Contents to Volume 1

- **Foreword** V
- **Preface** XVII
- **List of Contributors** XIX
- **Drug Delivery in Oncology – Challenge and Perspectives** LIX

Part I Principles of Tumor Targeting

1 **Limits of Conventional Cancer Chemotherapy** 3
 Klaus Mross and Felix Kratz

1.1 Introduction: The Era of Cancer Chemotherapy 3
1.2 Dilemma and Challenge of Treating Malignant Diseases 14
1.3 Adverse Effects 16
1.3.1 Common Side-Effects 18
1.3.1.1 Depression of the Immune System 18
1.3.1.2 Fatigue 19
1.3.1.3 Tendency to Bleed Easily 19
1.3.1.4 Gastrointestinal Distress 19
1.3.1.5 Hair Loss 20
1.3.2 Damage to Specific Organs 20
1.3.2.1 Cardiotoxicity 20
1.3.2.2 Hepatotoxicity 21
1.3.2.3 Nephrotoxicity 22
1.3.2.4 Pulmonary Side-Effects 22
1.3.2.5 Vascular Adverse Effects 23
1.3.2.6 Tissue Damage (Extravasation) 23
1.3.2.7 Neurological Side-Effects 24
1.3.2.8 Secondary Neoplasms 25
1.3.2.9 Infertility 25
1.3.2.10 Other Side-Effects 25
1.4 Supportive Care 25
1.5 New Approaches Complementing Current Cancer Chemotherapy 26
1.6 Conclusions and Perspectives 28

References 29
2 Pathophysiological and Vascular Characteristics of Solid Tumors in Relation to Drug Delivery 33
Peter Vaupel
2.1 Introduction 33
2.2 Basic Principles of Blood Vessel Formation in Solid Tumors 34
2.2.1 Angiogenesis 34
2.2.2 Vascular Co-option 36
2.2.3 Vasculogenesis 36
2.2.4 Intussusception 36
2.2.5 Vascular Mimicry 36
2.2.6 Microvessel Formation by Myeloid Cells 36
2.3 Tumor Lymphangiogenesis 37
2.4 Tumor Vascularity and Blood Flow 37
2.5 Arteriovenous Shunt Perfusion in Tumors 38
2.6 Volume and Characteristics of the Tumor Interstitial Space 40
2.7 Interstitial Fluid Pressure in Tumors 42
2.8 Role of the Disorganized, Compromised Microcirculation as an Obstacle in Drug Delivery 43
2.8.1 Blood-Borne Delivery 43
2.8.2 Extravasation of Anticancer Agents 45
2.9 Interstitial Barriers to Drug Delivery 46
2.10 Pathophysiological Tumor Microenvironment as an Obstacle in Tumor Therapy 47
2.10.1 Hypoxia as an Obstacle in Drug Therapy 48
2.10.1.1 Direct Effects 48
2.10.1.2 Indirect Effects Based on Changes in the Transcriptome, in Differential Regulation of Gene Expression, and in Alterations of the Proteome 49
2.10.1.3 Indirect Effects Based on Enhanced Mutagenesis, Genomic Instability, and Clonal Selection 51
2.10.1.4 Tumor Hypoxia: An Adverse Parameter in Chemotherapy 51
2.10.2 Tumor Acidosis and Drug Resistance 53
2.11 Conclusions 56
Acknowledgments 56
References 56

3 Enhanced Permeability and Retention Effect in Relation to Tumor Targeting 65
Hiroshi Maeda
3.1 Background and Status Quo 65
3.2 What is the EPR Effect: Mechanism, Uniqueness, and Factors Involved 66
3.3 Heterogeneity of the EPR Effect: A Problem in Drug Delivery 72
3.4 Overcoming the Heterogeneity of the EPR Effect for Drug Delivery and How to Enhance the EPR Effect 75
3.4.1 Angiotensin II-Induced High Blood Pressure 75
3.4.2 Use of NO-Releasing Agents 78
3.4.3 Use of Other Vascular Modulators 79
3.5 PEG Dilemma: Stealth Effect and Anti-PEG IgM Antibody 79
3.6 Concluding Remarks 80
Acknowledgments 81
References 81

4 Pharmacokinetics of Immunoglobulin G and Serum Albumin: Impact of the Neonatal Fc Receptor on Drug Design 85
Jan Terje Andersen and Inger Sandlie
4.1 Introduction 85
4.2 Discovery of FcRn 87
4.3 FcRn Structure 88
4.4 FcRn–Ligand Interactions 89
4.5 FcRn as a Multiplayer with Therapeutic Utilities 90
4.5.1 Directional Placental Transport 90
4.5.2 FcRn at Mucosal Surfaces 91
4.5.3 Systemic FcRn-Mediated Recycling 92
4.5.4 Role of FcRn in Antigen Presentation 93
4.5.5 FcRn at Immune-Privileged Sites 94
4.5.6 FcRn in the Kidneys 94
4.5.7 FcRn Expressed by the Liver 95
4.6 Engineering IgG for Altered FcRn Binding and Pharmacokinetics 95
4.6.1 IgG Fc Fusions 95
4.6.2 Engineered IgG Variants 96
4.6.3 Blocking FcRn Recycling 102
4.7 Targeting FcRn by SA 102
4.7.1 SA Fusions 102
4.7.2 Targeting SA 105
4.8 Considering Cross-Species Binding 111
4.9 Concluding Remarks 113
Acknowledgment 113
References 113

5 Development of Cancer-Targeting Ligands and Ligand–Drug Conjugates 121
Ruiwu Liu, Kai Xiao, Juntao Luo, and Kit S. Lam
5.1 Introduction 121
5.2 Overview of Cancer-Targeting Ligand–Drug Conjugates 122
5.3 Cancer-Targeting Ligands 125
5.3.1 Introduction 125
5.3.2 Phage-Display Library Approach 125
5.3.2.1 Phage-Display Library Screening and Decoding 127
5.3.2.2 Examples 127
5.3.3 OBOC Combinatorial Library Approach 131
5.3.3.1 OBOC Library Design 132
5.3.3.2 OBOC Library Construction 135
5.3.3.3 OBOC Library Screening 137
5.3.3.4 OBOC Library Decoding 138
5.3.3.5 Ligand Optimization 139
5.3.3.6 Examples 140
5.4 Linkers 143
5.4.1 Acid-Sensitive Linkers 143
5.4.2 Enzymatic Cleavage 143
5.4.3 Self-Immolative Spacers 145
5.4.4 Reductive Cleavage 146
5.4.5 On-Demand Cleavable Linker 146
5.5 Examples of Cancer-Targeting Ligand–Drug Conjugates 147
5.5.1 Folic Acid–Drug Conjugates 147
5.5.2 Peptide Ligand–Drug Conjugates 148
5.5.3 Peptide Hormone–Drug Conjugates 150
5.5.4 Antibody–Drug Conjugates 151
5.5.5 ADEPT 154
5.5.6 Polymer–Drug Conjugates 156
5.5.7 Targeting Liposomes and Nanoparticles 158
5.6 Conclusions and Perspectives 159
Acknowledgments 160
References 160

6 Antibody-Directed Enzyme Prodrug Therapy (ADEPT) – Basic Principles and its Practice So Far 169
Kenneth D. Bagshawe
6.1 Introduction 169
6.2 Principles and the Components of ADEPT 170
6.2.1 Target 170
6.2.2 Antibody 171
6.2.3 Enzyme 172
6.2.4 Prodrug and Drug 173
6.3 Third Essential 173
6.4 ADEPT Studies Elsewhere 175
6.5 Reagents for First Clinical Trials in London (1990–1995) 176
6.5.1 First ADEPT Clinical Trial 177
6.5.2 Subsequent ADEPT Clinical Studies in London 178
6.5.3 Two-Phase ADEPT Clinical Studies in London 179
6.6 Technology Advances 179
6.7 ADEPT Future 181
References 181
Part II Tumor Imaging 187

7 Imaging Techniques in Drug Development and Clinical Practice 189
John C. Chang, Sanjiv S. Gambhir, and Jürgen K. Willmann

7.1 Introduction 189
7.2 Cancer Biology 191
7.2.1 Tumor Genetic Heterogeneity 191
7.2.2 Altered Tumor Metabolism 191
7.2.3 Tumor Angiogenesis 192
7.2.4 Receptor Pathologies 194
7.3 Cancer Biomarkers 194
7.3.1 Histological Biomarkers 194
7.3.2 Hematological Biomarkers 196
7.3.3 Imaging Biomarkers 196
7.4 Imaging Techniques 197
7.4.1 SPECT 197
7.4.2 PET/PET-CT 198
7.4.3 MRI 198
7.4.4 CT 199
7.4.5 Ultrasound 199
7.4.6 Fluorescence/Bioluminescence 200
7.5 Examples of Imaging Assessment of Tumor Response 200
7.5.1 SPECT 200
7.5.2 PET/PET-CT 201
7.5.2.1 Microdosing 201
7.5.2.2 Cancer Metabolism and Proliferation 202
7.5.2.3 Hypoxia 204
7.5.2.4 Biomarker Imaging 205
7.5.2.5 Angiogenesis 207
7.5.2.6 Apoptosis 207
7.5.3 MRI 207
7.5.3.1 Cellular Structure 209
7.5.3.2 Metabolic Response 209
7.5.3.3 Tumor Perfusion 210
7.5.4 CT Imaging 211
7.5.5 Ultrasound 212
7.5.6 Fluorescence/Bioluminescence 213
7.6 Challenges of Imaging in Drug Development and Validation 214
7.7 Conclusions and Future Perspectives 215
References 217

8 Magnetic Nanoparticles in Magnetic Resonance Imaging and Drug Delivery 225
Patrick D. Sutphin, Efrén J. Flores, and Mukesh Harisinghani

8.1 Introduction 225
9.4.8 SPECT/CT for Detection of Bone Metastases 277
9.4.9 SPECT/CT in Thyroid Cancer 278
9.4.10 SPECT/CT for Imaging of Adrenocortical Tumors 279
9.4.11 SPECT/CT in Neuroendocrine Tumors 281
9.5 Conclusions and Perspectives 281

References 282

Contents to Volume 2

Part III Macromolecular Drug Delivery Systems 289

Antibody-Based Systems 289

10 **Empowered Antibodies for Cancer Therapy** 291
 Stephen C. Alley, Simone Jeger, Robert P. Lyon, Django Sussman, and Peter D. Senter

11 **Mapping Accessible Vascular Targets to Penetrate Organs and Solid Tumors** 325
 Kerri A. Massey and Jan E. Schnitzer

12 **Considerations of Linker Technologies** 355
 Laurent Ducry

13 **Antibody–Maytansinoid Conjugates: From the Bench to the Clinic** 375
 Hans Erickson

14 **Calicheamicin Antibody–Drug Conjugates and Beyond** 395
 Puja Sapra, John DiJoseph, and Hans-Peter Gerber

15 **Antibodies for the Delivery of Radionuclides** 411
 Anna M. Wu

16 **Bispecific Antibodies and Immune Therapy Targeting** 441
 Sergej M. Kiprijanov

Polymer-Based Systems 483

17 **Design of Polymer–Drug Conjugates** 485
 Jindřich Kopeček and Pavla Kopečková

18 **Dendritic Polymers in Oncology: Facts, Features, and Applications** 513
 Mohiuddin Abdul Quadir, Marcelo Calderón, and Rainer Haag
19 Site-Specific Prodrug Activation and the Concept of Self-Immolation 553
André Warnecke

20 Ligand-Assisted Vascular Targeting of Polymer Therapeutics 591
Anat Eldar-Boock, Dina Polyak, and Ronit Satchi-Fainaro

21 Drug Conjugates with Poly(Ethylene Glycol) 627
Hong Zhao, Lee M. Greenberger, and Ivan D. Horak

22 Thermo-Responsive Polymers 667
Drazen Raucher and Shama Moktan

23 Polysaccharide-Based Drug Conjugates for Tumor Targeting 701
Gurusamy Saravanakumar, Jae Hyung Park, Kwangmeyung Kim, and Ick Chan Kwon

24 Serum Proteins as Drug Carriers of Anticancer Agents 747
Felix Kratz, Andreas Wunder, and Bakheet Elsadek

25 Future Trends, Challenges, and Opportunities with Polymer-Based Combination Therapy in Cancer 805
Coralie Deladriere, Rut Lucas, and María J. Vicent

26 Clinical Experience with Drug–Polymer Conjugates 839
Khalid Abu Ajaj and Felix Kratz

Part IV Nano- and Microparticulate Drug Delivery Systems 885

Lipid-Based Systems 885

27 Overview on Nanocarriers as Delivery Systems 887
Haifa Shen, Elvin Blanco, Biana Godin, Rita E. Serda, Agathe K. Streiff, and Mauro Ferrari

28 Development of PEGylated Liposomes 907
I. Craig Henderson

29 Immunoliposomes 951
Vladimir P. Torchilin

30 Responsive Liposomes (for Solid Tumor Therapy) 989
Stavroula Sofou
31 Nanoscale Delivery Systems for Combination Chemotherapy 1013
Barry D. Liboiron, Paul G. Tardi, Troy O. Harasym, and Lawrence, D. Mayer

Polymer-Based Systems 1051

32 Micellar Structures as Drug Delivery Systems 1053
Nobuhiro Nishiyama, Horacio Cabral, and Kazunori Kataoka

33 Tailor-Made Hydrogels for Tumor Delivery 1071
Sungwon Kim and Kinam Park

34 pH-Triggered Micelles for Tumor Delivery 1099
Haiqing Yin and You Han Bae

35 Albumin–Drug Nanoparticles 1133
Neil Desai

36 Carbon Nanotubes 1163
David A. Scheinberg, Carlos H. Villa, Freddy Escorcia, and Michael R. McDevitt

Contents to Volume 3

Part V Ligand-Based Drug Delivery Systems 1187

37 Cell-Penetrating Peptides in Cancer Targeting 1189
Kaido Kurrikoff, Julia Suhorutšenko, and Úlo Langel

38 Targeting to Peptide Receptors 1219
Andrew V. Schally and Gabor Halmos

39 Aptamer Conjugates: Emerging Delivery Platforms for Targeted Cancer Therapy 1263
Zeyu Xiao, Jillian Frieder, Benjamin A. Teply, and Omid C. Farokhzad

40 Design and Synthesis of Drug Conjugates of Vitamins and Growth Factors 1283
Iontcho R. Vlahov, Paul J. Kleindl, and Fei You

41 Drug Conjugates with Polyunsaturated Fatty Acids 1323
Joshua Seitz and Iwao Ojima
Part VI Special Topics 1359

42 RNA Drug Delivery Approaches 1361
Yuan Zhang and Leaf Huang

43 Local Gene Delivery for Therapy of Solid Tumors 1391
Wolfgang Walther, Peter M. Schlag, and Ulrike Stein

44 Viral Vectors for RNA Interference Applications in Cancer Research and Therapy 1415
Henry Fechner and Jens Kurreck

45 Design of Targeted Protein Toxins 1443
Hendrik Fuchs and Christopher Bachran

46 Drug Targeting to the Central Nervous System 1489
Gert Fricker, Anne Mahringer, Melanie Ott, and Valeska Reichel

47 Liver Tumor Targeting 1519
Katrin Hochdörffer, Giuseppina Di Stefano, Hiroshi Maeda, and Felix Kratz

48 Photodynamic Therapy: Photosensitizer Targeting and Delivery 1569
Pawel Mroz, Sulbha K. Sharma, Timur Zhiyentayev, Ying-Ying Huang, and Michael R. Hamblin

49 Tumor-Targeting Strategies with Anticancer Platinum Complexes 1605
Markus Galanski and Bernhard K. Keppler

Index 1631