Contents

Series Preface xi
Preface xv
Acknowledgements xvii
Notation xix
About the Companion Website xxiii

1 Introduction 1
1.1 Microsystems 1
1.2 Microsystems Fabrication 3
1.3 Mechanics in Microsystems 5
1.4 Book Contents 6
References 7

Part I Fundamentals 9

2 Fundamentals of Mechanics and Coupled Problems 11
2.1 Introduction 11
2.2 Kinematics and Dynamics of Material Points and Rigid Bodies 12
2.2.1 Basic Notions of Kinematics and Motion Composition 12
2.2.2 Basic Notions of Dynamics and Relative Dynamics 15
2.2.3 One-Degree-of-Freedom Oscillator 17
2.2.4 Rigid-Body Kinematics and Dynamics 22
2.3 Solid Mechanics 25
2.3.1 Linear Elastic Problem for Deformable Solids 26
2.3.2 Linear Elastic Problem for Beams 35
2.4 Fluid Mechanics 43
2.4.1 Navier–Stokes Equations 43
2.4.2 Fluid–Structure Interaction 48
2.5 Electrostatics and Electromechanics 49
2.5.1 Basic Notions of Electrostatics 49
2.5.2 Simple Electromechanical Problem 54
2.5.3 General Electromechanical Coupled Problem 58
Contents

2.6 Piezoelectric Materials in Microsystems 60
 2.6.1 Piezoelectric Materials 60
 2.6.2 Piezoelectric Modelling 62
2.7 Heat Conduction and Thermomechanics 64
 2.7.1 Heat Problem 64
 2.7.2 Thermomechanical Coupled Problem 67
References 70

3 Modelling of Linear and Nonlinear Mechanical Response 73
 3.1 Introduction 73
 3.2 Fundamental Principles 74
 3.2.1 Principle of Virtual Power 74
 3.2.2 Total Potential Energy Principle 74
 3.2.3 Hamilton’s Principle 75
 3.2.4 Specialization of the Principle of Virtual Powers to Beams 76
 3.3 Approximation Techniques and Weighted Residuals Approach 76
 3.4 Exact and Approximate Solutions for Dynamic Problems 79
 3.4.1 Free Flexural Linear Vibrations of a Single-span Beam 79
 3.4.2 Nonlinear Vibration of an Axially Loaded Beam 80
 3.5 Example of Application: Bistable Elements 84
References 90

Part II Devices 91

4 Accelerometers 93
 4.1 Introduction 93
 4.2 Capacitive Accelerometers 94
 4.2.1 In-Plane Sensing 94
 4.2.2 Out-of-Plane Sensing 96
 4.3 Resonant Accelerometers 98
 4.3.1 Resonating Proof Mass 98
 4.3.2 Resonating Elements Coupled to the Proof Mass 99
 4.4 Examples 101
 4.4.1 Three-Axis Capacitive Accelerometer 101
 4.4.2 Out-of-Plane Resonant Accelerometer 104
 4.4.3 In-Plane Resonant Accelerometer 105
 4.5 Design Problems and Reliability Issues 107
References 107

5 Coriolis-Based Gyroscopes 109
 5.1 Introduction 109
 5.2 Basic Working Principle 109
 5.2.1 Sensitivity of Coriolis Vibratory Gyroscopes 112
 5.3 Lumped-Mass Gyroscopes 113
 5.3.1 Symmetric and Decoupled Gyroscope 113
 5.3.2 Tuning-Fork Gyroscope 114
5.3.3 Three-Axis Gyroscope 115
5.3.4 Gyroscopes with Resonant Sensing 115
5.4 Disc and Ring Gyroscopes 118
5.5 Design Problems and Reliability Issues 118

References 119

6 Resonators 121
6.1 Introduction 121
6.2 Electrostatically Actuated Resonators 123
6.3 Piezoelectric Resonators 125
6.4 Nonlinearity Issues 126

References 128

7 Micromirrors and Parametric Resonance 131
7.1 Introduction 131
7.2 Electrostatic Resonant Micromirror 132
7.2.1 Numerical Simulations with a Continuation Approach 136
7.2.2 Experimental Set-Up 140

References 145

8 Vibrating Lorentz Force Magnetometers 147
8.1 Introduction 147
8.2 Vibrating Lorentz Force Magnetometers 148
8.2.1 Classical Devices 148
8.2.2 Improved Design 151
8.2.3 Further Improvements 155
8.3 Topology or Geometry Optimization 156

References 159

9 Mechanical Energy Harvesters 161
9.1 Introduction 161
9.2 Inertial Energy Harvesters 162
9.2.1 Classification of Resonant Energy Harvesters 162
9.2.2 Mechanical Model of a Simple Piezoelectric Harvester 165
9.3 Frequency Upconversion and Bistability 174
9.4 Fluid–Structure Interaction Energy Harvesters 176
9.4.1 Synopsis of Aeroelastic Phenomena 177
9.4.2 Energy Harvesting through Vortex-Induced Vibration 179
9.4.3 Energy Harvesting through Flutter Instability 180

References 181

10 Micropumps 185
10.1 Introduction 185
10.2 Modelling Issues for Diaphragm Micropumps 186
10.3 Modelling of Electrostatic Actuator 188
10.3.1 Simplified Electromechanical Model 188
10.3.2 Reliability Issues 192
10.4 Multiphysics Model of an Electrostatic Micropump 196
10.5 Piezoelectric Micropumps 198
10.5.1 Modelling of the Actuator 198
10.5.2 Complete Multiphysics Model 201
References 202

Part III Reliability and Dissipative Phenomena 205

11 Mechanical Characterization at the Microscale 207
11.1 Introduction 207
11.2 Mechanical Characterization of Polysilicon as a Structural Material for Microsystems 209
11.2.1 Polysilicon as a Structural Material for Microsystems 209
11.2.2 Testing Methodologies 210
11.2.3 Quasi-Static Testing 211
11.2.4 High-Frequency Testing 214
11.3 Weibull Approach 215
11.4 On-Chip Testing Methodology for Experimental Determination of Elastic Stiffness and Nominal Strength 219
11.4.1 On-Chip Bending Test through a Comb-Finger Rotational Electrostatic Actuator 220
11.4.2 On-Chip Bending Test through a Parallel-Plate Electrostatic Actuator 225
11.4.3 On-Chip Tensile Test through an Electrothermomechanical Actuator 229
11.4.4 On-Chip Test for Thick Polysilicon Films 233
References 240

12 Fracture and Fatigue in Microsystems 245
12.1 Introduction 245
12.2 Fracture Mechanics: An Overview 245
12.3 MEMS Failure Modes due to Cracking 249
12.3.1 Cracking and Delamination at Package Level 249
12.3.2 Cracking at Silicon Film Level 250
12.4 Fatigue in Microsystems 256
12.4.1 An Introduction to Fatigue in Mechanics 256
12.4.2 Polysilicon Fatigue 259
12.4.3 Fatigue in Metals at the Microscale 261
12.4.4 Fatigue Testing at the Microscale 263
References 266

13 Accidental Drop Impact 271
13.1 Introduction 271
13.2 Single-Degree-of-Freedom Response to Drops 272
13.3 Estimation of the Acceleration Peak Induced by an Accidental Drop 276
13.4 A Multiscale Approach to Drop Impact Events 277
13.4.1 Macroscale Level 277
13.4.2 Mesoscale Level 279
13.4.3 Microscale Level 279
13.5 Results: Drop-Induced Failure of Inertial MEMS 280
References 287

14 Fabrication-Induced Residual Stresses and Relevant Failures 291
14.1 Main Sources of Residual Stresses in Microsystems 291
14.2 The Stoney Formula and its Modifications 292
14.3 Experimental Methods for the Evaluation of Residual Stresses 299
14.4 Delamination, Buckling and Cracks in Thin Films due to Residual Stresses 304
References 310

15 Damping in Microsystems 313
15.1 Introduction 313
15.2 Gas Damping in the Continuum Regime with Slip Boundary Conditions 314
15.2.1 Experimental Validation at Ambient Pressure 317
15.2.2 Effects of Decreasing Working Pressure 318
15.3 Gas Damping in the Rarefied Regime 320
15.3.1 Evaluation of Damping at Low Pressure using Kinetic Models 321
15.3.2 Linearization of the BGK Model 323
15.3.3 Numerical Implementation 324
15.3.4 Application to MEMS 325
15.4 Gas Damping in the Free-Molecule Regime 328
15.4.1 Boundary Integral Equation Approach 328
15.4.2 Experimental Validations 330
15.5 Solid Damping: Thermoelasticity 335
15.6 Solid Damping: Anchor Losses 338
15.6.1 Analytical Estimation of Dissipation 339
15.6.2 Numerical Estimation of Anchor Losses 342
15.7 Solid Damping: Additional unknown Sources – Surface Losses 346
15.7.1 Solid Damping: Deviations from Thermoelasticity 346
15.7.2 Solid Damping: Losses in Piezoresonators 346
References 348

16 Surface Interactions 351
16.1 Introduction 351
16.2 Spontaneous Adhesion or Stiction 352
16.3 Adhesion Sources 353
16.3.1 Capillary Attraction 353
16.3.2 Van der Waals Interactions 356
16.3.3 Casimir Forces 358
16.3.4 Hydrogen Bonds 359
16.3.5 Electrostatic Forces 360
16.4 Experimental Characterization 361
16.4.1 Experiments by Mastrangelo and Hsu 361
16.4.2 Experiments by the Sandia Group 362
16.4.3 Experiments by the Virginia Group 365
Contents

16.4.4 Peel Experiments 367
16.4.5 Pull-in Experiments 368
16.4.6 Tests for Sidewall Adhesion 372
16.5 Modelling and Simulation 374
16.5.1 Lennard-Jones Potential 374
16.5.2 Tribological Models: Hertz, JKR, DMT 375
16.5.3 Computation of Adhesion Energy 377
16.6 Recent Advances 380
16.6.1 Finite Element Analysis of Adhesion between Rough Surfaces 380
16.6.2 Accelerated Numerical Techniques 383

References 387

Index 393