Contents

Preface xi

Notation and Abbreviations xvii

1 Introduction to Design and Analysis of Experiments 1
1.1 Why Simultaneous Experiments? 1
1.2 Interaction Effects 2
1.3 Choice of Factors and Their Levels 4
1.4 Classification of Factors 5
1.5 Fixed or Random Effects Model? 5
1.6 Fisher’s Three Principles of Experiments vs. Noise Factor 6
1.7 Generalized Interaction 7
1.8 Immanent Problems in the Analysis of Interaction Effects 7
1.9 Classification of Factors in the Analysis of Interaction Effects 8
1.10 Pseudo Interaction Effects (Simpson’s Paradox) in Categorical Data 8
1.11 Upper Bias by Statistical Optimization 9
1.12 Stage of Experiments: Exploratory, Explanatory or Confirmatory? 10
 References 10

2 Basic Estimation Theory 11
2.1 Best Linear Unbiased Estimator 11
2.2 General Minimum Variance Unbiased Estimator 12
2.3 Efficiency of Unbiased Estimator 14
2.4 Linear Model 18
2.5 Least Squares Method 19
 2.5.1 LS method and BLUE 19
 2.5.2 Estimation space and error space 22
 2.5.3 Linear constraints on parameters for solving the normal equation 24
 2.5.4 Generalized inverse of a matrix 28
 2.5.5 Distribution theory of the LS estimator 29
3 Basic Test Theory

3.1 Normal Mean
 3.1.1 Setting a null hypothesis and a rejection region 41
 3.1.2 Power function 45
 3.1.3 Sample size determination 47
 3.1.4 Nuisance parameter 48
 3.1.5 Non-parametric test for median 49

3.2 Normal Variance
 3.2.1 Setting a null hypothesis and a rejection region 53
 3.2.2 Power function 55

3.3 Confidence Interval
 3.3.1 Normal mean 56
 3.3.2 Normal variance 57

3.4 Test Theory in the Linear Model
 3.4.1 Construction of F-test 58
 3.4.2 Optimality of F-test 61

3.5 Likelihood Ratio Test and Efficient Score Test
 3.5.1 Likelihood ratio test 62
 3.5.2 Test based on the efficient score 63
 3.5.3 Composite hypothesis 64

References 68

4 Multiple Decision Processes and an Accompanying Confidence Region

4.1 Introduction 71

4.2 Determining the Sign of a Normal Mean – Unification of One- and Two-Sided Tests 71

4.3 An Improved Confidence Region 73

References 74

5 Two-Sample Problem

5.1 Normal Theory
 5.1.1 Comparison of normal means assuming equal variances 75
 5.1.2 Remark on the unequal variances 78
 5.1.3 Paired sample 79
 5.1.4 Comparison of normal variances 81

5.2 Non-parametric Tests
 5.2.1 Permutation test 84
 5.2.2 Rank sum test 86
5.2.3 Methods for ordered categorical data 88
5.3 Unifying Approach to Non-inferiority, Equivalence and Superiority Tests 92
 5.3.1 Introduction 92
 5.3.2 Unifying approach via multiple decision processes 93
 5.3.3 Extension to the binomial distribution model 98
 5.3.4 Extension to the stratified data analysis 100
 5.3.5 Meaning of non-inferiority test and a rationale of switching to superiority test 104
 5.3.6 Bio-equivalence 107
 5.3.7 Concluding remarks 109
References 110

6 One-Way Layout, Normal Model 113
 6.1 Analysis of Variance (Overall F-Test) 113
 6.2 Testing the Equality of Variances 115
 6.2.1 Likelihood ratio test (Bartlett’s test) 115
 6.2.2 Hartley’s test 116
 6.2.3 Cochran’s test 116
 6.3 Linear Score Test (Non-parametric Test) 118
 6.4 Multiple Comparisons 121
 6.4.1 Introduction 121
 6.4.2 Multiple comparison procedures for some given structures of sub-hypotheses 122
 6.4.3 General approach without any particular structure of sub-hypotheses 125
 6.4.4 Closed test procedure 128
 6.5 Directional Tests 128
 6.5.1 Introduction 128
 6.5.2 General theory for unifying approach to shape and change-point hypotheses 130
 6.5.3 Monotone and step change-point hypotheses 136
 6.5.4 Convexity and slope change-point hypotheses 152
 6.5.5 Sigmoid and inflection point hypotheses 158
 6.5.6 Discussion 161
References 161

7 One-Way Layout, Binomial Populations 165
 7.1 Introduction 165
 7.2 Multiple Comparisons 166
 7.3 Directional Tests 167
 7.3.1 Monotone and step change-point hypotheses 167
7.3.2 Maximal contrast test for convexity and slope change-point hypotheses 171
7.3.3 Cumulative chi-squared test for convexity hypothesis 181
7.3.4 Power comparisons 185
7.3.5 Maximal contrast test for sigmoid and inflection point hypotheses 187

References 190

8 Poisson Process 193
 8.1 Max acc. \(t_1 \) for the Monotone and Step Change-Point Hypotheses 193
 8.1.1 Max acc. \(t_1 \) statistic in the Poisson sequence 193
 8.1.2 Distribution function of max acc. \(t_1 \) under the null model 194
 8.1.3 Max acc. \(t_1 \) under step change-point model 195
 8.2 Max acc. \(t_2 \) for the Convex and Slope Change-Point Hypotheses 197
 8.2.1 Max acc. \(t_2 \) statistic in the Poisson sequence 197
 8.2.2 Max acc. \(t_2 \) under slope change-point model 198

References 199

9 Block Experiments 201
 9.1 Complete Randomized Blocks 201
 9.2 Balanced Incomplete Blocks 205
 9.3 Non-parametric Method in Block Experiments 211
 9.3.1 Complete randomized blocks 211
 9.3.2 Incomplete randomized blocks with block size two 226

References 234

10 Two-Way Layout, Normal Model 237
 10.1 Introduction 237
 10.2 Overall ANOVA of Two-Way Data 238
 10.3 Row-wise Multiple Comparisons 244
 10.3.1 Introduction 244
 10.3.2 Interaction elements 247
 10.3.3 Simultaneous test procedure for obtaining a block interaction model 248
 10.3.4 Constructing a block interaction model 250
 10.3.5 Applications 254
 10.3.6 Discussion on testing the interaction effects under no replicated observation 255
 10.4 Directional Inference 256
 10.4.1 Ordered rows or columns 257
 10.4.2 Ordered rows and columns 259
 10.5 Easy Method for Unbalanced Data 260
 10.5.1 Introduction 260
 10.5.2 Sum of squares based on cell means 260
10.5.3 Testing the null hypothesis of interaction 261
10.5.4 Testing the null hypothesis of main effects under $H_{αβ}$ 263
10.5.5 Accuracy of approximation by easy method 264
10.5.6 Simulation 264
10.5.7 Comparison with the LS method on real data 264
10.5.8 Estimation of the mean $μ_{ij}$ 269
References 270

11 Analysis of Two-Way Categorical Data 273
11.1 Introduction 273
11.2 Overall Goodness-of-Fit Chi-Square 275
11.3 Row-wise Multiple Comparisons 276
11.3.1 Chi-squared distances among rows 276
11.3.2 Reference distribution for simultaneous inference in clustering rows 278
11.3.3 Clustering algorithm and a stopping rule 278
11.4 Directional Inference in the Case of Natural Ordering Only in Columns 281
11.4.1 Overall analysis 281
11.4.2 Row-wise multiple comparisons 283
11.4.3 Multiple comparisons of ordered columns 284
11.4.4 Re-analysis of Table 11.1 taking natural ordering into consideration 288
11.5 Analysis of Ordered Rows and Columns 291
11.5.1 Overall analysis 291
11.5.2 Comparing rows 292
References 296

12 Mixed and Random Effects Model 299
12.1 One-Way Random Effects Model 299
12.1.1 Model and parameters 299
12.1.2 Standard form for test and estimation 300
12.1.3 Problems of negative estimators of variance components 302
12.1.4 Testing homogeneity of treatment effects 303
12.1.5 Between and within variance ratio (SN ratio) 303
12.2 Two-Way Random Effects Model 306
12.2.1 Model and parameters 306
12.2.2 Standard form for test and estimation 307
12.2.3 Testing homogeneity of treatment effects 308
12.2.4 Easy method for unbalanced two-way random effects model 309
12.3 Two-Way Mixed Effects Model 314
12.3.1 Model and parameters 314
12.3.2 Standard form for test and estimation 316
12.3.3 Null hypothesis $H_{\alpha\beta}$ of interaction and the test statistic 316
12.3.4 Testing main effects under the null hypothesis $H_{\alpha\beta}$ 318
12.3.5 Testing main effect H_β when the null hypothesis $H_{\alpha\beta}$ fails 318
12.3.6 Exact test of H_β when the null hypothesis $H_{\alpha\beta}$ fails 319

12.4 General Linear Mixed Effects Model 322
12.4.1 Gaussian linear mixed effects model 322
12.4.2 Estimation of parameters 324
12.4.3 Estimation of random effects (BLUP) 326

References 327

13 Profile Analysis of Repeated Measurements 329
13.1 Comparing Treatments Based on Upward or Downward Profiles 329
13.1.1 Introduction 329
13.1.2 Popular approaches 330
13.1.3 Statistical model and approach 332
13.2 Profile Analysis of 24-Hour Measurements of Blood Pressure 338
13.2.1 Introduction 338
13.2.2 Data set and classical approach 340
13.2.3 Statistical model and new approach 340

References 345

14 Analysis of Three-Way Categorical Data 347
14.1 Analysis of Three-Way Response Data 348
14.1.1 General theory 348
14.1.2 Cumulative chi-squared statistics for the ordered categorical responses 358
14.2 One-Way Experiment with Two-Way Categorical Responses 361
14.2.1 General theory 361
14.2.2 Applications 364
14.3 Two-Way Experiment with One-Way Categorical Responses 375
14.3.1 General theory 375
14.3.2 Applications 377

References 382

15 Design and Analysis of Experiments by Orthogonal Arrays 383
15.1 Experiments by Orthogonal Array 383
15.1.1 Orthogonal array 383
15.1.2 Planning experiments by interaction diagram 387
15.1.3 Analysis of experiments from an orthogonal array 389
15.2 Ordered Categorical Responses in a Highly Fractional Experiment 393
15.3 Optimality of an Orthogonal Array 397

References 399

Appendix 401

Index 407