Contents

Preface XVII
List of Contributors XIX

1 Introduction to Clean Technology and Catalysis 1
   James H. Clark
   1.1 Green Chemistry and Clean Technology 1
   1.1.1 Ideals of Green Chemistry 2
   1.2 Green Chemistry Metrics 3
   1.3 Alternative Solvents 5
   1.4 Heterogeneous or Homogeneous 6
   1.5 Alternative Energy Reactors for Green Chemistry 7
   1.5.1 Microchannel Reactors 7
   1.5.2 Microwave Reactors 7
   1.6 Concluding Remarks 9
   References 9

2 Mechanistic Studies of Alcohol Selective Oxidation 11
   Adam F. Lee
   2.1 Introduction 11
   2.1.1 Applications of Selective Oxidation 11
   2.1.2 Oxidant Considerations 12
   2.2 Metal-Catalyzed Alcohol Selox 13
   2.2.1 Monometallic Catalysts 13
   2.2.2 Bimetallic Selox Catalysts 15
   2.2.3 Support Effects 17
   2.3 Oxide, Sulfide, and Vanadate Catalysts 22
   2.4 Solvent Selection 22
   2.4.1 Supercritical Fluids 22
   2.4.2 Ionic Liquids and Water 23
   2.5 In Situ and Operando X-Ray Studies of Selox Catalysts 24
   2.5.1 X-Ray Absorption Spectroscopy 24
   2.5.2 X-Ray Photoelectron Spectroscopy 28
## Contents

2.6 Conclusions 32
References 33

3 Reaction Monitoring in Multiphase Systems: Application of Coupled In Situ Spectroscopic Techniques in Organic Synthesis 39
Leif R. Knöpke and Ursula Bentrup

3.1 Introduction 39
3.2 Method Coupling 41
3.3 Spectroscopic Reactors and Practical Aspects 45
3.4 Selected Examples of Use 50
3.4.1 Heterogeneously Catalyzed Hydrogenation of Imines 50
3.4.2 Three-Phase Hydrogenation of Nitrobenzene over Nanosized Au on TiO₂ 56
3.4.3 Elucidating the Mechanism of Cu(II)-Catalyzed Arylation of Imidazole and Phenylboronic Acid by a Multitechnique Approach 59
3.5 Conclusion and Outlook 60
References 61

4 In Situ Studies on Photocatalytic Materials, Surface Intermediates, and Reaction Mechanisms 65
Hendrik Kosslick, Vu A. Tuan, and Detlef W. Bahnemann

4.1 Introduction 65
4.2 In Situ Investigations 66
4.2.1 FTIR 66
4.2.1.1 NOₓ Depollution 66
4.2.1.2 Hydrocarbon Oxidation 69
4.2.1.3 Oxidation of Oxygen-Containing Compounds 75
4.2.2 EPR 79
4.2.2.1 Semiconductor Charge Separation and Transfer 79
4.2.2.2 Reactive Oxygen Species 86
4.2.2.3 Local Structure of Active Sites 89
4.2.3 XPS 90
4.2.4 XAFS and UV Vis 92
4.2.5 NMR 94
4.2.6 Other Methods 96
4.3 Concluding Remarks 98
References 99

5 Enantioselective Heterogeneous Catalysis 103
Christopher J. Baddeley

5.1 Introduction 103
5.2 Strategies for the Creation of Enantioselective Heterogeneous Catalysts 105
5.2.1 Immobilization of Homogeneous or Enzyme Catalysts 105
5.2.1.1 Covalent Tethering 105
5.2.1.1.1 Covalent Immobilization on Inorganic Supports 105
5.2.1.1.2 Covalent Immobilization on Polymeric Resins 106
5.2.1.1.3 Covalent Immobilization by Copolymerization 107
5.2.1.2 Immobilization by Encapsulation 107
5.2.1.2.1 Construction of Catalyst within the Pores of a Support 107
5.2.1.2.2 Construction of Support around the Catalyst 108
5.2.1.3 Immobilization by Electrostatic Interactions 108
5.2.1.4 Industrial Application of Immobilized Catalysts 109
5.2.2 Use of Chiral Solids 109
5.2.2.1 Metal or Metal Oxide on a Chiral Support 109
5.2.2.2 Chiral Zeolites 110
5.2.2.3 Chiral Metal–Organic Catalysts 110
5.2.3 Chirally Modified Metal Surfaces 112
5.2.3.1 Achiral Molecules on Achiral Surfaces – The Racemic Reaction 113
5.2.3.2 Methods for Controlling Enantioselectivity 114
5.2.3.2.1 Rate Enhancement at Modified Sites 116
5.2.3.2.2 Quenching of Racemic Reaction Rate 116
5.2.3.2.3 Formation of Supramolecular Assemblies 116
5.2.3.2.4 Chiral Recognition and Chiral Amplification 118
5.3 Concluding Remarks–A Comparison of the Various Approaches to Heterogeneous Enantioselective Catalysts 120
References 121

6 Mechanistic Studies of Solid Acids and Base-Catalyzed Clean Technologies 125
Atsushi Takagaki, Shun Nishimura, and Kohki Ebitani

6.1 Introduction 125
6.2 New Catalytic Systems 126
6.2.1 New Catalytic Materials 126
6.2.1.1 Nanostructured Metal Oxide Solid Acids 127
6.2.1.2 Carbon-Based Materials 130
6.2.1.3 Ion-Exchanged Resins 131
6.2.2 New Carbon–Carbon Bond Formations 133
6.2.2.1 Solid Acid Catalysts 133
6.2.2.2 Solid Base Catalysts 139
6.2.2.3 Solid Acid–Base Bifunctional Catalysts 140
6.2.3 One-Pot Sequential Reactions 141
6.2.3.1 One-Pot Sequential Reactions Using Acid and Base Sites on the Same Solid 142
6.2.3.2 One-Pot Sequential Synthesis System Using Different Particles of Solid Acid and Base Catalysts 143
6.3 Biomass Conversions 144
6.3.1 Hydrolysis of Cellulose 145
6.3.2 Transformation of Sugars into Furfurals 147
6.3.2.1 Synthesis of 5-Hydroxymethylfurfural from Fructose and Glucose Using Heterogeneous Catalysts 148
6.3.2.2 Synthesis of Furfural from Xylose Using Heterogeneous Catalysts 149
6.3.2.3 One-Pot Synthesis of Furfurals from Monosaccharides and Disaccharides Using Solid Acid and Base Catalysts 149
6.3.3 Synthesis of Lactic Acid 153
6.3.4 Biodiesel Production 155
6.3.5 Synthesis of Glycerol Carbonate 159
6.4 Summary 163
References 163

7 Site-Isolated Heterogeneous Catalysts 173
Mizuki Tada and Satoshi Muratsugu
7.1 Introduction 173
7.2 Assembled Monolayers of Metal Complexes on Single-Crystal Surfaces 174
7.3 Reaction-Induced and Photoinduced Formation of Unsaturated Ru Complexes Supported on SiO2 Surfaces 177
7.4 Manganese Triazacyclononane Catalysts Grafted under Reaction Conditions 181
7.5 Well-Defined Silica-Supported Mo–Imido Alkylidene Complexes for Metathesis 184
7.6 Double Catalytic Activation Using a Bifunctional Catalyst with Both Acid and Base on Solid Surfaces 186
7.7 Summary 189
References 189

8 Designing Porous Inorganic Architectures 193
Juan A. Melero, José Iglesias, and Gabriel Morales
8.1 Introduction 193
8.2 Templated Methods for the Preparation of Ordered Porous Materials 194
8.2.1 Ordered Microporous Materials: Zeolites and Zeotypes 195
8.2.1.1 Zeolite Synthesis and Crystallization Mechanism 196
8.2.1.2 New Trends in Zeolite Synthesis 199
8.2.1.2.1 Ultralarge Pore Zeolites 199
8.2.1.2.2 Nanocrystalline Zeolites 200
8.2.1.2.3 Two-Dimensional (2D) Zeolites 201
8.2.1.2.4 Hierarchical Zeolites 201
8.2.1.2.5 Organic–Inorganic Hybrid Zeolites 202
8.2.1.2.6 Multifunctional Zeolites 202
8.2.1.3 Zeolites for Cleaner Technologies 202
8.2.2 Ordered Mesoporous Materials 203
8.2.2.1 Synthesis of Mesoporous Materials: Formation Mechanism 207
8.2.2.2 Modification of Mesoporous Materials: Expanding Their Applications 207
8.2.2.2.1 Metal-Containing Silica Mesostructured Materials 209
8.2.2.2.2 Organic Functionalization of Mesoporous Silica Materials 211
8.2.2.2.3 Periodic Mesoporous Organosilicas (PMOs) 213
8.2.2.3 New Trends in the Synthesis of Mesoporous Materials 214
8.2.2.3.1 Mesoporous Nonsiliceous Metallic Oxide Materials 214
8.2.2.3.2 Mesoporous Materials with Zeolitic Crystal within the Walls 215
8.2.2.3.3 Morphology Control in Mesoporous Materials: Mesoporous Nanoparticles 216
8.2.2.3.4 New More Complicated Structures 216
8.2.3 Ordered Macroporous Materials 216
8.3 Hierarchical Porous Materials 218
8.3.1 Ordered Macroporous–Mesoporous Materials 218
8.3.2 Zeolites with Hierarchical Porous Structure: Combining Microporous with Meso-/Macroporous 219
8.3.2.1 Outstanding Properties of Hierarchical Zeolites 220
8.3.2.1.1 Increase in Total Available Surface Area 220
8.3.2.1.2 Enhancement of Mass Transfer 221
8.3.2.1.3 Robustness against Deactivation by Pore Blockage 221
8.3.2.1.4 Improved Dispersion of Active Phases 221
8.3.2.2 Approaches for the Synthesis of Hierarchical Zeolites 222
8.3.2.2.1 Dealumination 222
8.3.2.2.2 Desilication 223
8.3.2.2.3 Hard Templating by Carbon Materials 224
8.3.2.2.4 Hard Templating by Polymers 227
8.3.2.2.5 Organosilane-Based Methods 227
8.3.2.2.6 Other Methods 229
8.3.2.3 Catalytic Applications of Hierarchical Zeolites for Cleaner Technologies 230
8.4 Concluding Remarks 233
References 234

9 Tailored Nanoparticles for Clean Technology – Achieving Size and Shape Control 241
Vladimir Golovko
9.1 Introduction 241
9.2 Size effects—setting the scene 242
9.2.1 Examples of size effects on catalytic CO oxidation using metal nanoparticles 246
9.3 Size effects illustrated by way of examples of selected industrially important reactions 262
9.4 Shape effects 272
9.5 Conclusions 282
References 283
## 10 Application of Metal–Organic Frameworks in Fine Chemical Synthesis

*Jerome Canivet and David Farrusseng*

### 10.1 Metal–Organic Frameworks as Heterogeneous Catalysts

#### 10.1.1 Diversity of Metal–Organic Framework Structures

#### 10.1.2 Catalytic Features of Metal–Organic Frameworks

#### 10.1.3 Engineering Metal–Organic Frameworks Catalysts by Postsynthetic Modification

#### 10.1.4 Characterization of Functional Metal–Organic Frameworks

### 10.2 Applications in Carbon–Carbon Bond Formation

#### 10.2.1 Knoevenagel Condensation

#### 10.2.2 Cyanosilylation Reactions

#### 10.2.3 Suzuki–Miyaura, Ullmann, Sonogashira, and Heck Coupling Reactions

### 10.3 Applications in Oxidation, Carbon–Oxygen, and Carbon–Nitrogen Bond Formation

#### 10.3.1 Oxidation Reactions

##### 10.3.1.1 Alcohol Oxidation

##### 10.3.1.2 Sulfoxidation

##### 10.3.1.3 Epoxidations

##### 10.3.1.4 α-Oxidation of Alkenes to Give Corresponding Enol or Enone

##### 10.3.1.5 Oxidation of Alkanes to Give Alcohols or Ketones

#### 10.3.2 Aza-Michael Addition

#### 10.3.3 Domino Coupling

### 10.4 Applications in Asymmetric Synthesis

#### 10.4.1 Asymmetric Aldol Reaction

#### 10.4.2 Asymmetric Olefin Epoxidation

#### 10.4.3 Asymmetric Diethyl Zinc Addition to Aldehydes

#### 10.4.4 Asymmetric Transesterification

### 10.5 Concluding Remarks

#### 10.5.1 Strengths and Weaknesses of MOF Catalysts: More David Than Goliath

#### 10.5.2 Enzymes as Source of Inspiration

## 11 Process Intensification for Clean Catalytic Technology

*Albert Renken*

### 11.1 Introduction

### 11.2 Effect of Transport Phenomena on Heterogeneous Catalysis

### 11.3 Intensification of Transport Phenomena

#### 11.3.1 Packed Bed Reactors

#### 11.3.2 Catalytic Microstructured Reactors

#### 11.3.2.1 Catalytic Wall Microchannels
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3.2.2</td>
<td>External Mass Transfer in Microchannels</td>
<td>344</td>
</tr>
<tr>
<td>11.3.2.3</td>
<td>Pressure Drop in Microchannel Reactors</td>
<td>346</td>
</tr>
<tr>
<td>11.3.2.4</td>
<td>Residence Time Distribution in MSR</td>
<td>348</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Structured Catalyst</td>
<td>350</td>
</tr>
<tr>
<td>11.3.3.1</td>
<td>Monolithic Honeycombs</td>
<td>350</td>
</tr>
<tr>
<td>11.3.3.2</td>
<td>Solid Foams</td>
<td>353</td>
</tr>
<tr>
<td>11.3.3.2.1</td>
<td>Fiber Catalysts</td>
<td>355</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Supported Ionic liquids on Microstructured Supports</td>
<td>358</td>
</tr>
<tr>
<td>11.4</td>
<td>Conclusion</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>List of Symbols</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>362</td>
</tr>
<tr>
<td>12</td>
<td>Recent Trends in Operando and <em>In Situ</em> Characterization: Techniques for Rational Design of Catalysts</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td><em>Andrew M. Beale, Jan Philipp Hofmann, Meenakshisundaram Sankar, Evelien M. van Schrojenstein Lantman, and Bert M. Weckhuysen</em></td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>365</td>
</tr>
<tr>
<td>12.2</td>
<td>Catalyst Nascence</td>
<td>366</td>
</tr>
<tr>
<td>12.3</td>
<td>Synthesis of Silicalite-1 Molecular Sieves</td>
<td>367</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Synthesis</td>
<td>367</td>
</tr>
<tr>
<td>12.3.2</td>
<td><em>In Situ</em> Analysis</td>
<td>367</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Physicochemical Methods</td>
<td>369</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Molecular Methods</td>
<td>369</td>
</tr>
<tr>
<td>12.3.4.1</td>
<td>Nuclear Magnetic Resonance</td>
<td>370</td>
</tr>
<tr>
<td>12.3.4.2</td>
<td>Vibrational Spectroscopy</td>
<td>370</td>
</tr>
<tr>
<td>12.3.4.3</td>
<td>Diffraction and Scattering Methods</td>
<td>371</td>
</tr>
<tr>
<td>12.3.4.3.1</td>
<td>X-Ray Diffraction</td>
<td>371</td>
</tr>
<tr>
<td>12.3.4.3.2</td>
<td>Small X-Ray Scattering</td>
<td>371</td>
</tr>
<tr>
<td>12.3.4.3.3</td>
<td>Light Scattering</td>
<td>372</td>
</tr>
<tr>
<td>12.3.5</td>
<td>Combination of Techniques</td>
<td>372</td>
</tr>
<tr>
<td>12.4</td>
<td>Preparation of Supported Metal Catalysts</td>
<td>373</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Impregnation</td>
<td>374</td>
</tr>
<tr>
<td>12.4.1.1</td>
<td>Magnetic Resonance Imaging</td>
<td>374</td>
</tr>
<tr>
<td>12.4.1.2</td>
<td>Diagonal Offset Raman Spectroscopy</td>
<td>375</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Calcination and Activation</td>
<td>376</td>
</tr>
<tr>
<td>12.4.2.1</td>
<td>X-Ray Diffraction Imaging</td>
<td>377</td>
</tr>
<tr>
<td>12.4.2.2</td>
<td>Infrared Spectroscopy</td>
<td>379</td>
</tr>
<tr>
<td>12.5</td>
<td>Catalyst Life</td>
<td>380</td>
</tr>
<tr>
<td>12.6</td>
<td>Elucidating the Reaction Mechanism of Aerobic Oxidation of Benzyl Alcohol</td>
<td>381</td>
</tr>
<tr>
<td>12.7</td>
<td>Determination of the Active Sites in Aerobic Oxidation of Benzyl Alcohol</td>
<td>385</td>
</tr>
<tr>
<td>12.8</td>
<td>Catalyst Death</td>
<td>392</td>
</tr>
<tr>
<td>12.9</td>
<td>Methanol to Hydrocarbons</td>
<td>392</td>
</tr>
<tr>
<td>12.9.1</td>
<td><em>In Situ</em> Microspectroscopy of H-ZSM-5 Molecular Sieves</td>
<td>394</td>
</tr>
</tbody>
</table>
13 Application of NMR in Online Monitoring of Catalyst Performance

Michael Neugebauer and Michael Maiwald

13.1 Online Monitoring with NMR Spectroscopy

13.1.1 Operando and In Situ Methods

13.1.2 Reaction Monitoring and Process Analytical Technology

13.1.3 Benefits of Online NMR Spectroscopy

13.1.4 Fundamentals of NMR Spectroscopy

13.1.5 Advanced Experiments

13.2 Quantitative NMR Spectroscopy in Technical Samples

13.2.1 Technical Samples

13.2.1.1 Deuterium-Free Samples and Solvent Suppression Techniques

13.2.1.2 Solvent Suppression Techniques for quantitative Experiments

13.2.2 Reacting Samples

13.2.3 Acquisition Parameters

13.2.4 Signal Integration and Peak Deconvolution

13.3 Flow and High-Pressure NMR Spectroscopy for Reaction Monitoring

13.3.1 Flowing Samples

13.3.2 Flow Scheme and Hyphenation

13.3.3 Residence Times

13.3.4 High-Pressure NMR Spectroscopy

13.4 Selected Applications of NMR in Online Monitoring of Catalyst Performance

13.4.1 Reaction Monitoring of Homogeneous and Heterogeneous Liquid Reactions

13.4.1.1 Ester Formation – Activity Study of a Heterogeneous Catalyst for a Reactive Distillation Process

13.4.1.2 Investigations of an Ester Formation Product at Low Concentration

13.4.1.3 Determination of Exchange Rates and Exchange Pathways

13.4.2 Direct Monitoring of Catalysts in Heterogeneous Reactions

13.4.2.1 MAS NMR Spectroscopy

13.4.2.2 In Situ Flow MAS NMR Spectroscopy

13.5 Conclusions

Acknowledgments

References
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Ambient-Pressure X-Ray Photoelectron Spectroscopy</td>
<td>437</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>437</td>
</tr>
<tr>
<td>14.2</td>
<td>Technical Aspects</td>
<td>438</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Basic Concept</td>
<td>438</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Attenuation of Electrons by the Gas Phase</td>
<td>441</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Interaction of X-Rays with the Gas Phase</td>
<td>443</td>
</tr>
<tr>
<td>14.2.4</td>
<td>Photoelectron Spectroscopy of the Gas Phase</td>
<td>443</td>
</tr>
<tr>
<td>14.2.5</td>
<td>Sample Contamination</td>
<td>443</td>
</tr>
<tr>
<td>14.2.6</td>
<td>Measurement of Insulating Samples</td>
<td>444</td>
</tr>
<tr>
<td>14.2.7</td>
<td>Other Aspects</td>
<td>444</td>
</tr>
<tr>
<td>14.3</td>
<td>Applications of APXPS</td>
<td>445</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Interaction of Water Vapor with Metal Oxide Surfaces</td>
<td>446</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Chemistry of Chiral Molecules on Metal Surfaces</td>
<td>450</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Investigation of Carbon Nanotube (CNT)-Based Catalysts</td>
<td>453</td>
</tr>
<tr>
<td>14.3.3.1</td>
<td>Oxidative Dehydrogenation of Alkanes on Pristine and Phosphorous-Doped CNTs</td>
<td>453</td>
</tr>
<tr>
<td>14.3.3.2</td>
<td>Growth of CNTs on Conductive Supports</td>
<td>453</td>
</tr>
<tr>
<td>14.3.4</td>
<td>Selective CO Oxidation in Hydrogen on Pt/CeO₂ and Pd/CeO₂</td>
<td>457</td>
</tr>
<tr>
<td>14.3.5</td>
<td>Application of APXPS to Electrochemistry</td>
<td>460</td>
</tr>
<tr>
<td>14.4</td>
<td>Outlook</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>465</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>465</td>
</tr>
</tbody>
</table>

**Index** | 469