classifiers, 450
25.3.1 Random Forests, 451
25.3.2 Support Vector Machines, 454
25.3.3 Boosting, 454
25.4 Results, 455
25.4.1 Data Generation, 455
25.4.2 Predictive Performance, 455
25.4.3 Interpretational Yield, 457
25.4.4 Computational Considerations, 458
25.5 Concluding Remarks, 459

26. **Statistical Methods for Biomarker Discovery Using Mass Spectrometry**
Bradley M. Broom and Kim-Anh Do

26.1 Introduction, 465
26.1.1 Sample Ionization, 467
26.1.2 Mass Analysis, 468
26.2 Biomarker Discovery, 470
26.3 Statistical Methods for Preprocessing, 470
26.4 Statistical Methods for Multiple Testing, Classification, and Applications, 473
26.4.1 Multiple Testing and Identification of Differentially Expressed Peaks, 473
26.4.2 A Peak Probability Contrast (PPC) Procedure for Sample Classification, 474
26.4.3 A Semiparametric Model for Protein Mass Spectroscopy, 474
26.4.4 Smoothed Principal-Component Analysis (PCA) for Proteomic Spectra, 476
26.4.5 Wavelet-Based Functional Mixed Model and Application, 477
26.4.6 A Nonparametric Bayesian Model Based on Kernel Functions, 479
26.5 Potential Statistical Developments, 481
26.6 Concluding Remarks, 483

27. Genetic Mapping of Quantitative Traits: Model-Free Sib-Pair Linkage Approaches 487
Saurabh Ghosh and Partha P. Majumder

27.1 Introduction, 487
27.2 The Basic QTL Framework For Sib-Pairs, 488
27.3 The Haseman–Elston Regression Framework, 489
27.4 Nonparametric Alternatives, 489
27.5 The Modified Nonparametric Regression, 490
 27.5.1 Evaluation of Significance Levels, 491
27.6 Comparison With Linear Regression Methods, 492
27.7 Significance Levels and Empirical Power, 493
27.8 An Application to Real Data, 495
27.9 Concluding Remarks, 496

PART V MISCELLANEOUS TOPICS 499

28. Robustness Issues in Biomedical Studies 501
Ayanendranath Basu

28.1 Introduction: The Need for Robust Procedures, 501
28.2 Standard Tools for Robustness, 502
 28.2.1 M-Estimators, 503
 28.2.2 Influence Function, 503
 28.2.3 Breakdown Point, 504
 28.2.4 Basic Miscellaneous Procedures, 504
 28.2.5 Alternative Approaches, 505
28.3 The Robustness Question in Biomedical Studies, 506
28.4 Robust Estimation in the Logistic Regression Model, 508
28.5 Robust Estimation for Censored Survival Data, 513
28.6 Adaptive Robust Methods in Clinical Trials, 518
28.7 Concluding Remarks, 521

29. Recent Advances in the Analysis of Episodic Hormone Data 527
Timothy D. Johnson and Yuedong Wang

29.1 Introduction, 527
29.2 A General Biophysical Model, 530
29.3 Bayesian deconvolution model (BDM), 531
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.3.1</td>
<td>Posterior Processing</td>
<td>534</td>
</tr>
<tr>
<td>29.3.2</td>
<td>An Example</td>
<td>536</td>
</tr>
<tr>
<td>29.4</td>
<td>Nonlinear Mixed-Effects Partial-Splines Models</td>
<td>537</td>
</tr>
<tr>
<td>29.5</td>
<td>Concluding Remarks</td>
<td>542</td>
</tr>
</tbody>
</table>

30. Models for Carcinogenesis

Anup Dewanji

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.1</td>
<td>Introduction</td>
<td>547</td>
</tr>
<tr>
<td>30.2</td>
<td>Statistical Models</td>
<td>549</td>
</tr>
<tr>
<td>30.3</td>
<td>Multistage Models</td>
<td>552</td>
</tr>
<tr>
<td>30.4</td>
<td>Two-Stage Clonal Expansion Model</td>
<td>555</td>
</tr>
<tr>
<td>30.5</td>
<td>Physiologically Based Pharmacokinetic Models</td>
<td>560</td>
</tr>
<tr>
<td>30.6</td>
<td>Statistical Methods</td>
<td>562</td>
</tr>
<tr>
<td>30.7</td>
<td>Concluding Remarks</td>
<td>564</td>
</tr>
</tbody>
</table>

Index

569