CONTENTS

Preface xv

Acknowledgments xix

List of Contributing Authors xxı

CHAPTER 1 INTRODUCTION 1

D. C. Hamill, S. Banerjee, and G. C. Verghese

1.1 Introduction to Power Electronics 1

1.1.1 Power Switching Devices 2

1.1.2 Sources of Nonlinearity in Power Electronics 4

Power Converters 4

Electrical Machines and Drives 4

Power Systems 5

1.2 An Example: The Buck DC/DC Converter 5

1.2.1 Conventional Model of the Buck Converter 6

Continuous Conduction Mode 7

1.2.2 Actual System Behavior 9

1.2.3 Nonlinear Map-Based Model of the Buck Converter 9

1.2.4 Discontinuous Conduction Mode 13

1.2.5 Limitations and Extensions of Average Models 14

1.3 Study of Nonlinear Dynamics and Chaos in Power Electronics 15

1.4 Conclusions 20

CHAPTER 2 DYNAMIC MODELS OF POWER CONVERTERS 25

2.1 Introduction to Power Electronic Converters and Models 25

G. C. Verghese and A. M. Stanković

2.1.1 Introduction 25

2.1.2 Types of Power Electronic Converters 25

High-Frequency PWM DC/DC Converters 25

Other High-Frequency PWM Converters 26

Other Inverters 27

Resonant Converters 27

Phase-Controlled Converters 28
AC/AC Converters 28

2.1.3 Averaged and Sampled-Data Models for Analysis, Simulation, and Control of Converter Dynamics 28
Switched State-Space Model for the Boost Converter 30
Averaged Model for the Boost Converter 32
Averaged Model for Current-Mode Control of the Boost Converter 33
Sampled-Data Models for the Boost Converter 34

2.1.4 Extensions 36
Generalized Averaging 36
Generalized State-Space Models 36

2.2 A Closer Look at Sampled-Data Models for Power Converters 38
F. Vasca, M. di Bernardo, and G. Olivar

2.2.1 Introduction 38
2.2.2 Poincaré Maps for Smooth and Nonsmooth Dynamical Systems 38
2.2.3 Piecewise-Smooth Power Electronic Circuits 40
2.2.4 Power Electronic Systems as Hybrid Systems 43
2.2.5 Stroboscopic Maps 46
Periodic Phase Sequence and Time-Varying Inputs 48
A Stroboscopic Nonswitching Map 48
Closed-Loop Maps 48
2.2.6 Switching Maps 49
S-Switching Maps for DC/DC Converters 49
A-Switching Maps for DC/DC Converters 50
2.2.7 Simplified Maps 51
2.2.8 Conclusions 51

CHAPTER 3 BASICS OF BIFURCATION AND CHAOS THEORY

3.1 Introduction to Nonlinear Dynamics and Chaos 53
S. Banerjee

3.1.1 System State, and State-Space Models 53
3.1.2 Autonomous Systems and Nonautonomous Systems 55
3.1.3 Vector Fields of Linear, Linearized, and Nonlinear Systems 55
3.1.4 Attractors in Nonlinear Systems 57
3.1.5 Chaos 59
3.1.6 Poincaré Map 61
3.1.7 Dynamics of Discrete-Time Systems 62
3.1.8 Fractal Geometry 64
3.1.9 Lyapunov Exponent 66
3.1.10 Bifurcation 66

3.2 Bifurcations of Smooth Maps 67
J. H. B. Deane

3.2.1 The Pitchfork Bifurcation 68
3.2.2 The Saddle-Node Bifurcation 68
3.2.3 The Period-Doubling Bifurcation 69
3.2.4 The Neimark Bifurcation 70

3.3 Bifurcations in Piecewise-Smooth Maps 73
S. Banerjee and C. Grebogi

3.3.1 The Normal Form 77
3.3.2 Bifurcations in the One-Dimensional Normal Form 79
3.3.3 Bifurcations in the Two-Dimensional Normal Form 82
3.3.4 Classification of Border Collision Bifurcations 84
Border Collision Pair Bifurcation 84
Border-Crossing Bifurcations 85

3.4 Nonstandard Bifurcations in Discontinuous Maps 89
I. Dobson and S. Banerjee

3.5 The Method of Schwarzian Derivatives 94
C. K. Tse
3.5.1 Background 94
3.5.2 Problem Description 94
3.5.3 Mechanism of Period Doubling 95
3.5.4 Schwarzian Derivative and Period-Doublings ad infinitum 96
3.5.5 Application to Power Electronics 97
3.5.6 Illustrative Example: The Boost Converter 98
3.5.7 Interpretation and Application of the Result 100
3.5.8 Remarks and Summary 100

3.6 Coexisting Attractors, Basins of Attraction, and Crises 101
E. Fossas and G. Olivar
3.6.1 Characteristic (Floquet) Multipliers 101
3.6.2 Invariant Sets and Invariant Manifolds 102
Homoclinic and Heteroclinic Orbits 103
3.6.3 Coexisting Attractors 104
3.6.4 The Role of Invariant Manifolds and Basins of Attraction 105
3.6.5 Crises 106
Interior Crises 107
Boundary Crises 108
Two-Dimensional Maps 109

CHAPTER 4 EXPERIMENTAL AND COMPUTATIONAL TECHNIQUES FOR INVESTIGATION OF NONLINEAR PHENOMENA

4.1 Techniques of Experimental Investigation 111
C. K. Tse
4.1.1 Introduction 111
4.1.2 Overview of Simulation Study and Verification 111
4.1.3 Experimental Investigation 112
4.1.4 Displaying Time-Domain Waveforms, Attractors, and Spectra 112
4.1.5 Displaying Poincaré Sections 114
Principle of Poincaré Section Measurement 115
Example: Free-Running Ćuk Converter 117
4.1.6 Poincaré Sections for Nonautonomous Circuits 118
4.1.7 Displaying Bifurcation Diagrams 118
Basic Operational Requirements 119
Digital Implementation and Related Issues 120
Other Methods, Problems, and Practical Issues 121
Example: Boost Converter Under Current-Mode Control 121
4.2 Techniques of Numerical Investigation 123
S. Banerjee and D. C. Hamill

4.2.1 Simulation of Power Electronic Circuits 123
- Problems Arising from Varying Topology 124
- Problems Arising from Incompatible Boundary Conditions 125

4.2.2 Obtaining Bifurcation Diagrams 125

4.2.3 Plotting Basins of Attraction in Systems with Multiple Attractors 126

4.2.4 Computing the Maximal Lyapunov Exponent 127

4.3 Computation of Averages Under Chaos 129

4.3.1 Introduction 129

4.3.2 Chaotic Operation of DC/DC Converters Under Current-Mode Control 130
- Describing Chaotic Behavior Via Densities 130
- Calculation of the Time-Average of the Inductor Current 134
- Analysis of DC/DC Converters 135
- Average Switching Frequency and Average Duty Ratio 142

4.3.3 Experimental Results 143

4.3.4 Conclusions 145

4.4 Calculation of Spectral Peaks in a Chaotic DC/DC Converter 149
J. H. B. Deane

4.4.1 Characterization of Spectral Properties 149

4.4.2 Motivation and Outline 151

4.4.3 The Simplified Mapping 152

4.4.4 Approximation of the Mean State Variables 154

4.4.5 The Power Density Spectrum of the Inductor Current 155

4.4.6 The Invariant Density Algorithm 158

4.4.7 Practical Results 160

4.4.8 Experimental Results 160

4.4.9 Discussion 163

4.5 Computer Methods to Analyze Stability and Bifurcation Phenomena 165
Y. Kuroe

4.5.1 Introduction 165

4.5.2 Nonlinear Systems and Stability of Periodic Solutions 165

4.5.3 Computer Methods to Analyze Stability 167

4.5.4 Computation of the Jacobian Matrix 169

4.5.5 Analysis Method Based on Transient Simulator 171

4.5.6 Computer Method to Analyze Bifurcation Phenomena 174
- Classification of Bifurcations 174
- Method to Determine Bifurcation Values 175

4.6 Computation of Operating-Mode Boundaries 177
Y. Kuroe, T. Kato, and G. C. Verghese

4.6.1 Introduction 177

4.6.2 What Is Operating-Mode Analysis? 178

4.6.3 Computation of Operating-Mode Boundary by Curve Tracing 179
- Conditions that Define Operating-Mode Boundaries 179
- Numerical Tracing of Boundary Curves 181
- Computation of Steady-State Sensitivities 182
- Numerical Examples 183

4.6.4 Computation of Operating-Mode Boundaries by a Binary-Box Method 187
CHAPTER 5 NONLINEAR PHENOMENA IN DC/DC CONVERTERS

5.1 Border Collision Bifurcations in the Current-Mode-Controlled Boost Converter 192
S. Banerjee and P. Ranjan
5.1.1 Modeling and Analysis 192
5.1.2 Analysis of Bifurcations 195

5.2 Bifurcation and Chaos in the Voltage-Controlled Buck Converter with Latch 199
S. Banerjee, D. Kastha, and S. Das
5.2.1 Overview of Circuit Operation 199
5.2.2 Experimental Results 200
5.2.3 Coexisting Attractors and Crises 202

5.3 Routes to Chaos in the Voltage-Controlled Buck Converter without Latch 208
M. di Bernardo, G. Olivar, and F. Vasca
5.3.1 Buck Converter Modeling Under Voltage-Mode Control 208
Differential equations 209
5.3.2 Discrete-Time Map and Periodic Orbits 210
Different Types of Periodic Orbits 212
Analytical Study of Periodic Orbits: Existence and Stability 212
5.3.3 One-Dimensional Bifurcation Diagrams 217
The Main Bifurcation Diagram 217
Secondary Bifurcations 219
5.3.4 Chaotic Attractors in the Buck Converter 220
3T-Periodic Orbits and the Three-Piece Chaotic Attractor 220
Invariant Manifolds and Basins of Attraction 220
6T-Periodic Orbits 223
12T-Periodic Orbits 224
5T-Periodic Orbits and the Jump to Larger Chaos 225

5.4 Saddle-Node and Neimark Bifurcations in PWM DC/DC Converters 229
C. C. Fang and E. H. Abed
5.4.1 Introduction 229
5.4.2 General Sampled-Data Model for Closed-Loop PWM Converters 229
5.4.3 Periodic Solution Before and After Local Bifurcation 232
5.4.4 Saddle-Node Bifurcation in Buck Converter Under Discrete-Time Control 232
5.4.5 Neimark Bifurcation in Buck Converter Under Voltage-Mode Control 234
5.4.6 Neimark Bifurcation in Buck Converter with Input Filter Under Voltage-Mode Control 236
5.4.7 Neimark Bifurcation in Buck Converter with Input Filter Under Current-Mode Control 238
5.5 Nonlinear Analysis of Operation in Discontinuous-Conduction Mode 240
C. K. Tse

5.5.1 Review of Operating Modes 240
5.5.2 Derivation of Discrete-Time Maps 241
5.5.3 Period-Doubling Bifurcation 243
5.5.4 Computer Simulations and Experiments 245
5.5.5 Remarks and Summary 246

5.6 Nonlinear Phenomena in the Čuk Converter 248
C. K. Tse

5.6.1 Review of the Čuk Converter and its Operation 248
5.6.2 Discrete-Time Modeling for Fixed Frequency Operation 249
5.6.3 Free-Running Current-Mode-Controlled Čuk Converter 251
Autonomous System Modeling 251
Dimensionless Equations 253
Stability of Equilibrium Point and Hopf Bifurcation 254
Local Trajectories from Describing Equation 256
Computer Simulation Study 258

CHAPTER 6 NONLINEAR DYNAMICS IN THYRISTOR AND DIODE CIRCUITS
I. Dobson

6.1 Introduction 262

6.2 Ideal Diode and Thyristor Switching Rules 263

6.3 Static VAR System Example 263

6.4 Poincaré Map 265

6.5 Jacobian of Poincaré Map 267
6.5.1 Thyristor Current Function and Transversality 268
6.5.2 Relations Between On and Off Systems 269
6.5.3 Derivation of Jacobian Formula 270
Interval Containing a Switch-On 270
Interval Containing a Switch-Off 271
Assembling the Jacobian 272
6.5.4 Discussion of Jacobian Formula 273

6.6 Switching Damping 274
6.6.1 Simple Example 274
6.6.2 Switching Damping in the SVC Example 275
6.6.3 Variational Equation 276

6.7 Switching Time Bifurcations 278
6.7.1 Switching Time Bifurcations and Instability 278
6.7.2 Switching Time Bifurcations for Transients 280
6.7.3 Misfire Onset as a Transcritical Bifurcation 281
6.7.4 Noninvertibility and Discontinuity of the Poincaré Map 283
6.7.5 Multiple Attractors and Their Basin Boundaries 284

6.8 Diode Circuits 286
6.8.1 Transversality and Poincaré Map Jacobian Formula 286
6.8.2 Poincaré Map Jacobian for the DC/DC Buck-Boost Converter
in Discontinuous Mode 286
CHAPTER 7 NONLINEAR PHENOMENA IN OTHER POWER ELECTRONIC SYSTEMS

7.1 Modeling a Nonlinear Inductor Circuit 292
J. H. B. Deane

7.1.1 Introduction 292
7.1.2 The Circuit 292
7.1.3 Saturating and Hysteretic Inductor Modeling 293
7.1.4 Differential Equation for the Circuit 294
7.1.5 Results 295
 Bifurcation Diagram Comparison 296
 Poincaré Section Comparison 297
7.1.6 Conclusions 298

7.2 Inverters Under Tolerance Band Control 298
A. Magauer

7.2.1 Introduction 298
7.2.2 Functioning Principle 299
7.2.3 System Model and Equation 300
7.2.4 Poincaré Map 302
7.2.5 Circuit Realization 303
7.2.6 Mode of Oscillations, Bifurcations, and Crises 303
 Chaotic Mode 304
 Symmetry-Breaking Bifurcation 305
 Merging Crisis 307
 Interior Crisis 308
 Saddle-Node Bifurcation and Square-Wave Mode 308
 Boundary Crisis 311
 Period-Doubling Bifurcations 312
7.2.7 Conclusions 312

7.3 Nonlinear Noise Effects in Power Converters 313
P. T. Krein and P. Midya

7.3.1 Introduction 313
7.3.2 Discussion of Switching Noise 314
7.3.3 External Noise Effects in Open-Loop Converters 315
 External Noise Action 315
 Background of Analysis 316
 Summary of Assumptions 318
 Probability Density Function of Switch Timing 318
 Implications of the Non-Gaussian Duty Ratio Distribution with Latch 319
7.3.4 External Noise Effects in Closed-Loop DC/DC Converters 321
 The Nature of Closed-Loop Noise Effects 321
 The Closed-Loop Process and System Model 321
 Time Domain Noise Analysis 322
 Confirmation 323
 Frequency Domain Analysis 324
7.3.5 Summary 327
7.4 Nonlinear Phenomena in the Current Control of Induction Motors 328

Nagy and Z. Sütö

7.4.1 System Model 329
- Voltage Source Converter (VSC) 329
- AC Side 330
- Hysteresis Current Control (HCC) 331
- Poincaré Map 332

7.4.2 Nonlinear Phenomena 333
- Sensitive Dependence on Initial Condition 333
- Period Doubling Bifurcation 333
- Intermittency 335
- Coexisting Attractors 336

7.4.3 Numerical Values 336

7.4.4 Conclusions 337

7.5 Analysis of Stability and Bifurcation in Power Electronic Induction Motor Drive Systems 338

Y. Kuroe

7.5.1 Introduction 338

7.5.2 Model of Power Electronic Induction Motor Drive Systems 338
- Model of Induction Motor and its Mechanical Load 338
- Model of Inverter and Rectifier 340

7.5.3 Poincaré Map and Periodicity of Steady States 343
- Case I 343
- Case II 344
- Case III 345

7.5.4 Stability Analysis 345

7.5.5 Analysis of Bifurcations 348

CHAPTER 8 NONLINEAR CONTROL AND CONTROL OF CHAOS

8.1 Conventional Nonlinear Controls in Power Electronics 353

P. T. Krein

8.1.1 Introduction 353

8.1.2 Hysteresis Controllers 354

8.1.3 Nonlinear Modulation 354

8.1.4 Multipliers in the Loop 356

8.2 Sliding Mode and Switching Surface Control 357

P. T. Krein

8.2.1 Introduction 357

8.2.2 Hysteresis Control 358

8.2.3 Switching Surface Control Analysis 360
- Trajectories and Equilibria 360
- Switching Surface-Based Control Laws 361
- Necessary Conditions for Switching Surface Controls 362
- Sample Outputs and Hysteresis Design Approaches 363

8.2.4 Global Stability Considerations 365
- Successor Points 365
- Behavior Near a Switching Surface 366
- Choosing a Switching Surface 367
- Higher Dimensions 369
Contents

8.2.5 Summary 369

8.3 Energy-Based Control in Power Electronics 371
A. M. Stanković, G. Escobar, R. Ortega, and S. R. Sanders

8.3.1 Introduction 371
8.3.2 Circuit-Theoretic Approaches 372
 Basic Control 372
 Adaptation 374
 Estimation and Output Feedback 375
8.3.3 Passivity-Based Control 376
 Basic Controller 376
 Adaptation 378
 Hamiltonian Control 379
8.3.4 Connections with Sliding-Mode Control 380
 Sliding-Mode Controller Revisited 381
 Passivity-Based Sliding-Mode Controller 382
 Combining SMC with Prediction 383
8.3.5 Conclusions 384

8.4 Ripple Correlation Control 386
P. T. Krein

8.4.1 Background 386
8.4.2 Ripple-Based Control 386
8.4.3 Ripple Correlation 387
8.4.4 Some Application Examples 389
 Adaptive Dead Time 389
 Solar Power Processing 390
 Motor Power Minimization in Drives 391
8.4.5 Summary 392

8.5 Control of Chaos 393
M. di Bernardo, G. Olivar, and C. Batlle

8.5.1 Introduction 393
8.5.2 A Combination of OGY and Pyragas Methods 394
 Application to the Current-Mode-Controlled Boost Converter 395
8.5.3 Controlling Border-Collision Bifurcations 398
 Local Feedback Strategy 399
 An Example: A Two-Dimensional Map 400
8.5.4 Time-Delay Control of Chaos 401
 An Example: TDAS for the Current-Mode Boost Converter 402
8.5.5 Conclusions 404

8.6 Closed-Loop Regulation of Chaotic Operation 406
J. L. Rodríguez Marrero, R. Santos Bueno, and G. C. Verghese

8.6.1 Introduction 406
8.6.2 Dynamics and Control 406
8.6.3 Experimental Results 408
8.6.4 The OGY Method 409
 Review of the OGY Method 411
 Controlling DC/DC Converters 412
 Integral Control 415
8.6.5 Conclusions 417
8.7 Control of Bifurcation 418

C. K. Tse and Y.-M. Lai

8.7.1 Background 418
8.7.2 Controlling Bifurcation in Discontinuous-Mode Converters 419
8.7.3 Controlling Bifurcation in Current-Mode-Controlled DC/DC Converters 420
 Use of Compensating Ramp for Controlling Bifurcation 420
 Effects on Dynamical Response 424
 Experimental Measurements 425
 Variable Ramp Compensation 426

8.8 Synchronization of Chaos 428

C. K. Tse

8.8.1 Background 428
8.8.2 The Drive-Response Concept 429
8.8.3 Synchronization in Chaotic Free-Running Čuk Converters 430
8.8.4 Derivation of the Conditional Lyapunov Exponents 431
8.8.5 Numerical Calculation of the Conditional Lyapunov Exponents 432
8.8.6 Computer Simulations 433
8.8.7 Remarks on Practical Synchronization 433

Index 437

About the Editors 441