Contents

Foreword V
Preface VII
List of Contributors XIX

Part One Film Growth, Electronic Structure, and Interfaces 1

1 Organic Molecular Beam Deposition 3
Frank Schreiber
1.1 Introduction 3
1.2 Organic Molecular Beam Deposition 5
1.2.1 General Concepts of Thin Film Growth 5
1.2.2 Issues Specific to Organic Thin Film Growth 6
1.2.3 Overview of Popular OMBD Systems 8
1.2.3.1 PTCDA 8
1.2.3.2 DIP 8
1.2.3.3 Phthalocyanines 9
1.2.3.4 Oligoacenes (Anthracene, Tetracene, and Pentacene) 10
1.3 Films on Oxidized Silicon 10
1.3.1 PTCDA 10
1.3.2 DIP 11
1.3.3 Phthalocyanines 13
1.3.4 Pentacene 14
1.4 Films on Aluminum Oxide 14
1.4.1 PTCDA 16
1.4.2 DIP 16
1.4.3 Phthalocyanines 16
1.4.4 Pentacene 17
1.5 Films on Metals 17
1.5.1 PTCDA 18
1.5.1.1 Structure and Epitaxy of PTCDA/Ag(111) 18
1.5.1.2 Comparison with Other Substrates 18
4 Interfacial Doping for Efficient Charge Injection in Organic Semiconductors

Jae-Hyun Lee and Jang-Joo Kim

4.1 Introduction

4.2 Insertion of an Interfacial Layer in the Organic/Electrode Junction

- **4.2.1** Electron Injection
- **4.2.2** Hole Injection

4.3 Doped Organic/Electrode Junctions

- **4.3.1** “Doping” in Organic Semiconductors
- **4.3.2** Dopants in Organic Semiconductors
- **4.3.3** Charge Generation Efficiencies of Dopants
- **4.3.4** Hole Injection through the p-Doped Organic Layer/Anode Junction
- **4.3.5** Electron Injection through the n-Doped Organic Layer/Cathode Junction

4.4 Doped Organic/Undoped Organic Junction

4.5 Applications

- **4.5.1** OLEDs
- **4.5.2** OPVs
- **4.5.3** OFETs

4.6 Conclusions

5 Displacement Current Measurement for Exploring Charge Carrier Dynamics in Organic Semiconductor Devices

Yutaka Noguchi, Yuya Tanaka, Yukimasa Miyazaki, Naoki Sato, Yasuo Nakayama, and Hisao Ishii

5.1 Introduction

5.2 Displacement Current Measurement

- **5.2.1** DCM for Quasi-Static States
 - **5.2.1.1** Basic Concepts of DCM
 - **5.2.1.2** Trapped Charges and Injection Voltage
 - **5.2.1.3** Intermediate State between Depletion and Accumulation
- **5.2.2** DCM for Transient States
 - **5.2.2.1** Sweep Rate Dependence in DCM Curves

5.3 Charge Accumulation at Organic Heterointerfaces

- **5.3.1** Elements of Charge Accumulation at Organic Heterointerfaces
- **5.3.2** Interface Charges and Orientation Polarization
- **5.3.3** Light-Induced Space Charges in Alq3 Film

5.4 Conclusions

References
Contents

Part Two Charge Transport 155

6 Effects of Gaussian Disorder on Charge-Carrier Transport and Recombination in Organic Semiconductors 157
 Reinder Coehoorn and Peter A. Bobbert
6.1 Introduction 157
6.2 Mobility Models for Hopping in a Disordered Gaussian DOS 161
6.2.1 The Extended Gaussian Disorder Model 161
6.2.2 The Extended Correlated Disorder Model 165
6.2.3 Mobility in Host–Guest Systems 166
6.3 Modeling of the Recombination Rate 169
6.3.1 Recombination in Systems with a Gaussian DOS 169
6.3.2 Recombination in Host–Guest Systems with a Gaussian Host DOS 172
6.4 OLED Device Modeling 173
6.4.1 Single-Layer OLEDs: Analytical Drift-Only Theory 173
6.4.2 The Role of Charge-Carrier Diffusion 176
6.4.3 The Role of Gaussian Disorder: One-Dimensional Device Simulations 179
6.4.4 The Role of Gaussian Disorder: Three-Dimensional Device Simulations 182
6.5 Experimental Studies 186
6.5.1 Overview 186
6.5.2 PF–TAA-Based Polymer OLEDs 189
6.6 Conclusions and Outlook 194
 References 196

7 Charge Transport Physics of High-Mobility Molecular Semiconductors 201
 Henning Sirringhaus, Tomo Sakanoue, and Jui-Fen Chang
7.1 Introduction 201
7.2 Review of Recent High-Mobility Small-Molecule and Polymer Organic Semiconductors 202
7.3 General Discussion of Transport Physics/Transport Models of Organic Semiconductors 208
7.3.1 Static Disorder Parameters σ and Σ 219
7.4 Transport Physics of High-Mobility Molecular Semiconductors 221
7.5 Conclusions 234
 References 234

8 Ambipolar Charge-Carrier Transport in Molecular Field-Effect Transistors 239
 Andreas Opitz and Wolfgang Brütting
8.1 Introduction 239
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Ambipolar Charge-Carrier Transport in Blends of Molecular Hole- and Electron-Conducting Materials</td>
<td>244</td>
</tr>
<tr>
<td>8.3</td>
<td>Ambipolar Charge-Carrier Transport in Molecular Semiconductors by Applying a Passivated Insulator Surface</td>
<td>246</td>
</tr>
<tr>
<td>8.4</td>
<td>Electrode Variation for Ambipolar and Bipolar Transport</td>
<td>252</td>
</tr>
<tr>
<td>8.5</td>
<td>Applications of Bipolar Transport for Ambipolar and Complementary Inverters</td>
<td>256</td>
</tr>
<tr>
<td>8.6</td>
<td>Realization of Light-Emitting Transistors with Combined Al and TTF-TCNQ Electrodes</td>
<td>260</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusion</td>
<td>261</td>
</tr>
</tbody>
</table>

9 Organic Magnetoresistance and Spin Diffusion in Organic Semiconductor Thin-Film Devices 267

9.1 Introduction 267
9.1.1 Organization of This Chapter 268
9.2 Organic Magnetoresistance 270
9.2.1 Dependence of Organic Magnetoresistance on Hyperfine Coupling Strength 271
9.2.2 Organic Magnetoresistance in a Material with Strong Spin–Orbit Coupling 272
9.2.3 Organic Magnetoresistance in Doped Devices 275
9.2.4 Conclusions for Organic Spintronics 277
9.3 Theory of Spin–Orbit Coupling in Singly Charged Polymer Chains 277
9.4 Theory of Spin Diffusion in Disordered Organic Semiconductors 280
9.5 Distinguishing between Tunneling and Injection Regimes of Ferromagnet/Organic Semiconductor/Ferromagnet Junctions 284
9.6 Conclusion 289

Part Three Photophysics 295

10 Excitons at Polymer Interfaces 297

10.1 Introduction 297
10.2 Fabrication and Structural Characterization of Polymer Heterojunctions 298
10.3 Electronic Structure at Polymer/Polymer Interfaces 305
10.4 Excitons at Homointerfaces 307
10.5 Type-I Heterojunctions 312
10.6 Type-II Heterojunctions 314
Contents

10.7 CT State Recombination 319
10.8 Charge Separation and Photovoltaic Devices based on Polymer: Polymer Blends 322
10.9 Future Directions 327
References 328

11 Electronic Processes at Organic Semiconductor Heterojunctions: The Mechanism of Exciton Dissociation in Semicrystalline Solid-State Microstructures 333
Francis Paquin, Gianluca Latini, Maciej Sakowicz, Paul-Ludovic Karsenti, Linjun Wang, David Beljonne, Natalie Stingelin, and Carlos Silva

11.1 Introduction 333
11.2 Experimental Methods 334
11.3 Results and Analysis 334
11.3.1 Photophysics of Charge Photogeneration and Recombination Probed by Time-Resolved PL Spectroscopy 334
11.3.1.1 Absorption and Steady-State PL 334
11.3.1.2 Time-Resolved PL Measurements 335
11.3.1.3 Quantum Chemical Calculations 341
11.3.2 Solid-State Microstructure Dependence 342
11.3.2.1 Polymer Microstructure 342
11.3.2.2 Dependence of Time-Resolved PL on Molecular Weight 344
11.4 Conclusions 345
References 345

12 Recent Progress in the Understanding of Exciton Dynamics within Phosphorescent OLEDs 349
Sebastian Reineke and Marc A. Baldo

12.1 Introduction 349
12.2 Exciton Formation 349
12.2.1 Background 349
12.2.2 Spin Mixing for Higher Efficiency 351
12.2.2.1 Exciton Mixing and Phosphorescence 351
12.2.2.2 CT State Mixing and Enhanced Fluorescence 352
12.2.2.3 Thermally Activated Delayed Fluorescence 355
12.2.2.4 Summary: Comparison between Phosphorescence, Extrafluorescence, and TADF 357
12.3 Distributing Excitons in the Organic Layer(s) 357
12.3.1.1 Excitonic Confinement: Host–Guest Systems 357
12.3.1.2 Exciton Generation Zone 358
12.3.1.3 Exciton Migration 359
12.3.1.4 Triplet Harvesting 361
12.4 High Brightness Effects in Phosphorescent Devices 362
References 367
13 Organometallic Emitters for OLEDs: Triplet Harvesting, Singlet Harvesting, Case Structures, and Trends 371

Hartmut Yersin, Andreas F. Rausch, and Rafał Czerwieniec

13.1 Introduction 371
13.2 Electroluminescence 372
13.2.1 Triplet Harvesting 372
13.2.2 Singlet Harvesting 374
13.3 Triplet Emitters: Basic Understanding and Trends 375
13.3.1 Energy States 376
13.3.2 The Triplet State and Spin–Orbit Coupling 378
13.3.3 Emission Decay Time and Zero-Field Splitting: A General Trend 382
13.4 Case Studies: Blue Light Emitting Pt(II) and Ir(III) Compounds 386
13.4.1 Pt(II) Compounds 388
13.4.1.1 Photophysical Properties at Ambient Temperature 388
13.4.1.2 High-Resolution Spectroscopy: Triplet Substates and Vibrational Satellite Structures 391
13.4.2 Ir(III) Compounds 400
13.4.2.1 Photophysical Properties at Ambient Temperature 400
13.4.2.2 Electronic 0–0 Transitions and Energy Level Diagrams of the Emitting Triplet States 402
13.4.2.3 Vibrational Satellite Structures Exemplified on Ir(4,6-dFppy)₂(acac) 404
13.4.2.4 Effects of the Nonchromophoric Ligands 405
13.4.3 Comparison of Photophysical Properties of Pt(II) and Ir(III) Compounds 407
13.5 Case Studies: Singlet Harvesting and Blue Light Emitting Cu(I) Complexes 408
13.5.1 Photophysical Properties at Ambient Temperature 408
13.5.2 Triplet State Emission and Thermally Activated Fluorescence 411
13.5.3 Singlet Harvesting: Cu(I) Complexes as OLED-Emitters 415
13.6 Conclusion 417

References 420

Part Four Device Physics 425

14 Doping of Organic Semiconductors 427

Björn Lüssem, Montiz Riede, and Karl Leo

14.1 Introduction 427
14.2 Doping Fundamentals 430
14.2.1 p-Type Doping 433
14.2.1.1 Control of the Position of the Fermi Level by Doping 433
14.2.1.2 Doping Efficiency 436
14.2.2 n-Type Doping 438
14.2.2.1 n-Type Doping Using Alkali Metals 438
Contents

15.5 Approaches to Improved Light Outcoupling 520
15.5.1 Overview of Different Techniques 520
15.5.2 Reduction of Surface Plasmon Losses 522
15.5.2.1 Basic Properties of SPPs 522
15.5.2.2 Scattering Approaches 523
15.5.2.3 Index Coupling 524
15.5.2.4 Emitter Orientation 529
15.6 Conclusion 533
References 534

16 Light Outcoupling in Organic Light-Emitting Devices 541
Chih-Hung Tsai and Chung-Chih Wu
16.1 Introduction 541
16.2 Theories and Properties of OLED Optics 542
16.3 A Few Techniques and Device Structures to Enhance Light
Outcoupling of OLEDs 544
16.3.1 Second-Antinode OLED 544
16.3.2 Top-Emitting OLEDs Capped with Microlens or Scattering
Layers 549
16.3.3 OLED with Internal Scattering 554
16.3.4 OLED Utilizing Surface Plasmon Polariton-Mediated Energy
Transfer 561
16.4 Summary 571
References 571

17 Photogeneration and Recombination in
Polymer Solar Cells 575
Carsten Deibel, Andreas Baumann, and Vladimir Dyakonov
17.1 Introduction 575
17.2 Photogeneration of Charge Carriers 577
17.3 Charge Carrier Transport in Disordered Organic Semiconductors 583
17.4 Recombination of Photogenerated Charge Carriers 588
17.5 Open-Circuit Voltage 593
17.6 Summary 595
References 595

18 Light-Emitting Organic Crystal Field-Effect Transistors for Future
Organic Injection Lasers 603
Hajime Nakanotani and Chihaya Adachi
18.1 Introduction 603
18.2 Highly Photoluminescent Oligo(p-phenylenevinylene) Derivatives 608
18.3 Ambipolar Light-Emitting Field-Effect Transistors Based on Organic
Single Crystals 610
18.3.1 Ambipolar Carrier Transport Characteristics of Single Crystals of OPV
Derivatives 610
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3.2</td>
<td>EL Characteristics of LE-OFETs Based on Organic Single Crystals</td>
<td>611</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Tuning of Carrier Density by Interfacial Carrier Doping in Single</td>
<td>613</td>
</tr>
<tr>
<td></td>
<td>Crystals of OPV Derivatives</td>
<td></td>
</tr>
<tr>
<td>18.3.3.1</td>
<td>Interfacial Carrier Doping Based on Electron Transfer from an Organic</td>
<td>613</td>
</tr>
<tr>
<td></td>
<td>Single Crystal into a MoO$_x$ Layer</td>
<td></td>
</tr>
<tr>
<td>18.3.3.2</td>
<td>Application of Interfacial Carrier Doping for Ambipolar LE-OFETs</td>
<td>614</td>
</tr>
<tr>
<td>18.3.3.3</td>
<td>Estimation of Singlet Exciton Density in the Recombination Zone</td>
<td>616</td>
</tr>
<tr>
<td>18.4</td>
<td>Summary and the Outlook for Future Organic Injection Lasers</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>619</td>
</tr>
</tbody>
</table>

Index 623