CONTENTS

Preface for the Second Edition xii
Preface for the First Edition xiv

1 Sets, Fields, and Events 1
   1.1 Set Definitions, 1
   1.2 Set Operations, 2
   1.3 Set Algebras, Fields, and Events, 5

2 Probability Space and Axioms 7
   2.1 Probability Space, 7
   2.2 Conditional Probability, 9
   2.3 Independence, 11
   2.4 Total Probability and Bayes’ Theorem, 12

3 Basic Combinatorics 16
   3.1 Basic Counting Principles, 16
   3.2 Permutations, 16
   3.3 Combinations, 18

4 Discrete Distributions 23
   4.1 Bernoulli Trials, 23
   4.2 Binomial Distribution, 23
   4.3 Multinomial Distribution, 26
   4.4 Geometric Distribution, 26
   4.5 Negative Binomial Distribution, 27
   4.6 Hypergeometric Distribution, 28
   4.7 Poisson Distribution, 30
   4.8 Newton–Pepys Problem and its Extensions, 33
   4.9 Logarithmic Distribution, 40
      4.9.1 Finite Law (Benford’s Law), 40
      4.9.2 Infinite Law, 43
   4.10 Summary of Discrete Distributions, 44
5 Random Variables 45
5.1 Definition of Random Variables, 45
5.2 Determination of Distribution and Density Functions, 46
5.3 Properties of Distribution and Density Functions, 50
5.4 Distribution Functions from Density Functions, 51

6 Continuous Random Variables and Basic Distributions 54
6.1 Introduction, 54
6.2 Uniform Distribution, 54
6.3 Exponential Distribution, 55
6.4 Normal or Gaussian Distribution, 57

7 Other Continuous Distributions 63
7.1 Introduction, 63
7.2 Triangular Distribution, 63
7.3 Laplace Distribution, 63
7.4 Erlang Distribution, 64
7.5 Gamma Distribution, 65
7.6 Weibull Distribution, 66
7.7 Chi-Square Distribution, 67
7.8 Chi and Other Allied Distributions, 68
7.9 Student-t Density, 71
7.10 Snedecor F Distribution, 72
7.11 Lognormal Distribution, 72
7.12 Beta Distribution, 73
7.13 Cauchy Distribution, 74
7.14 Pareto Distribution, 75
7.15 Gibbs Distribution, 75
7.16 Mixed Distributions, 75
7.17 Summary of Distributions of Continuous Random Variables, 76

8 Conditional Densities and Distributions 78
8.1 Conditional Distribution and Density for \( P[A] \neq 0 \), 78
8.2 Conditional Distribution and Density for \( P[A] = 0 \), 80
8.3 Total Probability and Bayes’ Theorem for Densities, 83

9 Joint Densities and Distributions 85
9.1 Joint Discrete Distribution Functions, 85
9.2 Joint Continuous Distribution Functions, 86
9.3 Bivariate Gaussian Distributions, 90

10 Moments and Conditional Moments 91
10.1 Expectations, 91
10.2 Variance, 92
10.3 Means and Variances of Some Distributions, 93
10.4 Higher-Order Moments, 94
10.5 Correlation and Partial Correlation Coefficients, 95
10.5.1 Correlation Coefficients, 95
10.5.2 Partial Correlation Coefficients, 106
17.2 Moments of Random Vectors, 200
17.3 Vector Gaussian Random Variables, 204
17.4 Diagonalization of Covariance Matrices, 207
17.5 Simultaneous Diagonalization of Covariance Matrices, 209
17.6 Linear Estimation of Vector Variables, 210

18 Estimation Theory 212
18.1 Criteria of Estimators, 212
18.2 Estimation of Random Variables, 213
18.3 Estimation of Parameters (Point Estimation), 218
18.4 Interval Estimation (Confidence Intervals), 225
18.5 Hypothesis Testing (Binary), 231
18.6 Bayesian Estimation, 238

19 Random Processes 250
19.1 Basic Definitions, 250
19.2 Stationary Random Processes, 258
19.3 Ergodic Processes, 269
19.4 Estimation of Parameters of Random Processes, 273
  19.4.1 Continuous-Time Processes, 273
  19.4.2 Discrete-Time Processes, 280
19.5 Power Spectral Density, 287
  19.5.1 Continuous Time, 287
  19.5.2 Discrete Time, 294
19.6 Adaptive Estimation, 298

20 Classification of Random Processes 320
20.1 Specifications of Random Processes, 320
  20.1.1 Discrete-State Discrete-Time (DSDT) Process, 320
  20.1.2 Discrete-State Continuous-Time (DSCT) Process, 320
  20.1.3 Continuous-State Discrete-Time (CSDT) Process, 320
  20.1.4 Continuous-State Continuous-Time (CSCT) Process, 320
20.2 Poisson Process, 321
20.3 Binomial Process, 329
20.4 Independent Increment Process, 330
20.5 Random-Walk Process, 333
20.6 Gaussian Process, 338
20.7 Wiener Process (Brownian Motion), 340
20.8 Markov Process, 342
20.9 Markov Chains, 347
20.10 Birth and Death Processes, 357
20.11 Renewal Processes and Generalizations, 366
20.12 Martingale Process, 370
20.13 Periodic Random Process, 374
20.14 Aperiodic Random Process (Karhunen–Loeve Expansion), 377

21 Random Processes and Linear Systems 383
21.1 Review of Linear Systems, 383
21.2 Random Processes through Linear Systems, 385
21.3 Linear Filters, 393
21.4 Bandpass Stationary Random Processes, 401
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Wiener and Kalman Filters</td>
<td>413</td>
</tr>
<tr>
<td>22.1</td>
<td>Review of Orthogonality Principle</td>
<td></td>
</tr>
<tr>
<td>22.2</td>
<td>Wiener Filtering</td>
<td>414</td>
</tr>
<tr>
<td>22.3</td>
<td>Discrete Kalman Filter</td>
<td>425</td>
</tr>
<tr>
<td>22.4</td>
<td>Continuous Kalman Filter</td>
<td>433</td>
</tr>
<tr>
<td>23</td>
<td>Probability Modeling in Traffic Engineering</td>
<td>437</td>
</tr>
<tr>
<td>23.1</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>23.2</td>
<td>Teletraffic Models</td>
<td>437</td>
</tr>
<tr>
<td>23.3</td>
<td>Blocking Systems</td>
<td>438</td>
</tr>
<tr>
<td>23.4</td>
<td>State Probabilities for Systems with Delays</td>
<td>440</td>
</tr>
<tr>
<td>23.5</td>
<td>Waiting-Time Distribution for M/M/c/∞ Systems</td>
<td>441</td>
</tr>
<tr>
<td>23.6</td>
<td>State Probabilities for M/D/c Systems</td>
<td>443</td>
</tr>
<tr>
<td>23.7</td>
<td>Waiting-Time Distribution for M/D/c/∞ System</td>
<td>446</td>
</tr>
<tr>
<td>23.8</td>
<td>Comparison of M/M/c and M/D/c</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>451</td>
</tr>
<tr>
<td>24</td>
<td>Probabilistic Methods in Transmission Tomography</td>
<td>452</td>
</tr>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>452</td>
</tr>
<tr>
<td>24.2</td>
<td>Stochastic Model</td>
<td>453</td>
</tr>
<tr>
<td>24.3</td>
<td>Stochastic Estimation Algorithm</td>
<td>455</td>
</tr>
<tr>
<td>24.4</td>
<td>Prior Distribution $P(M)$</td>
<td>457</td>
</tr>
<tr>
<td>24.5</td>
<td>Computer Simulation</td>
<td>458</td>
</tr>
<tr>
<td>24.6</td>
<td>Results and Conclusions</td>
<td>460</td>
</tr>
<tr>
<td>24.7</td>
<td>Discussion of Results</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A Fourier Transform Tables</td>
<td>463</td>
</tr>
<tr>
<td>B</td>
<td>Cumulative Gaussian Tables</td>
<td>467</td>
</tr>
<tr>
<td>C</td>
<td>Inverse Cumulative Gaussian Tables</td>
<td>472</td>
</tr>
<tr>
<td>D</td>
<td>Inverse Chi-Square Tables</td>
<td>474</td>
</tr>
<tr>
<td>E</td>
<td>Inverse Student-t Tables</td>
<td>481</td>
</tr>
<tr>
<td>F</td>
<td>Cumulative Poisson Distribution</td>
<td>484</td>
</tr>
<tr>
<td>G</td>
<td>Cumulative Binomial Distribution</td>
<td>488</td>
</tr>
<tr>
<td>H</td>
<td>Computation of Roots of $D(z) = 0$</td>
<td>494</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>495</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>498</td>
</tr>
</tbody>
</table>