INDEX

Abiotic elicitors, 305, 412
Abscisic acid, 295
Accumulation of biocontrol agents (BCA)-induced chitin, 390
Accumulation of fluorescent phytoalexins, 446
Accumulation of pathogenesis-related (PR)-proteins, 299
Acervuli, 145
Acetic acid as fumigant, 479
Acibenzolar as inducer of resistance, 457
Acibenzolar-S-methyl (ASM), 306
Acidic electrolyzed water, 519
Activation of defense genes by salicylic acid (SA), 439, 444
Activation of defense responses, 286
Activation of metabolic pathways of phenolics by UV-C light, 448
Activation of natural defense mechanism, 435
Activation of specific resistance genes, 294
Active defense mechanisms, 294
Active defense, induction of, 294
Active oxygen species
 antimicrobial activity of, 300
 production of, 299
Active resistance, 285, 315
Acylalanine group, 487
Adaptability of BCAs to storage and field conditions, 368
Addition of chemical supplements, 304
Advantages of biological control, 358
Advantages of BIO-PCR, 26
Advantages of dot immunobinding assay (DIBA), 29
Advantages of using BCA mixtures, 390
Aflatoxin biosynthesis, nucleotide polymorphism in, 222
Aflatoxin biosynthetic gene, nor-1, 221
Aflatoxin contamination of seeds, 384
Aflatoxin pathway gene (omt A), 222
Aflatoxins, 125, 316
Agar plating technique, 34
Agar test, 11
Alkaline phosphatase, 37
Alkalization of host tissues, 138
Alternariol in raisin fruits, 233
INDEX

Alternatives to conventional fungicides, 496
Aluminium chloride against soft rot of potato, 500
Ambient air in-store drying system, 213
Ambient storage conditions, 371
Ambient temperature before storage, 231
Aminobutyric acid as inducer of resistance, 458
Ammonium chloride for tuber treatment, 498
Ammonium molybdate for disease management, 496
Ammonium molybdate, effect on BCA efficiency, 393
Amperometric immunoenzyme sensor, 53
AmpliDet RNA technique, 38
Amplicons, 38
Amplified DNA fragments, 25
Amplified fragment length polymorphism (AFLP), 19, 49, 198
Amylase inhibitor, 221, 314
Anaerobic amplification, 34
Animal products for disease control, 411
Annealing step in polymerase chain reaction (PCR), 18
Antagonistic potential, 361
Antagonistic yeasts, 458
Antagonists, 361
Antagonists mixtures, 398
Anthracnose disease, 145
Antibiosis, 374, 385
Antibiosis tests on agar plates, 386
Antibiosis tests, 412
Antibiotic-producing BCAs, 360, 385
Antibiotics, resistance in pathogens to, 515
Antibodies to enzymes, 137
Antifungal compounds, 143
Antifungal compounds in fruits, 231
Antifungal dienes, 132, 138, 143
Antifungal hydrolases, induction by UV-C light, 448
Antioxidants
 effect on aflatoxin production, 223
 fungicidal activity of, 496
Antisense RNA, 439
Antiviral system of plants, 307
Apples, mycotoxins in, 232
Appositions on cell walls, 313
Appressorium, 132, 134
Approaches for biological control, 358
Aspartic proteinase (AP) activity, 140, 144, 291
Assay host plant, 39
Assessment of bacterial cell viability, 522
Assessment of fungal population in storage, 231
Assessment of fungicidal activity, 484
Assessment of fungicide residues, 516
Assessment of genetic diversity of BCAs, 399
Assessment of losses, 5
Asymptomatic plant materials, 35, 37, 38, 48
Attachment of cells of BCAs to pathogens, 390
Attributes of BCAs, 366
Aureobasidins, 389
Autofluorescence of phenolic compounds, 293
Availability of nitrogen to BCA, 393
Average reflective intensity (ARI), 233
Avirulence (avr) gene, 166, 304, 307
Avirulence proteins, 305
Avirulent strains of pathogens, 375, 376
Axenic cultures, 140
Bacterial antagonists against human pathogens, 381
postharvest pathogens, 381
Bacterial cell surface antigens, 24
Bacterial cell viability, assessment of, 522
Bacterial effector proteins, 165
Bacterial flagellin, 303
Bacterial pectic enzymes, 163
Bacteriocin, 503
Bacteriophages, 14
Bacteriophages as biocontrol agents, 374, 384
Basic methods for study of postharvest diseases, 555–560
Batch drying, 213
BCA, enhancement of efficiency of, 391
BCA in combination with controlled atmosphere (CA) conditions, 372
BCA transformation with GFP, 370, 384
BCA-induced phytoalexins, 391
BCAs with low sensitivity to fungicides, 363
BCAs for strengthening natural barriers in plants, 459
BCAs, induction of callose accumulation by, 460
BCAs, induction of disease resistance by, 458–461
Benzimidazole compounds, 488
Benzoic acid in relation to disease resistance, 289
β-glucanase, 317
β-1,3-glucanase gene, 440
β-1,3-glucanase of BCAs, 388
β-glucosidase activity, 334
β-glucuronidase (GUS) marker gene, 315
Biochemical determinants of susceptibility, 139
Biochemical tests, 13
Biocontrol activity under controlled atmosphere (CA) conditions, 371
Biocontrol agents (BCAs), effect on defense-related enzymes, 459
Biocontrol, definition of, 357
Biocontrol efficacy, 364
Biocontrol potential, 378
Biocontrol products, 405
Bioengineering of plants, 437
Biofungimant, 273
Biofungicides, 358, 403
BIOLOG microplate system, 14
BIOLOG plates, 397
Biological indexing, 40
Biological properties of viruses, 39
BIO-PCR technique, 26, 36, 37, 38
Biopriming of seeds, 384
Biosafety cabinet, 239
Biotechnology, definition of, 435
Biotic elicitors, 435
Bovars, 37, 38
Bleached skin due to chemical application, 477
Blight diseases, 155
Blotter test, 11
Botrytis invertase (BIT), 46, 139
Botulism, 237
Bovine serum albumin (BSA), 29
Bright greenish yellow fluorescence (BGFY) for assessment of severity of ear rot, 333
detection of aflatoxin, 333
use as marker, 45
Brix ratio, 229, 231
Broad spectrum of activity of BCAs, 363
Brown rot disease, 168
Bt gene, effect on DON concentration, 224
Butylated hydroxyanisole (BHA), 231
Caffeic acid as an antifungal compound, 289
Calcium, induction of resistance by, 452
Calcium/calmodulin signaling system, 134
Calmodulin gene, 21
CAMP-dependent signaling pathway, 134, 135
Canker, 169
Capsid polyprotein gene, 443
Carbohydrate degradation in seeds, 123
Carbon sources for biomass production of BCAs, 402
Carcinogens, 4
Cecropin A-based peptide, 400
Cell wall appositions, 315
Cell wall degradation, 139
Cell wall-degrading enzymes, 142, 152, 163
Cellulose, 293
Cellulose-binding domain (CBD) for transformation of BCA, 401
Certification program, 54
Characterization of BCAs, 363
Characterization of elicitor-binding proteins, 303
Chemical methods, 14
Chemical residues, 6
Chemicals for treatment of fresh-cut produce
gaseous chemicals, 517
water-dispersible chemicals, 517
Chemical-free products, 6
Chemicals applied as
dips, 481
dusts, 483
fumigants, 476
sprays, 483
Chemicals, induction of resistance by, 452–458
Chemotypes of *Fusarium* isolates, 226
Chitinases, 310, 314, 317, 334
Chitin-binding lectins, 313
Chitosan for postharvest disease control, 411
Chitosan, beneficial effects on fruit quality, 455
Chitosan, effect on postharvest pathogens, 454
Chitosan, induction of resistance by, 456
Chlorine as disinfectant, 477
Chlorine dioxide, antifungal activity of, 478
Chlorogenic acid, antifungal property of, 228
Chromosomal DNA, 18
Citrinin in apples, 232
Classification of postharvest chemicals, 476
Cleaved amplified polymorphic sequence marker, 329
Climacteric fruits, 227
CMK1 gene, role in conidial germination, 134
Coat protein gene, 306
Coat protein gene, detection of, 442
Coccidial contamination of fruits, 239
Coculturing of BCA with pathogens, 386
Codex Alimentarius, 489, 491
Colonization of fresh-cut produce by human pathogens, 381
Colonization of fruit surfaces by BCAs, 363, 366
Colonization of host tissues by fungal pathogens, 129, 137
Colonization of ruptured glands by BCAs, 389
Colonization of wound sites by BCAs, 386
Colony forming units, 14
Color classification for tomatoes, 216
Color of colony, 12
Colored imprints, 17
Combination of bacteriophages and chemicals, 380
Combination of chemicals against diseases, 480, 489, 492
Combination of yeasts antagonists, 371
Combinations of BCA strains, 366
Combinations of BCAs, 376
Combined application of avirulent strains, 375
Compatibility of BCAs with chemicals, 368
Compatible interaction, 285
Competition for nutrients and space, 386
Competitive inhibition enzyme-linked immunosorbent assay (ELISA), 46
Competitive polymerase chain reaction (C-PCR), 19
Competitive PCR for assessment of effectiveness of chemicals, 504
Competitive interactions between BCAs, 397
Concentrations of BCAs required, 363
Confidence level of pathogen detection, 256
Consortium of plant pathologists, 256
Constitutive expression of resistance, 166
Constitutive resistance, 285, 306, 309, 434
Contaminated commodities, 9
Contamination level, 256
Contamination of food products with mycotoxin, 381
Contamination of seeds with aflatoxin, 384
Continuous flow drying, 213
Control of TBZ-resistant strains of pathogens, 371
Controlled atmosphere (CA) effect on BCAs, 368, 372
for decay control, 228, 229, 232, 273
production of off-flavors by, 274
Controlled atmosphere storage, 273
Conventional detection methods, 11
Corona discharge, 274
Coronatine (COR), 166
Cost of chemicals as deciding factor for use, 487
CP-antisense orientation, 442
CP-sense orientation, 442
Crop inspection, 257
Cultivation practices, effect on disease incidence
crop residues, 197
crop sanitation, 195
crop sequence, 197
irrigation systems, 202
mulches, 203
nutrient management, 198
organic farming, 204
plant density, 202
production systems, 202
rootstocks, 201
Culture filtrate for calli treatment, 436
Curing vegetables, 218
Cuticle thickness of berries, 293
Cuticular fracturing, 136
Cuticular waxes
 accumulation of, 316
 effect on spore germination, 133
 water repellency of, 316
Cutin as a natural barrier, 133
Cutinase gene, 133
Decontamination of mycotoxins, 381, 539
Deep freezer blotter method, 25
Defense response genes, 315, 437
Defense responses, 299
Defense-related compounds, 44, 144
Defense-related enzymes, 138
Defense-related enzymes, induction by chemicals, 454, 457, 458
UV-C light, 448, 449
Defense-related signal molecules, 297
Defense signaling compounds, 305
Defensin gene, 290, 312
Degradation of toxins, 375
Demethylation inhibitor (DMI), 47
Deoxynivalenol (DON), 20, 119, 128, 317, 332
2-deoxy-D-glucose (2 DOG), effect on BCA, 393
Depletion of sugar as indicator of competition, 388
Deposition of chitin and cellulose-enriched materials, 390
Detection limits of aflatoxin by ELISA, 221
Detection of CP gene in transgenic plants, 442
Detection of immobilized amplified product in a one-phase system (DIAPOPS), 41
Detection of pathogens, 4, 9
Detection techniques, 9
Determinants of virulence, 140
Detoxification of phytoalexins, 377
Development of resistance in pathogens to chemicals, 7, 378, 475
Dicarboximide compounds, 491
Dienes as antifungal compounds, 288
Diffusible metabolites of BCAs, 386
Diffusible signal molecules, 294
Digoxigenin (DIG)-labeled PCR, 37, 41
Dilution end point, 15
Dilution plating, 14
Dipping in BCA suspensions
 cabbage heads, 378
 tubers, 375
Direct competitive ELISA for fumonisin detection, 223
Direct examination of seeds, 11
Direct interaction between BCA and pathogen, 390, 392
Direct penetration by fungal pathogens, 132, 137
Direct plating, 11
Disease carry-over, 9
Disease development, 117
Disease incidence, influence of cultivation practices on, 193
Disease incidence, influence of harvesting methods on, 193
Disease management strategies, 5
Disease management systems, 4
Disease resistance, elicitors of, 8
Disease resistant cultivars, development of, 319
Disease risk assessment, 33
DNA Detection Test Strips™, 22
DNA-based markers, 324
Doses of UV-C for inducing resistance, 449
Dot blot, 29
Dot ELISA, 29, 40
Dot blot hybridization, 17
Dot immunobinding assay (DIBA), 29, 40
Double antibody sandwich (DAS)-ELISA, 39
Double diffusion test, 28
<table>
<thead>
<tr>
<th>Index Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drenching soil with BCA suspensions, 368</td>
</tr>
<tr>
<td>Dry matter as index of disease resistance, 328</td>
</tr>
<tr>
<td>Dry matter loss, 210</td>
</tr>
<tr>
<td>Dual culture, 378</td>
</tr>
<tr>
<td>Dual functions of avirulent strains, 375</td>
</tr>
<tr>
<td>Durability of resistance, 434</td>
</tr>
<tr>
<td>Durable resistance, 320</td>
</tr>
<tr>
<td>Durables, 3, 4, 212</td>
</tr>
<tr>
<td>Dusts of fungicide formulations, 483</td>
</tr>
<tr>
<td>Ecological requirements of bacterial pathogens</td>
</tr>
<tr>
<td>environmental conditions, 99</td>
</tr>
<tr>
<td>host factors, 100</td>
</tr>
<tr>
<td>pathogen factors, 101</td>
</tr>
<tr>
<td>Ecological requirements of fungal pathogens</td>
</tr>
<tr>
<td>environmental conditions, 87, 93</td>
</tr>
<tr>
<td>host factors, 89, 96</td>
</tr>
<tr>
<td>pathogen factors, 91, 97</td>
</tr>
<tr>
<td>Ecological requirements of viral pathogens, 102</td>
</tr>
<tr>
<td>Ecology of microbial pathogens, 79</td>
</tr>
<tr>
<td>ED$_{50}$ for inhibition of pathogens, 451</td>
</tr>
<tr>
<td>Effectiveness of fungicides, assessment by competitive PCR, 504</td>
</tr>
<tr>
<td>Effector genes, 165</td>
</tr>
<tr>
<td>Effector proteins, 305</td>
</tr>
<tr>
<td>Effector-rich pathogenicity island, 165</td>
</tr>
<tr>
<td>Efficiency of bacterial antagonists, 375</td>
</tr>
<tr>
<td>Efficiency of colonization of fruit wounds, 370</td>
</tr>
<tr>
<td>Electrolyte leakage, 166</td>
</tr>
<tr>
<td>Electrolyzed oxidizing water, 481</td>
</tr>
<tr>
<td>Electron microscopy, 30</td>
</tr>
<tr>
<td>Electrophoresis, 18</td>
</tr>
<tr>
<td>Elicitation of defense response by INF1, 301</td>
</tr>
<tr>
<td>Elicitor-binding proteins, 303</td>
</tr>
<tr>
<td>Elicitors of disease resistance, 6, 144, 298, 321</td>
</tr>
<tr>
<td>ELISA for aflatoxin detection, 211</td>
</tr>
<tr>
<td>ELISA for assessing chitinase levels, 438</td>
</tr>
<tr>
<td>ELISA formats, 32, 35, 39, 52</td>
</tr>
<tr>
<td>Endochitinase of BCA, 438</td>
</tr>
<tr>
<td>Endochitinase, 222</td>
</tr>
<tr>
<td>Endonuclease recognition sites, 18</td>
</tr>
<tr>
<td>Endopectin lyase, 286</td>
</tr>
<tr>
<td>Endophytic fungi as BCAs, 372</td>
</tr>
<tr>
<td>Endopolygalacturonase, 138</td>
</tr>
<tr>
<td>Enhancement of BCA efficiency, 391</td>
</tr>
<tr>
<td>Enhancement of disease resistance, 375</td>
</tr>
<tr>
<td>Enterobacterial repetitive intergenic consensus (ERIC)-PCR, 167</td>
</tr>
<tr>
<td>Entry through natural openings, 137</td>
</tr>
<tr>
<td>Environmental pollution, 6</td>
</tr>
<tr>
<td>Enzyme patterns, 14</td>
</tr>
<tr>
<td>Enzyme-linked fluorescent assay (ELFA), 29</td>
</tr>
<tr>
<td>Enzyme-linked immunosorbent assay (ELISA), 16, 23, 27, 28</td>
</tr>
<tr>
<td>Enzyme-linked oligosorbent assay (ELOSA), 370</td>
</tr>
<tr>
<td>Enzymes, cocktails of, 137</td>
</tr>
<tr>
<td>Epiphytic microorganisms, 362</td>
</tr>
<tr>
<td>Epitopes, 24, 53</td>
</tr>
<tr>
<td>Ergosterol, 225, 297</td>
</tr>
<tr>
<td>Essential oils (EOs) for disease control, 407, 410</td>
</tr>
<tr>
<td>Esterase gene, 134</td>
</tr>
<tr>
<td>Esterase isozyme pattern analysis, 436</td>
</tr>
<tr>
<td>Ethanol for treatment of fruits, 482</td>
</tr>
<tr>
<td>Ethylene insensitivity, 436</td>
</tr>
<tr>
<td>Ethylene perception, 436</td>
</tr>
<tr>
<td>Ethylene production, role in disease development, 141</td>
</tr>
<tr>
<td>Ethylene, in relation to symptom development, 301</td>
</tr>
<tr>
<td>Ethylene-inducing elicitors, 164</td>
</tr>
<tr>
<td>Evaluation of antifungal activity of BCAs, 415</td>
</tr>
<tr>
<td>Evaluation of biocontrol efficiency under field conditions, 366</td>
</tr>
<tr>
<td>Evaluation of biocontrol potential, 363</td>
</tr>
<tr>
<td>Evaluation of disease resistance, 324</td>
</tr>
<tr>
<td>Evaporative cooling, 214</td>
</tr>
<tr>
<td>Exclusion, 5</td>
</tr>
<tr>
<td>Exoantigens (ExAgs), 225</td>
</tr>
<tr>
<td>Exoantigens in relation to DON, 225</td>
</tr>
<tr>
<td>Exochitinase, 222</td>
</tr>
<tr>
<td>Exogenous sources of inoculum, 193</td>
</tr>
<tr>
<td>Expansin gene (Le Exp1), 439</td>
</tr>
<tr>
<td>Expansins, 439</td>
</tr>
<tr>
<td>Exposure of calli to culture filtrate, 436</td>
</tr>
<tr>
<td>Expression of defense genes, 437</td>
</tr>
<tr>
<td>Expression of inf1 gene, 301</td>
</tr>
</tbody>
</table>
Extracellular polysaccharides (EPS) of BCA, 390
Extracellular polysaccharides (EPS), 163, 303
Endophytic fungi as BCAs, 372

Factors influencing storage fungi, 80
Fatty acid profiles, 14
Field fungi, 79
Field resistance, 320
Field screening, 326
Fingerprints, 18
Flame ionization detector (FID), 33
Fluorescent in situ hybridization (FISH), 36
Fluorescent signal, 36
Fluorescent spots, 13
Food additives, antifungal activity of, 498
Food poisoning, 237
Food products, protection of, 381
Food safety, 358
Foodborne human pathogens, 7, 237, 517
Forced-air cooling, 213
Formulations of BCAs, 401
Formulations of chemicals, 483
Four-way interactions of pathogens and hosts, 284
Freezing detection of fungal pathogens, 45
Fresh-cut produce, protection of, 517
Fruit maturity color chart, 216
Fruit microflora, 85
Fruit spoilage, 85
Fruit volatiles, 287
FUM1 gene encoding polyketide synthase, 223
Fumigants, 476–481
Fumigation with essential oils, 408
Fumonisin biosynthesis gene (FUM), 226
Fumonisin contamination, 224
Fumonisins, 21, 125, 223, 318
Fungal toxins, 48
Fungicidal activity, assessment of, 484
Fungicide residues, assessment of, 516
Fungicide resistance management, 490, 506, 516
Fungicide-resistant strains of pathogens, 371
Fusion of protoplasts, 436

Gamma irradiation, 264
Gas chromatography, 33
Gas chromatography-mass spectrometry (GC-MS) technique, 54
Gene disruption for mutant generation, 140
Gene replacement experiments, 136
Generally regarded as safe (GRAS) chemicals, 546
Generation of signals, 289
Genetic diversity of BCAs, 361, 398, 399
Genetic engineering, 6, 434
Genetic manipulation of BCAs, 398
Genetic transformation of plants, 436
Genetics of disease resistance, 322
Genomic fingerprinting technique, 55
Germicidal effect of ozone, 478
GFP as indicator of yeast cell viability, 370
Ghost spots, 149
Gliotoxin in potato tubers, 376
Glucosinolates for disease control, 409
Glycinine, effect on bacteria, 501
Glyoxalase, 310
Gold labeling, 30
G-proteins as signaling components in pathogenicity, 144
Grain driers, 213
Grain temperature, 83
Gray molds, 145
Green fluorescent protein (gfp)-tagged virus, 329
Green fluorescent protein gene (gfp), 119, 152, 162
Growing-on test, 12, 14, 15

Hardening periderm in carrots, 236
Harpin (HrpN), as virulence determinant, 204
Harpin, as inducer of resistance, 458
Harvest-related operations, effect on disease incidence
methods of harvesting, 205
operations prior to harvest, 205
Hazard Analysis and Critical Control Point (HACCP) approach, 539
Health hazards, 6, 9, 475
Heat for pathogen elimination, 258
Heat treatments
 effect of curing, 268
 effect on physiologic functions, 265
 hot air, 265
 hot water, 265
 hot water brushing, 269
 hot water dips, 268
 hot water rinse and brushing, 270
 phased hot water treatment, 269
 steam treatment, 265, 271
 vapor heat, 267
Heat treatments, induction of disease resistance, 451–452
Heated air for drying, 217
Horizontal resistance, 320
Host management methods, 475
Hot drench brushing, 540
Hot water brushing (HWB) technique, 451
Hot water dip (HWD) method, 452
Hot water rinsing and brushing (HWRB) treatment, 229
hrp (hypersensitive response and pathogenicity) gene, 164
Hrp secretion system (type III), 165
Hrp-secreted proteins, 165
Human illness outbreaks, 7
Human pathogens on vegetables, 373
Hydrocooling, 214
Hydrogen peroxide plus for tuber treatment, 480
Hydrolytic enzymes, 137, 153
Hypersensitive cell death, 294
Hypersensitive reaction/response (HR), 164, 301, 304, 307, 329
Hypovirulent strains, 144
Iatrogenic diseases, 360
Identification of pathogens, 4
Identification of sources of resistance, 327
Imidazole compounds, 490
Immunoaassay for PL detection, 286
Immunoblotting analysis of enzymes, 446
Immunoblotting methods, 17
Immunocapture-reverse transcription (IC-RT)-PCR, 31, 41, 42, 43
Immunochromatographic method, 239
Immunodiagnosis, 34
Immunodiagnostic techniques, 16, 17, 23, 27
Immunofluorescence cell staining technique, 38
Immunofluorescence test, 24, 34, 35, 36
Immunogen, 16
Immunogold labeling, 46, 139
Immunolocalization technique, 315
Immunomagnetic beads, 15, 238
Immunomagnetic separation (IMS), 26
Immunomagnetic separation (IMS)-PCR, 56
Immunoprecipitation kit VIP, 238
Immunosorbent electron microscopy (ISEM), 30, 42
Immuo-tissue printing technique, 309
Importance of postharvest diseases, 4
Imprinting of fruit peels/leaves, 361
Improvement of biocontrol potential by genetic manipulation, 398
Incompatible interaction, 285
Incorporation of genes for antimicrobial compounds in BCAs, 400
Indexing plant materials, 34, 39, 43
Indicator plants, 39
Indirect ELISA, 29, 35, 57
Inducing mutations in pathogens, 399
Induction of defense responses, 294
Induction of enzymatic activity by UV-C light, 445
Induction of phytoalexins by UV-C light, 446
Induction of resistance in fruits and vegetables by biocontrol agents, 458
chemicals, 452
physical agents, 445
Induction of resistance by hot water dip, 452
Induction of resistance, 390
inf 1 gene expression, 301
INF 1, pathogen-secreted elicitor, 301
Infection hyphae, 137
Infection of seeds by bacterial pathogens entry through floral/fruit tissues, 120
entry through natural openings/injuries, 120
Infection of seeds by fungal pathogens
entry through floral parts/fruits, 118
entry through natural openings and
injuries, 120
Infection of seeds by viral pathogens, 121
Infrared irradiation as a sterilizing agent, 259
Inheritance of resistance, 326, 328, 333
Inhibition zone, 361
Inoculation techniques for corn ear rot, 333
Inoculum sources, effect on infection, 193, 195
Integrated disease management (IDM) systems for perishables, 540–550
Integrated management methods for foodborne pathogens, 550
Integrated management methods for mycotoxin contamination, 538
Integrated management methods for seedborne diseases, 538
Intergranular atmosphere in grains, 220
Intermittent irradiation, 259
Internal gas atmosphere of fruits, 229
Internal transcribed spacer (ITS), 19, 32
International Seed Testing Association (ISTA), 11, 28, 255
Interspecific hybridization, 329
Intracellular washing fluids (IWF), 144
Introrsegression of resistance genes, 329
Irrigation systems, effect on disease incidence, 202
Isolation of microorganisms, 358
Isozyme patterns, 12, 14, 140
Jasmonic acid (JA), effect on chilling injury on produce, 456
JA, effect on postharvest diseases, 456
JA in relation to disease resistance, 456
JA as signal molecule, 290, 297
Lactic acid bacteria (LAB) in natural food habitats, 381
LAB, effect on pathogens, 380
Laminarin as inducer of disease resistance, 457
Latency, 132
Latent infection, 33, 44, 46, 127, 132, 234
Latex agglutination test, 28
Lectins, 313
Lethal dose (LD₉₀), 481
Leucine-rich repeats (LRR), 165, 303, 321
Licorice, 378
Light Cycler™ technology, 21
Lignin deposition, 434
Lime sulfur against citrus fruit diseases, 484
Linkage of disease resistance, 321
Lipase gene (lipA) expression, 222, 310
Lipid degradation in seeds, 124
Lipid peroxidation, 300
Lipid transfer proteins (LTPs), 297, 309, 312
Lipopolysaccharides of bacteria induction of defense responses, 302 recognition by plants, 302
Lipoxygenase (LOX) activity, 132, 300, 301
Liquid chromatography, 17
Liquid icing, 214
Listeriosis, a foodborne illness, 238
Localized acquired resistance, 435
Longevity in vitro, 15
Loss of viability of BCA, 370
Lysis of bacterial cells by bacteriophages, 374
Lysozyme gene of humans, 438
Lytic bacteriophages, 380
Lytic enzymes, 374
Malt yeast agar for BCA isolation, 361
Mapping of genome, 321
Marker-assisted selection (MAS), 319, 321, 333
Market pathology, 3
Marketable agricultural commodities, 257
Matching virulence genes, 320, 329
Maximum residue limit (MRL), 149
Mechanisms of action of lactic acid bacteria, 380
Mechanisms of biocontrol antibiosis, 385
competition for nutrients and space, 386
direct interaction (parasitism), 390
induction of resistance in host plants, 390
Mechanisms of development of fungicide resistance, 507
Mechanisms of disease resistance, 284
Metabolic fingerprint, 14
6-methoxymellein, 291
1-methylcyclopropene (1-MCP), 229, 298
Methyl salicylate (MSA), effect on postharvest diseases, 456
Methyl salicylate, induction of PR-proteins by, 456
Microbial pathogens, 3, 4
Microflora of fruits, 85
Microflora of vegetables, 93
Microsatellite primer, 48
Microwave treatment, 264
Minimally processed fruits and vegetables, 7, 380
Minimum effective concentration of BCAs, 362, 393
Mitochondrial DNA, 18
Mitogen-activated protein kinase, 135
Mixtures of bacteriophages, 381
Mixtures of BCAs, 373, 396
Modes of action of fungicides acylalanine group, 487
benzimidazole and thiophanate group, 488
dicarboximide compounds, 491
imidazole compounds, 491
Modification of BCA cells with chemicals, 364
Modification of storage atmosphere, 273
Modification of water activity of BCAs, 403
Moisture levels, for seed infection, 4
Mold diseases, 145
Molecular beacons, 38
Molecular biology, 6
Molecular markers, 321, 329
Molecular methods of detection, 16, 45
Molecular variability of pathogens, 226
Monitoring disease incidence, 7
Monoclonal antibodies, 16
Monogenic resistance, 320
Movement protein (MP) gene of viruses, 306
Mucilaginous secretions of spores, 132
Mulches, effect on disease incidence, 203
Multiplex assay, 42
Multiplex PCR, 47
Mummified fruits, as inoculum source, 195
Muscodor albus, as a biofumigant, 372
Mutant generation by gene disruption, 140
Mutation breeding, 435
Mutations to reduce pathogenicity, 400
Mycoparasite, 379, 390
Mycotoxins, 4, 10, 16, 17, 80
Mycotoxicoses, 5, 125
Mycotoxin accumulation in corn (maize) seeds, 383
Mycotoxin contamination management, 462, 538–546
Mycotoxin contamination of feeds, 382
Mycotoxin contamination of food products, 381
Mycotoxin contamination of seeds, 125
Mycotoxin contamination of fruits, 222, 232
Natural microflora, 361
Near infrared (NIR) spectrum, 52
Necrotrophic pathogens, 119
Negative air ions (NAI), 275
Nested PCR, 49
Nested primers, 33
Nitrogenous compounds, effect on BCA, 393, 402
Nitrous oxide, inhibitory effect of, 480
Nonclimacteric fruits, 227
Nonhost specific toxin, 166
Nonspecific resistance, 320
Nontoxicogenic strains of *Aspergillus*, 384
Nucleic acid sequence-based amplification (NASBA), 38
Nucleic acid-based techniques, 17, 30, 32
Nucleotide polymorphism in AF biosynthesis, 222
Nucleotide sequencing, 18
Nucleotide-binding leucine-rich repeat (NB-LRR) proteins, 305
Nutrients, effect on disease incidence calcium, 200
inorganic fertilizers, 199
nitrogen, 199
organic matter, 198
other minerals, 200
Nutrient utilization patterns of BCAs, 397
Nutrient yeast dextrose agar for BCA isolation, 361
Ochratoxin A, production of, 222, 233
Ochratoxins, 126, 227
Off-flavors due to chemical application, 476
One-step PCR, 37
Organic farming, effects on disease incidence, 204
Organoleptic acceptance, 274
Ouchterlony double diffusion test, 23, 27
Outbreaks of human illness, 7
Over expression of genes for lytic enzymes of BCAs, 400
Oxidative burst, 300
Ozone, germicidal effect of, 478, 519
Ozone treatment, 274
Parameters for selection of BCAs, 373
Parasitism, 390
Passive defense mechanisms, 292
Passive resistance, 285
Patatin, 292
Pathogen-derived molecules, 303
Pathogen-derived resistance, 441
Pathogenesis, 5, 117, 164
Pathogenesis-related (PR)-proteins, 143, 294, 313
Pathogenesis-related maize seed (PRms) proteins, 315
Pathogen-free products, 6
Pathogen management methods, 475
Pathogen quiescence, 28
Pathogen recognition specificity, 305
Pathogen-secreted elicitor INF1, 301
Pathogen transformation, 137, 140, 152, 315
Pathogenic causes, 4
Pathogenicity, 34, 136, 139
Pathogenicity-enhancing factor, 155
Pathogenicity factors, 127, 137
Pathogenicity island, 165, 167
Pathogenic potential, 5, 131
Pathosystem, 140
Pathovars, 37, 165
Patulin in apples, 232
Patulin production, 222
Pectate lyase, 293
Pectate lyase gene (pel), 137, 440
Pectin degradation, 139
Pectolytic enzyme-inducing medium (PEIM), 137
Pelleting seeds with BCA, 383
Penetration through natural openings, 137
Peracetic acid as fumigant, 479
Perception of ethylene, 436
Period of mold-free days, 231
Perishable commodity, 212
Perishables, 4
Permatin, 314
Phage mixtures against foodborne pathogens, 381
Phage-display antibody, 46
Phage-display library, 35
Phaseolotoxin, 166
Phenylpyrroles, 494
Phenylalanine-ammonia lyase (PAL) activity, 296
Phosphate-mediated cell death, 454
Phosphates, as SAR signal, 453
Phosphates, effect on defense-related enzymes, 453
Phyllosphere, coverage by BCAs, 378
Phylogenetic relationship, 18
Physical agents, 6
Physical methods of disease management, 255
Physiologic causes, 4
Physiological quality of seeds, 258
Phytoalexin detoxification mechanism, 142
Phytoalexin production, induction by BCAs, 391
Phytoalexins, 290
Phytotoxins, 166, 375
Plant compounds for disease management, 404, 410
Plant growth-promoting rhizobacteria (PGPR), 374
Plant quarantines, 11
Plaque formation, 15
Plaque forming units (PFU), 374
Plasmid carrying pathogenicity island, 167
Plasmid DNA fragment, 50
Plate-trapped antigen (PTA)-ELISA, 240
Poisoned food technique, 484
Polyclonal antiserum, 16
Polyethylene packaging, 260
Polygalacturonase (PG) expression, 138, 139
Polygalacturonase-inhibiting proteins (PGIPs), 142, 293, 311, 437
Polygenic resistance, 320, 327
Polymerase chain reaction (PCR), 18, 25, 26, 32
Polymerase chain reaction (PCR)-RFLP, 56
Polyphenol oxidase (PPO) activity, 317
Polyvalent bacteriophages, 374
Postharvest cooling
evaporative cooling, 214
forced air cooling, 213
hydrocooling, 214
room cooling, 213
top/liquid icing, 214
Postharvest handling
curing and waxing, 218
packaging, 218
sorting and grading, 218
washing, cleaning and trimming, 217
Postharvest pathology, 3
Post-transcriptional gene silencing (PTGS), 307
Powder formulations of BCAs, 404
Pre- and postharvest chemical application, 476
Pre- and postharvest control of mycotoxin contamination, 539
Precipitin lines, 27
Precipitin rings, 27
Preformed antifungal compounds, 144
Preformed antimicrobial compounds, 117, 142, 265
Preharvest sprays of BCAs, 366
Preventive methods for disease management, 258
Primary inoculum of infection, 196
Primary screening of microorganism for antagonistic activity, 362
Primary sources of infection, 255, 382
Primary symptoms, 307
Primed-PCR profiles, 167
Primers- external, internal and satellite, 48
Priority of microbial pathogens, 10
Proanthocyanidins (PAs), 288, 296
Process of infection by bacterial pathogens
colonization of host tissues, 163
entry into host tissues, 162
symptom expression, 167
Process of infection by fungal pathogens
adhesion to host cell, 129
colonization of host tissues, 129, 137, 138
entry into host tissues, 132
spore germination, 128
symptom expression, 145
Process of infection by viral pathogens, 170
Process of pathogen recognition, 286
Production of disease-free seeds, 256
Products free of chemicals, 6
Programmed cell death (PCD), 294, 295, 304
Propagative materials, 9
Prosystemin, 298
Prosystemin expression, 439
Protectant fungicides, 483
Protein binding sites, 29
Protein degradation in seeds, 124
Protein inhibitor I expression, 298
Protein kinase (p51-PK), 301
Proteinase inhibitor, synthesis of, 434
Proteinase inhibitors, 286
Protein-protein interaction, 331
Proteolytic enzymes of pathogens, 142
Protoplast fusion, 436
Pto-mediated resistance, 301
Pyrrolnitrin, as antifungal compound, 377
Qualitative losses, 4
Quantification of fungal biomass, 240
Quantitative assessment of infection, 257
Quantitative competitive (QC)-PCR, 37, 370
Quantitative ELISA, 45
Quantitative losses, 4
Quantitative PCR, 20
Quantitative real-time PCR, 23, 238
Quantitative resistance, 324
Quantitative trait loci (QTL), 321, 324, 332
Quarantine measures, 256
Quiescence, 44
Quiescent infection, 32, 44, 48, 127, 285
Race-specific resistance, 327
Radioactive probes, 24
Random amplified polymorphic DNA (RAPD), 26, 48, 49, 55, 321
RAPD for identification of BCA isolates, 361
RAPD-PCR, 53, 55
Rapid diagnosis medium, 14
Reactive oxygen species (ROS), 127, 287, 294
Real-time fluorescence, 36
Real-time fluorescence RT-PCR, 42
Real-time PCR, 21, 36
Receptor-like protein kinases (RLKs), 303
Receptors of elicitors, 303
Recognition of pathogens by plants, 286
Recombinant junctions (RJs), 42
Recontamination of heat-treated fruits, 272
Regeneration of plants from calli, 436
Regulation factors, 164
Regulation of defense mechanism in fruits and vegetables, 445
Regulations on use of chemicals, 476
Regulatory genes, 164
Regulatory proteins, 164
Rehydration medium for freeze-dried BCA cells, 402
Repetitive sequence-based (rep)-PCR, 55
Replicase protein gene of viruses, 306
Residual chemicals, 378
Residue tolerances for TBZ, 489
Residue-free products, 476
Residues of chemicals, 6
Resin glycosides, as antifungal compounds, 289
Resistance gene analogs (RGAs), 331
Resistance mechanisms, 320
Resistance to chemicals, 7
Resistance to bacterial diseases, 301
fungal diseases, 292
viral diseases, 306
Resorcinol as antifungal compound, 143, 287
Respiratory burst, 300
Restriction enzymes, 18
Restriction fragment length polymorphism (RFLP), 18, 25, 42
Resveratrol in relation to disease resistance, 297
Reverse transcription (RT)-PCR, 30, 41, 42
RFLP markers, 324
Rhodotorulic acid, 389
Ribosomal repeat DNA, 22
Ribosomal RNA gene cluster, 222
RNA-binding proteins (RPBs), 307
Ribosome-inhibiting proteins (RIPs), 221, 309, 310
Ripening process, 4
RNA interference (RNAi), as antiviral system, 307
RNA silencing, 308
Rot diseases, 149
Rouging infected plants, effect on disease incidence, 194
RT-PCR for mRNA levels, 222
Salicylic acid (SA) as endogenous transduction signal, 297, 439
Salmonellosis, a foodborne illness, 230
Salt solution for seed selection, 257
Sanitizing effects of wax, 260
Saprophytic survival of BCAs, 379
Scab disease, 159
Scanning electron microscopy for ultrastructural studies, 135, 173
SCAR markers for BCA identification, 362
Scopoletin, 297
Scopolin, 297
Screening for disease resistance, methods of, 328, 336–338
Screening of microorganisms for biocontrol potential, 362
Screening techniques, 436
Scurf disease, 159
Secondary screening of BCAs, 362
Seed deterioration caused by
 bacterial pathogens, 126
 fungal pathogens, 122
 viral pathogens, 126
Seed extracts for disease management, 409
Seed health testing, 10, 194, 257
Seed immunoblot assay (SIBA), 17
Seed infection by
 bacterial pathogens, 126
 fungal pathogens, 117
 viral pathogens, 126
Seed-inhabiting bacteria, 85
Seed-inhabiting fungi, 79
Seedling symptom test, 12
Seed microflora, 79, 382
Seed moisture, 219
Seed mycoflora, 79
Seed quality as affected by
 carbohydrate degradation, 123
 contamination of seeds with mycotoxin, 125
 lipid degradation, 124
 protein degradation, 124
Seed-to-plant transfer of pathogens, 14
Seed-to-spoon protection for food safety, 539
Seed treatment with BCAs, 382, 383
Seed treatment with chemicals, 503–506
Seeds as primary sources of infection, 382
Selection pressure on pathogens, 434
Selective media, 11
Semiselective enrichment broth (SSEB), 24
Semiselective medium, 12, 34, 54
Senescence process, 4
Separation of seeds by vertical air stream, 257
Sequence characterized amplified region (SCAR), 54, 194, 321
Serodiagnostic methods, 39, 40
Serological properties, 40
Serotypes, 35
Serovars, 24, 35
Shattering of grape berries, 230
Shelf-stable BCA products, 401, 403
Short wave infrared irradiation, 264
Siderophores, 389, 394
Signaling pathways, 134, 136
Signal transduction, 331
Signal transduction pathways, 136
Silicon, effect on defense-related enzymes, 501
Silicon against fruit decay, 501
Silicon, effect on postharvest diseases, 395
Simulated quarantine treatment, 541
Single gene resistance, 320
Site of stimulus, 435
Slide agglutination test, 23, 54
Small subunit (SSU) rDNA primer, 46
Smudge disease, 159
Snakin (StSN2), as a defense compound, 291, 439
Sodium metabisulfite against soft rot, 500
Soft rot diseases, 167
Soil, as reservoir of Salmonella, 239
Soilborne sources of inoculum, 195
Solid-phase microextraction (SPME) fiber, 33
Somaclonal variation, 435
Somatic hybrid, 436
Sources of inoculum, 193
Sources of resistance, 284, 322, 327, 328
Standard enrichment technique, 238
Storability of harvested produce, 435
Storage bags, types of, 258
Storage conditions for
 fruits, 227
 seeds, 219
 vegetables, 233
Storage fungi, characteristics of, 80
Storage temperature, 84
Strobilurins, 493
Structural barriers, 294
Structural defense responses, 314
Subserovars, 24
Sulfur dioxide, 476
Surface plasmon resonance (SPR)-based indirect inhibitive immunoassay, 225
Survivability of fungal pathogens, 195
Survival periods and rates of BCAs, 364, 368
Symptom expression, 117
Symptom expression of bacterial diseases
brown rot, 168
canker, 169
soft rots, 167
spots, 169
Symptom expression of fungal diseases
anthracnose, 145
blights, 155
melanose, 158
molds, 145
rots, 149
scab, 159
scurf, 159
smudge, 159
smut, 159
spots, 161
wart, 161
Symptom expression of viral diseases, 171
Symptomatic plant parts, 48
Synthetic hexapeptides against molds, 501
Syringomycin, 285
Syringomycin biosynthesis gene (syrB), 386
Systemic acquired resistance (SAR), 435
Systemic fungicides, 476, 484, 487–496
Systems of disease management, 4, 9
Talc-based formulations of BCAs, 368
Tissue culture plates with cylinder inserts, 387
Tolerance level, 28, 194
Tolerance limit of seed infection, 255
Tolerance of BCAs to adverse conditions, 363, 368
Tolerance of zero infected seeds, 256
Tomatine as antifungal compound, 287
Top icing, 214
Toxic metabolites, 10
Toxin producing fungi, 48, 137, 140
Transformation of BCAs with pectate lyase gene, 440
Transcriptional activation of enzymes, 163
Transcriptional enhancer, 47
Transfer of resistance genes, 284
Transformation for resistance to mycotoxins, 462
Transformation of BCAs, 400
Transformation of BCAs with endochitinase gene, 438
Transformation of plants with chitinase genes, 438
thionin gene, 441
viral genes, 441
Transgenic cultivars, 441
Transgenic plants, 330, 436
Transmission electron microscope (TEM) studies, 174
Triazoles as preharvest fungicides, 493
Trichodiene synthase gene (Tri 5), 225, 318
Trichothecene biosynthesis (Tri genes), 226
Trichothecenes, 20, 125
Trypsin inhibitor, 314
Tube agglutination test, 23
Tube capture (TC)-RT-PCR, 56
Tuber treatment with BCAs, 376
Tumor-inducing (Ti) plasmid, 437
Type III secretion system (TTSS), 164
Types of storage bags, 258
Ultraviolet (UV)-C light, effect on disease incidence, 6, 259
UV-C light, delayed ethylene production by, 234
UV-C light, disinfection effect of, 263
UV-C light, induction of disease resistance by, 263, 445–451
UV-C treatment, negative effects of, 449

Vacuum cooling, 214
Vat gene, effect on vector transmission, 309
Vegetables as reservoir of Salmonella, 380
Vegetative compatibility groups (VCGs), 19, 221
Vertical resistance, 327, 329
Vinlozolin, as preharvest fungicides, 492
ε-viniferin, 297
Virobacterial agglutination (VBA) test, 23
Virulence, 5, 138
Virulence determinants, 140, 163, 164, 304
Virulence effector proteins, 166
Virulence factors, 140, 163
Virus resistance genes, 304
Visible moldiness, 220
Volatile compounds for treatment of fruits, 481
Volatile organic compounds, 54
Volatiles from grapes for disease management, 408
Volatile from Muscodor albus, 372
Volatile from potato, 33

Water activity, 82, 220
Water activity tolerance of BCAs, 364
Water as reservoir of Salmonella, 239
Waxing advantages of, 260
effects of, 260
Waxy cuticle, water repellency of, 292
Western blots, 46
Wetness period, in relation to decay, 230, 235
Wettable powders, 483
Working sheets for seedborne pathogens, 11
Wound healing process, 236
Wound response genes, 162
Wound volatile compounds, 136
WRKY proteins, role in gene regulation, 303

Yeast cells for decontamination of mycotoxins, 381
Yield of transgenic plants, 444
Zearalenone, 125
Zero tolerance, 255
Zymotypes, 14