Index

a
- active material 230, 232, 233
- active and reactive power-voltage control scheme 259
- AE (alternative energy) 274
- ambient temperature 24, 25, 30–32, 36, 39, 49, 91, 233, 263
- analysis method
 - curve 87, 210
 - frequency-domain 211, 213
 - three-level assessment 198, 207
 - time-domain 211
- anode 230–233
- AS (ancillary service) 243–245
- automatic voltage control (AVC) 125, 130, 139, 147
- automobile company C1 114–116
- available reactive capacity 130, 131
- AVC see automatic voltage control (AVC)
- average sensitivity value 257, 258

b
- battery company C2 114–116
- battery energy storage system (BESS) 19, 20, 230–233, 242, 271, 300–309 see also energy storage
- bidirectional power flow 10

c
- CAP (capacity absorption planning) 244
- capacitor banks 130, 131, 140, 141, 144–162 see also static capacitor (SC)
- CASP (capacity/ancillary service program) 243
- cathode 230–233
- cell
 - flow 229, 232, 233
 - heterojunction solar 20
 - homojunction solar 20
 - multi-junction solar 20
 - noncrystalline silicon semiconductor 21
 - organic solar 21
 - PV 2, 5, 6, 19–26, 29–31, 39, 171
 - Schottky junction solar 20
 - silicon solar 2, 21–23
 - thin-film solar 20
 - wet PV 20
- charging/discharging controller of battery 19
- CHP generation 17
- close-loop control 38
- combined heat and power generation see CHP generation
- community partition theory 254
- connection topology between inverter and PV 26–28
 - centralized 26
 - control logic 131
 - module integrated 26–28
 - multiple series 26–28
 - control principle 132, 133
- constrained optimization method 82–84
 - algorithms 82
 - random scenario 88–94
- converter
 - DC-DC 33
 - flyback 29
 - rear-end 29, 34
- correlation coefficient 79–81

Index

coupling degree 256
CPP (critical peak pricing) 242, 243
critical load nodes 259–261
customer satisfaction 248, 252, 254
cut-in power 136, 263

critical peak pricing 242
real-time pricing 242, 243
TOU (time of use pricing) 242
nonschedulable 242
schedulable 227, 242, 252
dynamic simulations 87, 269
d
d
d-axis component 168
DOE (Department of Energy) 1, 4, 272, 273, 281
DER (distributed energy resource) 273–274, 277–280
DG type 17
asynchronous 17
power electronic-interfaced 17
synchronous 17
DG mode
grid-connected 17, 302
standalone 17
DGP (diesel generation plant) 299
different loading conditions 259
digital simulation method 82, 87
discount rate 68, 288
disturbance 12–13, 31, 87–88, 303
PV output power 88
system fault 87
distributed generation see DG type; DG mode
distribution line impedance 108
distribution loss 108–112, 117, 123
line loss 12, 40, 108, 111, 119–123
mathematical model 101, 103, 108
network loss 119–123, 153
DLC (direct load control) 243, 245, 272
DN (distribution network)
upgrade 92, 273
double-frequency fluctuation 169, 177, 178
double sulfation reaction 230
DR (demand response) 22–28, 93–94, 242–246
interruptible load 243
demand side bidding 244
direct load control 243–244
incentive-based 242–251
optimization model 247
price-based 242–243
ed
economic analysis of PV investment 62, 66–68
capital cost 66
electricity consumption saving 67–68
feed-in tariff 4–6, 68
O&M cost 66–67
other cost 66–67
remaining cost 66–67
replacement cost 66–68
subsidy 5, 15, 66, 68
economic efficiency 70, 239, 241, 277
EDR (emergency demand response) 243–245
elastic coefficient 243
elasticity of substitution 243
electrical noises 32
electricity demand 5, 18, 45, 47
electrochemical energy storage 229–236, 241
capacity constraint 234
capacity model 234
cost 241
depth of discharge 236
discharge efficiency 234, 239
discharging current constraint 234
charge efficiency 234
charging current constraint 234
charging power 234, 236
charging rate 234
cost 241
discharging power 234, 236, 238, 285, 292
discharging rate 234
lead-acid battery 228–238, 283, 286
life loss 235
life model 235
life span 236
li-ion battery 229–233
SOC (state of charge)
 constraint 234, 238
 model 233
 weighted ampere-hour model 235
electrolyte 20, 230–233
EMC (electromagnetic compatibility) 32, 39
EMS (energy management system) 93, 278, 279, 299–307, 313
energy storage
 chemical 228, 229, 233, 234, 241
 compressed air 228
cryogenic 228, 229
efficiency 229, 232
 electrochemical 228, 229
electromagnetic 228
 mechanical 228
 phase change 228, 229
 pumped hydro storage 228
 service life 228, 229, 236, 283
 superconducting magnetic 228, 229, 312
 system 227, 229, 230, 233, 236–241
technologies 94, 227–230
EPA (Environmental Protection Agency) 1
equivalent circuit 22–24, 84, 167, 168, 180, 208, 209
equivalent electricity generation 43, 57, 58, 61, 62
excess PV power 71, 115–116, 122
external connections 231
extreme scenarios 137, 145, 147, 150, 151
 electricity demand 5, 18, 45, 47
 holidays 74, 147–163, 242, 246, 259, 264
 working days 147–156, 163, 242, 246

faults
 asymmetrical 167
 symmetrical 167
 voltage sag 166, 167, 170–173, 189, 191
fault simulation 174, 176, 186
fitness value 251
flickers 32, 83–85, 195–199, 206–210
flywheel 228, 230, 274
frequency drift 48
future PV installation plan 261

GA (genetic algorithm) 238, 278, 312, 313
generator nodes 237
global L indices 240
green energy source 17
greenhouse gas 4
grid parity 68–70, 94–95

harmonic
 background 204, 206
 component 9, 169, 214, 216, 217
current 32, 49, 85, 199–205, 220, 221
distortion rate 85–86
 impedance model 211, 212, 217, 220, 226
 comprehensive aggregation 212
 constant impedance 212
 induction motor 212, 226
 power flow 138, 211–213, 221
 source 199, 204, 206, 211, 212, 217, 218, 225
heat and power see CHP generation
high–power conversion 29
hill climbing/perturb and observe (P&Q) method 33
HOMER 80
HRI 197, 200, 201
HRU 206

IEC 60904, 26
IEEE Std
 1547.2–2008 17, 49, 196–204
 929–2000 31, 196, 200
IL (interruptible load) 243–245
improved modularity index 257, 258, 265
incremental conductance 34, 35, 41
inertia constant 238
integration Schemes
 AC 275
 DC 275, 276
 Hybrid 277
internal active and reactive controller 132
 see also PQ controller
inverter
 multi-stage 28
inverter (contd.)
 single-stage 28, 33
 three-phase grid-connected 30
 three–phase PV 29
 two-stage 32
inverter control strategy 131–138, 151, 163, 166
 constant power factor 132, 134, 143, 146, 151–163
 model 143–144
 unity power factor 131, 132, 209
 variable power factor 132–134, 143, 146, 151–163
 voltage adaptive control 132–134, 151
islanding
 capability 18
 detection 9, 13, 31, 32, 39, 226
 phenomenon 31
 protection 9, 31

I
LCOE (levelized cost of energy) 68, 69, 95
 normal 69
 real 69
life cycle 66–69, 235, 287, 289, 295
lifetime 22, 23, 271, 283, 288–292, 295, 296
line impedance 108, 223
line resistance 198
load
 characteristics 37, 43–63, 89, 242, 245, 247
 fluctuation 43, 47, 48, 56, 61 see also load variation
 level 9, 43–46, 54, 61, 145, 147, 297, 302
 nodes 89, 98, 237, 259–261
 normal 259
 prediction 11, 49, 97, 303
 roll-in 250, 251
 transfer model 248, 249
 variation 43–48, 57, 131
load current or load voltage maximization
 method 37
load factor 44–47, 55
 maximum utilization hour 47, 52, 54, 58, 61
 monthly duration curve 55
load types 43–36, 79–82
 agricultural 43–36, 80–82
 commercial 43–36, 80–82, 246, 292
 industrial 43–36, 79–82, 91
 residential 43–46, 61, 80–83
low voltage ride through (LVRT) 31, 165, 169–178, 186–192

M
market competition 1
MAS (multiagent system) 279, 280, 301, 307
 energy management method 299–301
 fault-tolerance 301
 flexibility 301
 model predictive control (MPC) 301, 305, 306, 308
 scalability 301
 structure and implementation 308–309
matching degree 76, 81
material-based PV cell classification 21
maximum allowable capacity 66, 82, 83, 86, 88, 89
maximum load utilization hour 45–47, 54
maximum power point tracking (MPPT) 9, 19, 20, 26–41, 132, 142, 143, 147
maximum power utilization hour 52, 58, 61
METI see Ministry of Economy, Trade and Industry (METI)
MG (Microgrid) 273–309
 control and energy management 278–281
 centralized 278–279
 distributed 279–281, 301
 hybrid hierarchical (HHC) 280–281, 310
 implementation 274, 282–309
 integration scheme 274–277
 life-cycle cost 287–289
 planning model 274
 power management 280
 PVSHH (PV-small hydro hybrid) 299
 replacement cost 287–288
stand-alone 281, 310, 313
system configurations 274
microgrid centralized controller (MGCC) 278, 279, 300, 301
minimum technical output 70, 71
Ministry of Economy, Trade and Industry (METI) 5
modularity index 256–258, 265
monocrystalline silicon 21–23, 38
MPPT see maximum power point tracking (MPPT)

n
National Renewable Energy Laboratory (NREL) 4, 68, 277
NDRC (National Development and Reform Commission) 7, 68
NEDO (the New Energy and Industrial Technology Development Organization) 5
net load 53–62, 70–78, 283, 285
duration curve 44–78
network partition optimization algorithm 258–259
neutral line overload 199
node voltage sensitivity 164, 254, 256
non-deterministic polynomial-hard (NP-hard) characteristics 256
non-partition management scheme 266–268
NREL see National Renewable Energy Laboratory (NREL)

o
OLTC (on-load tap changer) 125, 130, 137–146
control block 139–140
control mode 139
on-load voltage ratio 139–140
position of 147
rated voltage 6, 20
voltage angle sensitivity 257
open-circuit voltage method 36, 40
OpenDSS 138–147, 261
operational curve law 181
operation practice 297, 299
operating strategy
real-time control 254, 256, 270, 283, 301, 307
system operation modes 284
system standby condition 183
system start-up condition 283
optimal partition 254, 258, 264–265
optimization goal
life-cycle cost 287, 289, 295
multi-objective 62, 271, 311
pollutant emission 274, 289, 290, 294, 299
renewable energy generation penetration 289
optimization methods 86–88, 278 see also GA (genetic algorithm)
optimization model
optimization process 267, 290, 291
system sizing 287, 291, 294, 297, 302
original load 54, 55, 59, 60, 74–78, 247, 253

p
packaging components 231
PC (PV cost) 72–73, 79–82
PCC (point of common coupling) 112–116, 118–137, 143, 149–155,
PDF (Probability Density Function) 47–48, 52–53, 56–57
peak load 43–48, 52–62, 152, 232,
242–245, 251, 292, 300, 302
duration 47, 54, 56
regulation 52, 57
shifting 227, 232, 254
peak-shift effect 120
peak-valley difference 44–46, 55
PI node 99, 100
phase change material 229
photochemical conversion 18
photoelectric conversion 18, 20–24
photo-thermal conversion 18
PI controller 132, 133, 168, 172
plug-and-play operation 275, 279
PoI (point of integration) 112–116, 118,
120, 122, 126–128
polycrystalline silicon 5, 7, 20–23, 38
power dispatch 12, 49, 71, 131, 262,
300–309
power factor 9, 100, 125–163, 207
operational range 120, 126
unity 9, 100, 125, 127, 132, 207
power flow calculation 97–100, 123, 126, 138, 147, 211–213, 261, 262
branch-based method 97–99
branch current method 98–99
branch power method 98–99
forward and backward substitution method 99–100
direction 13, 101, 118
node-based method 98–99
NCM (node current method) 98–99
NPM (node power method) 98–99
model 97
power quality 195–225
power variations 47, 52
PQ controller 132
PQ node 100
practical considerations 295–297
present value 68, 289
proportional–integral control 35
PSO (particle swarm optimization) 136, 250, 271, 312
public supply network 75, 196, 197, 201, 206, 211, 219, 225
PUR (PV utility ratio) 72, 73, 76, 77, 79, 82
PV accommodation capacity 114, 227, 236, 238, 240–242, 245–247, 252, 270
PV applications 2–8, 18
PV array 22, 24, 26, 29–39, 112, 120, 142, 143, 175, 283, 294, 299, 311
PV cluster partition control 256
PV control nodes set 259
P/V droop control 136
PV energy
annual generation 116
available 76
PVGP (PV plant) 4–9, 26–27, 170, 300–308
PV installation 1–7, 67, 85, 89, 94, 104, 114, 119, 203, 236, 238, 239, 261, 263, 266, 299
capacity 1, 4, 5, 7, 74, 89, 120
capacity ratio 114
PV integration centralized 9, 13, 219–223
optimal capacity 11–12, 110–112
PV integration capacity 106–123
multiple-points 103, 106–108, 223–225
pattern 112–114
scheme 114, 122
single-point 101–106
PV integration capacity 85, 94, 104, 119, 208, 238, 239, 261, 263
PV module 1, 6, 19, 22, 24, 26, 29, 31, 38, 67, 112, 113, 132
PV penetration 65–96
CP (capacity penetration) 66, 72–82, 92–94, 119, 120, 227, 290, 292
EP (energy penetration) 66, 72, 76–79, 119, 227, 252–254, 271
improvement 93–94
PP (power penetration) 71–81, 92, 94
real-time 259
PV panel 4–7, 17, 126, 142, 263, 283
PV power available 71, 76 see also excess PV power
curtailed active power 71, 78, 79, 259–267
effective output 43, 57–62
fluctuation mode 157
unavailable 71, 76, 78
PV system dispatchable 99–100
model control strategy 143–144
model structure 142–143
nondispatchable 99, 100
standalone 17, 273–274
PWM modulation 172, 213

q
q-axis component 168
Q/V droop control 134, 136
dead band 135, 171
dead zone 134, 135
four-point control curve 134–137
six-point control curve 134, 135

r
radial distribution network 10, 101, 108, 130, 186
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>random numbers</td>
<td>238</td>
</tr>
<tr>
<td>reactance</td>
<td>83–85, 101, 167, 181</td>
</tr>
<tr>
<td>reactive current</td>
<td>128, 170–182, 189–192</td>
</tr>
<tr>
<td>reactive power</td>
<td></td>
</tr>
<tr>
<td>balance degree</td>
<td>257–258</td>
</tr>
<tr>
<td>consumptions</td>
<td>32</td>
</tr>
<tr>
<td>control see RPC</td>
<td></td>
</tr>
<tr>
<td>provision</td>
<td>170</td>
</tr>
<tr>
<td>regulation</td>
<td>93, 131–137, 148, 154–156</td>
</tr>
<tr>
<td>reactive power compensation</td>
<td>132–137, 143–163</td>
</tr>
<tr>
<td>reactive power regulation</td>
<td>93, 132–137, 143–163</td>
</tr>
<tr>
<td>static-state</td>
<td>132–137</td>
</tr>
<tr>
<td>reactive power-voltage (Q-V) sensitivity matrix</td>
<td>257</td>
</tr>
<tr>
<td>real power-voltage (P-V) sensitivity matrix</td>
<td>257</td>
</tr>
<tr>
<td>real-time control</td>
<td>257</td>
</tr>
<tr>
<td>Renewable energy (sources (RESs))</td>
<td>6, 43, 65, 138, 229, 274</td>
</tr>
<tr>
<td>reserve capacity</td>
<td>9, 63, 239, 287</td>
</tr>
<tr>
<td>residual capacity</td>
<td>234</td>
</tr>
<tr>
<td>RTDS-PXI</td>
<td>301, 307</td>
</tr>
<tr>
<td>RCC (ripple correlation control)</td>
<td>10, 36–37, 53, 65, 70, 74, 77, 102, 115–118, 145, 150, 154, 159, 224</td>
</tr>
<tr>
<td>RPC (reactive power control)</td>
<td>125, 144, 164, 254, 261, 266, 267</td>
</tr>
<tr>
<td>RTP (real time pricing)</td>
<td>242, 243</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>SA_F1</td>
<td>114–118</td>
</tr>
<tr>
<td>safety factor (SF)</td>
<td>287</td>
</tr>
<tr>
<td>SA substation</td>
<td>6–7, 13, 17–21, 30</td>
</tr>
<tr>
<td>SC see static capacitor (SC)</td>
<td></td>
</tr>
<tr>
<td>seawater desalination system (SWDS)</td>
<td>282, 299</td>
</tr>
<tr>
<td>SEIA (Solar Energy Industries Association)</td>
<td>4</td>
</tr>
<tr>
<td>sequence</td>
<td></td>
</tr>
<tr>
<td>negative</td>
<td>167–186, 199, 212–213</td>
</tr>
<tr>
<td>positive</td>
<td>167–186, 199, 212–213</td>
</tr>
<tr>
<td>zero</td>
<td>199, 212–213</td>
</tr>
<tr>
<td>sequential simulation</td>
<td>119</td>
</tr>
<tr>
<td>severity</td>
<td></td>
</tr>
<tr>
<td>long-term</td>
<td>198</td>
</tr>
<tr>
<td>short-term</td>
<td>198, 208</td>
</tr>
<tr>
<td>SHGP (small-hydro generation plant)</td>
<td>299–308</td>
</tr>
<tr>
<td>shiftable load capacity</td>
<td>247–254</td>
</tr>
<tr>
<td>ANSI standard</td>
<td>181–182</td>
</tr>
<tr>
<td>capacity</td>
<td>85, 196, 199–202, 206, 207, 219</td>
</tr>
<tr>
<td>current</td>
<td>165–192</td>
</tr>
<tr>
<td>steady-state</td>
<td>174–179, 189–192</td>
</tr>
<tr>
<td>transient</td>
<td>167</td>
</tr>
<tr>
<td>current calculation</td>
<td>180–186</td>
</tr>
<tr>
<td>per unit calculation</td>
<td>181</td>
</tr>
<tr>
<td>IEC standard</td>
<td>181</td>
</tr>
<tr>
<td>impedance</td>
<td>139, 181, 186, 209, 219</td>
</tr>
<tr>
<td>protection</td>
<td>83–85, 166–176</td>
</tr>
<tr>
<td>sinusoidal pulse width modulation see</td>
<td>SPWM</td>
</tr>
<tr>
<td>siting principle</td>
<td>240</td>
</tr>
<tr>
<td>solar energy</td>
<td>1, 4–11, 18–21, 40, 69, 76, 79, 273, 274, 299</td>
</tr>
<tr>
<td>solar irradiance</td>
<td>6, 24, 32–36, 39, 49, 137, 145–146, 206, 251, 263–269, 292, 305</td>
</tr>
<tr>
<td>solar tracking system</td>
<td>19</td>
</tr>
<tr>
<td>solar thermal collector</td>
<td>4</td>
</tr>
<tr>
<td>solid semiconductor material</td>
<td>20</td>
</tr>
<tr>
<td>specific energy</td>
<td>229, 232</td>
</tr>
<tr>
<td>SPWM</td>
<td>29</td>
</tr>
<tr>
<td>standard conditions</td>
<td>26, 236</td>
</tr>
<tr>
<td>static capacitor (SC)</td>
<td>125, 130, 137–142, 146</td>
</tr>
<tr>
<td>control block</td>
<td>139–143</td>
</tr>
<tr>
<td>control mode</td>
<td>99, 100, 135, 139–143</td>
</tr>
<tr>
<td>static characteristic constraint method</td>
<td>82</td>
</tr>
<tr>
<td>static simulation</td>
<td>87</td>
</tr>
<tr>
<td>stationary three-phase reference frame</td>
<td>167</td>
</tr>
<tr>
<td>stationary two-phase reference frame</td>
<td>168</td>
</tr>
<tr>
<td>step-up transformer</td>
<td>19, 27, 51, 85, 108, 112–122, 261</td>
</tr>
<tr>
<td>sub-community</td>
<td>256–267</td>
</tr>
<tr>
<td>system admittance matrix</td>
<td>236–237</td>
</tr>
<tr>
<td>symmetrical parameter D of inverter</td>
<td>136</td>
</tr>
<tr>
<td>t</td>
<td>Total demand distortion</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>THD</td>
<td>Total harmonic distortion</td>
</tr>
<tr>
<td>three-phase grid-connected system</td>
<td>29, 30</td>
</tr>
<tr>
<td>three-phase unbalance</td>
<td>12, 31–32, 44, 168</td>
</tr>
<tr>
<td>three stages</td>
<td>65, 94</td>
</tr>
<tr>
<td>high-level</td>
<td>65, 297</td>
</tr>
<tr>
<td>low-or middle-level</td>
<td>65</td>
</tr>
<tr>
<td>time-sequence characteristics</td>
<td>43, 45, 49, 61</td>
</tr>
<tr>
<td>total-energy-throughput model</td>
<td>236</td>
</tr>
<tr>
<td>transfer period constraint</td>
<td>249</td>
</tr>
<tr>
<td>transferred load capacity constraint</td>
<td>249</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>u</th>
<th>UL1741</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>unbalanced current</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>unit sizing technology</td>
<td>274–290</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>Valley load</th>
<th>56, 154</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector control technology</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>virtual internal potential</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>0.4-kV-level</td>
<td>118, 119, 122</td>
<td></td>
</tr>
<tr>
<td>10-kV-level</td>
<td>114, 115, 118, 122</td>
<td></td>
</tr>
<tr>
<td>adaptive control</td>
<td>132–134, 151</td>
<td></td>
</tr>
<tr>
<td>change rate</td>
<td>49, 143</td>
<td></td>
</tr>
<tr>
<td>collapse distance</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>collapse point</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>constraint</td>
<td>83, 86–89, 93, 130, 149, 238</td>
<td></td>
</tr>
<tr>
<td>deviation</td>
<td>49, 137, 195, 197, 198</td>
<td></td>
</tr>
<tr>
<td>acceptable</td>
<td>125–126</td>
<td></td>
</tr>
<tr>
<td>distortion</td>
<td>200, 206, 211, 224</td>
<td></td>
</tr>
<tr>
<td>distribution</td>
<td>101–108</td>
<td></td>
</tr>
<tr>
<td>flicker</td>
<td>198, 210</td>
<td></td>
</tr>
<tr>
<td>fluctuation</td>
<td>32, 49, 83, 94, 149, 196–198, 206, 208, 209</td>
<td></td>
</tr>
<tr>
<td>magnitude sensitivity</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>overvoltage</td>
<td>89–93, 118–123, 134, 261–270</td>
<td></td>
</tr>
<tr>
<td>rated</td>
<td>49, 139, 144, 170, 182, 232</td>
<td></td>
</tr>
<tr>
<td>regulation</td>
<td>82, 125–164, 198, 231, 232, 254, 256, 261, 266–270</td>
<td></td>
</tr>
<tr>
<td>required operational limit</td>
<td>120, 126</td>
<td></td>
</tr>
<tr>
<td>rise/drop</td>
<td>32, 177</td>
<td></td>
</tr>
<tr>
<td>sensitivity matrices</td>
<td>259–261</td>
<td></td>
</tr>
<tr>
<td>stability</td>
<td>10, 87, 88, 240–241</td>
<td></td>
</tr>
<tr>
<td>feeder-level</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>substation level</td>
<td>112, 125, 163</td>
<td></td>
</tr>
<tr>
<td>unbalance</td>
<td>197, 199</td>
<td></td>
</tr>
<tr>
<td>zonal control</td>
<td>256, 261–270</td>
<td></td>
</tr>
<tr>
<td>VSC (voltage source converter)</td>
<td>8–9</td>
<td></td>
</tr>
<tr>
<td>V-Q weight</td>
<td>257</td>
<td></td>
</tr>
</tbody>
</table>