INDEX

Acenaphthalene, 171
Acetaldehyde, 185, 236
Acetate esters, 175
Acetic acid, 73, 182, 184
anhydride, 178
Acetone, 73, 76, 84, 143, 152, 185
Acetonitrile, 127, 184
Acetyl, 65
Acid-base, 117, 141
Acidity, 111
Acids, 28, 30, 40, 117, 120, 161, 184–185, 236–237, 270
Acrolein, 181, 185, 248
Acrylate, 105
Acrylic acids, 174, 235
Acrylic acid-divinylbenzene copolymers, 28
Adsorbents, 2, 6, 15, 22–31, 34
Adsorption
capillary columns, 101–102, 109
column performance and, 117
column preparation and, 56
gas-liquid, 204
irreversible, 120
Advanced Separation Technologies, Inc., 156
Agilent Technologies, 12, 110, 135–139, 172
Aircraft industry, 201, See also Jet fuel
Air-filtration system, 197
Alcohol retarder column, 268
Aldehydes, 30, 40, 117, 134, 161, 185
Aldrin, 186
Aliphatic(s), 24, 31, 65, 158, 185, 238, 241
Alkali metal, 24–25
Alkaloids, 247
Alkanes, 33–35, 40, 117, 120, 161
Alkyds, 174
Alkyl, 156, 158, 272–273
Alltech, 135–139
Allyl chloride, 184
Alprazolam, 61
Alumina, 2, 6, 14, 134, 158, 161
Aluminum
capillary column, 101, 105
capillary column, 106–107, 113
column, 3–4
gas-liquid, 158
oxide-KCl, 158
oxide-sodium sulfate, 158
Alprazolam, 61
Ambient temperature, 29, 32, 192, 212
American Association of Official Analytical Chemists (AOAC), 10
American Laboratory, 13
American Society for Testing and Materials (ASTM)
column selection, 172
column selection guidelines, 265
suggested capillary column dimensions, 174–178
simulated distillation, 201
test method, 138
Amides, 30
Amiloxate, 60
Amine(s), 28–31, 101, 110, 119, 139, 158, 161, 185, 238–239
Amino acids, 158, 239
alcohols, 158
Aminoethanol compounds, 185
Aminophenol, 76
Anilines, 62
Anisole, 24, 29–30, 241
Ampicillin sodium, 34
Ampicillin sodium, 62

Columns for Gas Chromatography: Performance and Selection, by Eugene F. Barry and Robert L. Grob
Copyright © 2007 John Wiley & Sons, Inc.
Based-deactivated columns, 115
Belladonna extract, 63
Benzaldehyde, 126
Benzene(s), 25, 27, 40, 126, 143, 176–178, 185
Benzidines, 180–181, 186
Benzocaine, 63
Benzoic acid, 119
Benzoquinoline, 5
Benzyl
alcohol, 63, 152
amine, 118
diphenyl, 5
salicylate, 119
Bicyclics, 158
Bile acid, 236
Biodiesel fuel, 107
Biphenyl, 185
Birth certificate, 119
Bis(2-ethylhexyl), 5, 36–37
Bisabolol, 65
Biscyanopropylsiloxane, 137
Bleed
capillary column, 194–195
film thickness and, 164
ions, 150
sources of, generally, 187
Blood alcohol analysis, 139, 236
Boiling
point, 25, 32, 164, 169–170, 174, 176
range, 175, 178, 200–201, 211
Bonding, weak, 24. See also specific types of bonds
Boron, 102
Borosilicate, 95, 115
Bourbon, 236
Broadening, 119, 123, 218
Bromotrifluoromethane, 184
Brompheniramine, 63
Büchner funnel, 55
Bupivacaine, 63
Butabarbital, 63
Butadienes, 160–161, 174, 184
Butanediol, 117–118, 120
Butanes, 63, 159–161, 260
Butanethiol, 185
Butanol, 40, 143, 152
Butanone, 143, 185
Butene, 160
Butorphanol tartrate, 63
Butyl
acetate, 143, 152
alcohol, 63
benzene, 242
INDEX

283

cellosolve, 143
cellulose, 158
cellulose acetate, 158
ether, 185
maleic acid, 178
phenols, 264
Butylated hydroxyanisole, 63
Butyryl, 65

Caffeine, 82
Cages, capillary, 116–117
Calcium, 101
Calibration
 curve, 201
 quantitative standard, 266
 SIMDIS blend, 265
Calamus oil, 127
Camphorated phenol, 63–64
Cannabinoids, 245
Capacity
 capillary column performance, 131, 161, 164–165
 fused-silica capillary columns, 166
 high-speed gas chromatography, 218
 megabore columns, 168–169
Capillary column
 bleed, 194–195
 conditioning, 192–194
 economic statistics, 10
 efficiency, 117, 119, 170–171
 fatigue, 200
 ferrule materials and fittings, 190–191, 194
 ideal, 119
 gas chromatography, see Capillary column gas chromatography
 guard columns, 196–200
 installation, 190–191
 overview of, 27, 279
 performance, test mixtures for monitoring, 171–179
 preparation of, 59
 regeneration, 200
 reinstallation, 119
 retention gap, 196–200
 selection factors, see Capillary column selection guidelines
 separation number, 50
 stationary phase, 34–35, 41
 technology, see Capillary column technology
 tool kit, 195
Capillary column gas chromatography
 achievements, chronology of, 95–98
 column installation and care, 186–200
 column selection, 159–178
<table>
<thead>
<tr>
<th>Index Entry</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboxylic acids</td>
<td>158</td>
</tr>
<tr>
<td>Carrier gas</td>
<td></td>
</tr>
<tr>
<td>capillary column gas vs. packed column chromatography</td>
<td>99–100</td>
</tr>
<tr>
<td>chromatographic methods</td>
<td>60–90</td>
</tr>
<tr>
<td>flow rates</td>
<td>58, 123</td>
</tr>
<tr>
<td>high-purity</td>
<td>192</td>
</tr>
<tr>
<td>high-speed gas chromatography</td>
<td>220–221</td>
</tr>
<tr>
<td>linear velocity</td>
<td>127–130</td>
</tr>
<tr>
<td>nature of</td>
<td>123, 129</td>
</tr>
<tr>
<td>packed column preparation</td>
<td>59</td>
</tr>
<tr>
<td>purifiers</td>
<td>178, 187</td>
</tr>
<tr>
<td>selection</td>
<td>52–53</td>
</tr>
<tr>
<td>types of</td>
<td>124–126</td>
</tr>
<tr>
<td>viscosity</td>
<td>127–129</td>
</tr>
<tr>
<td>volume of</td>
<td>129</td>
</tr>
<tr>
<td>CA Selects</td>
<td>12</td>
</tr>
<tr>
<td>Castor oil</td>
<td>63</td>
</tr>
<tr>
<td>Cefoxitin sodium</td>
<td>63</td>
</tr>
<tr>
<td>Celanese ester</td>
<td>5</td>
</tr>
<tr>
<td>Cellaburate</td>
<td>65</td>
</tr>
<tr>
<td>Cellosolve</td>
<td>152</td>
</tr>
<tr>
<td>Cetostearyl alcohol</td>
<td>65</td>
</tr>
<tr>
<td>Cetyl alcohol</td>
<td>65</td>
</tr>
<tr>
<td>Chain branching</td>
<td>25</td>
</tr>
<tr>
<td>Chamomile</td>
<td>65</td>
</tr>
<tr>
<td>Charcoal</td>
<td>24</td>
</tr>
<tr>
<td>Charge distribution</td>
<td>134</td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
</tr>
<tr>
<td>bonding phase</td>
<td>6, 142–149</td>
</tr>
<tr>
<td>stability</td>
<td>32, 140</td>
</tr>
<tr>
<td>Chemical Abstracts Service</td>
<td>12</td>
</tr>
<tr>
<td>Chemisorption research</td>
<td>25–26</td>
</tr>
<tr>
<td>Cherry brandy</td>
<td>236</td>
</tr>
<tr>
<td>Chirallex capillary columns</td>
<td>156, 158</td>
</tr>
<tr>
<td>Chiral stationary phases</td>
<td></td>
</tr>
<tr>
<td>characteristics of</td>
<td>153, 155</td>
</tr>
<tr>
<td>cyclodextrins</td>
<td>153–156</td>
</tr>
<tr>
<td>immobilization of</td>
<td>149–150</td>
</tr>
<tr>
<td>Chirasil-Val</td>
<td>155–156</td>
</tr>
<tr>
<td>Chlordane</td>
<td>176, 186, 223</td>
</tr>
<tr>
<td>Chlorhexidine gluconate</td>
<td>65</td>
</tr>
<tr>
<td>Chlorides</td>
<td>24–25</td>
</tr>
<tr>
<td>Chlorinated</td>
<td></td>
</tr>
<tr>
<td>diphenyl ether</td>
<td>186</td>
</tr>
<tr>
<td>hydrocarbons</td>
<td>182, 250, 254</td>
</tr>
<tr>
<td>solvents</td>
<td>244</td>
</tr>
<tr>
<td>terphenyl</td>
<td>186</td>
</tr>
<tr>
<td>Chlorine</td>
<td>101</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>143</td>
</tr>
<tr>
<td>Chloroethylamine hydrochloride</td>
<td>73</td>
</tr>
<tr>
<td>Chloroform</td>
<td>143, 197</td>
</tr>
<tr>
<td>Chloro-1,2,3-trifluoroethylmethyl ether</td>
<td>27</td>
</tr>
<tr>
<td>Chlorophenol</td>
<td>66, 117</td>
</tr>
<tr>
<td>Chlorophenoxyacid</td>
<td>179</td>
</tr>
<tr>
<td>Chloroprene</td>
<td>184</td>
</tr>
<tr>
<td>Chloroxylolol</td>
<td>65</td>
</tr>
<tr>
<td>Chlorpheniramine maleate</td>
<td>65, 79</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>274–275</td>
</tr>
<tr>
<td>Cholesteryl esters</td>
<td>276</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>65</td>
</tr>
<tr>
<td>Chromatographic performance carrier gas</td>
<td>124–129</td>
</tr>
<tr>
<td>coating efficiency</td>
<td>132</td>
</tr>
<tr>
<td>flow rate</td>
<td>126–127</td>
</tr>
<tr>
<td>Goy equation vs. van Deemter expression</td>
<td>122–124</td>
</tr>
<tr>
<td>linear velocity</td>
<td>125–129</td>
</tr>
<tr>
<td>phase ratio</td>
<td>129–132</td>
</tr>
<tr>
<td>viscosity</td>
<td>1227–129</td>
</tr>
<tr>
<td>Chromatography Forum</td>
<td>13</td>
</tr>
<tr>
<td>Chromosorb</td>
<td>23–24, 28, 33–34</td>
</tr>
<tr>
<td>Chrompack</td>
<td>12, 135–139</td>
</tr>
<tr>
<td>Chrysene</td>
<td>171</td>
</tr>
<tr>
<td>Citastatin sodium</td>
<td>65</td>
</tr>
<tr>
<td>Cinnamhimics</td>
<td>119</td>
</tr>
<tr>
<td>cis-Hydridane</td>
<td>40</td>
</tr>
<tr>
<td>Clavulanate potassium</td>
<td>65</td>
</tr>
<tr>
<td>Clean rooms</td>
<td>103</td>
</tr>
<tr>
<td>Clindamycin palmitate hydrochloride</td>
<td>65</td>
</tr>
<tr>
<td>Clioquinol</td>
<td>65</td>
</tr>
<tr>
<td>Clofibrate</td>
<td>66</td>
</tr>
<tr>
<td>Coating(s)</td>
<td></td>
</tr>
<tr>
<td>capillary gas vs. packed column chromatography</td>
<td>99</td>
</tr>
<tr>
<td>efficiency of</td>
<td>132</td>
</tr>
<tr>
<td>fused-silica capillary columns</td>
<td>103, 105, 122, 133</td>
</tr>
<tr>
<td>PLOT columns</td>
<td>156</td>
</tr>
<tr>
<td>static, capillary columns</td>
<td>116</td>
</tr>
<tr>
<td>Cocoa butter</td>
<td>66</td>
</tr>
<tr>
<td>Codeine</td>
<td>72, 85</td>
</tr>
<tr>
<td>Cod liver oil</td>
<td>66</td>
</tr>
<tr>
<td>Coelution</td>
<td>28</td>
</tr>
<tr>
<td>Colchicine</td>
<td>66</td>
</tr>
<tr>
<td>Colestirpol hydrochloride</td>
<td>66</td>
</tr>
<tr>
<td>Column, see Capillary column; Packed column central role of</td>
<td>6–8</td>
</tr>
<tr>
<td>historical perspectives</td>
<td>1–6</td>
</tr>
<tr>
<td>information resources</td>
<td>11–14</td>
</tr>
<tr>
<td>selection, see Column selection technology, advances in</td>
<td>6–8</td>
</tr>
<tr>
<td>tubing, historical perspectives</td>
<td>6–7</td>
</tr>
<tr>
<td>Column selection selection guidelines</td>
<td>277–280</td>
</tr>
<tr>
<td>importance of</td>
<td>8–9</td>
</tr>
<tr>
<td>by specifications</td>
<td>172–187</td>
</tr>
<tr>
<td>Combustion</td>
<td>102</td>
</tr>
</tbody>
</table>
Comprehensive two-dimensional GC (C2DGC), 202
Computer assistance
 applications, generally, 40, 165, 201, 203
database services, as information resource, 12
 oven temperature control, 214–217
programs, types of, 6
Conditioning, packed columns, 58–59
Connectors, capillary columns, 195–200
Contamination, sources of, 32, 200
Convachlor, 5
Convection ovens, 210–211, 218–219, 228
Convoyl, 5
Copper
 characteristics of, 101
tubing, 56
Corn silage, 234
Corrosion, fused-silica columns, 105
Creosote, 244–245
Cresol, 185
Cross-linked/cross-linking
 capillary columns, 141–149
 chemical bonding and, 149
cyanopropylsiloxane, 38
 fused-silica capillary columns, 120, 122
megabore columns, 167
Cryogenic applications, 153, 163, 210
Current Contents, 12
Cyanopropyl, 37–38, 41–43, 134–136, 147, 149, 156
Cyclic amines, 158
Cyclic isomeric hydrocarbons with increasing degrees of unsaturation (CIHIDUs), 26
Cyclic siloxanes, 115
Cycloodextrins, 153–157
Cyclohexanes, 174, 177
Cyclohexanol, 143
Cyclohexanone, 152
Cyclodextrine, 67
Cyclopentadiene, 185
Cyclopentane, 160
Cyclopentamethine, 65
Cyclooctane, 67
Cyclodextrin, 155–157
Silicon oil, 5
Silica, 10
Silylation procedures, for fused-silica capillary columns, 110–116
Debye induction forces, 33
Decane, 35, 118–119, 121
Decomposition, 32, 56
Decylamine, 117, 118
Degradation, 105, 114, 193
Dehydrocondensation, 112
Dehydroesterone, 67
Demeton, 186
Denaturants/denaturation, 176–177, 236
Desflurane, 67
Desoximetasone, 67
Dexamethasone, 67–68, 79
Dexchlorpheniramine maleate, 68
Dexchlorpheniramine maleate, 68
Dexpanthenol, 68
Dextran, 68
Diacetone alcohol, 43
DiBromo
 difluoromethane, 184
 methane, 179
 -3-cyclopropane, 179
 dibromomethane, 184
 diethyl ether, 5
 dibromo
 difluoromethane, 184
 methane, 179
 -3-cyclopropane, 179
 dibromomethane, 184
 diethyl ether, 5
 dibromo
 difluoromethane, 184
 methane, 179
 -3-cyclopropane, 179
 dibromomethane, 184
 diethyl ether, 5
 dibromo
 difluoromethane, 184
 methane, 179
 -3-cyclopropane, 179
 dibromomethane, 184
 diethyl ether, 5
Dichloro (Continued)
propane, 184
Dicumyl peroxide, 147–148
Dicyanoallyl, 43
Dicyclohexylamine, 117–118
Dieldrin, 223
Dienes, 161
Diepoxyde, 38
Diesel fuel, 227
Diethanolamine, 118
Diethylene, 5, 36–37, 43, 68, 118
Differential flow, 203
Diffusion
 coefficient, 122–123
eddy, 15, 52
 packed column separation, 52–53
Diffusivity, 33, 140
Diffuroxetine, 184
Diglycerol, 5, 34
Dihydroequilin, 66–67
Dihydrostreptomycin sulfate, 79
Dihydrotachysterol, 69
Dihydroxyaluminum, 69
Diisodecyl, 2, 5, 37
Dimensions, EPA methods, 180–183
Dimethylenedialine, 186
Dimethylacetamide, 185
Dimethyleneedialine, 186
Dinonyl, 2, 5
Dioctyl phthalates, 2, 5
Diols, 158
Dioxane, 40, 80–81, 88, 143, 184
Dioxins, 139
Dipe, 176
Diphenoxylate hydrochloride, 69
Diphenyls, 23, 135, 144
Dipoles, 24, 33, 40, 134, 141
Diproprionyl, 158
Dipropylene glycol monomethyl ether, 176
Disilazanes, 115
Disinfection, 179, 182
Dispersion, 33, 141
Distillation, 139, 200–202
Distilled water, 103
Distribution coefficient, 129
Disulfides, 274
Divinylbenzene, 29, 38, 161
DMP, 121
Dodecane, 35, 118, 121
Donor-acceptor interactions, 33, 141
Doxorubicin hydrochloride, 69
Doxylamine succinate, 69–70
Drinking water, 172, 180–182
DryLab software, 214–215
Dust, 116
Dyphylline, 70
Earth, siliceous, 23
ECD, 180–183, 189, 195, 203
Echothiophate iodide, 70
Eddy diffusion, 15, 52
Efficiency
 capillary columns, 117, 119, 170–171
 packed columns, 15, 46–47, 50–51
 separation, 119
 utilization of theoretical (UTE), 132
EGDMA polymer, 29
Eicocane, 118
ELCD, 180, 183
Electron(s)
 density, 25
 donors, 101, 103
 -releasing groups, 25
 -withdrawing groups, 25
Electronic advances, 8
Electronic pressure-controlled injection, 97
Elution, 24, 39, 45, 211
Embaphase silicone oil, 5
Enantiomers, 155
Endosulfan, 223
Endrin, 186, 223
Enflurane, 70
Engine fuel, 176, 178
Ethylene glycols, 178
Environmental analysis, 11
Environmental Protection Agency (EPA)
 column dimensions, 180–183
 column selection, 172
 method number designations, 179
 methods, generally, 153, 244, 250–251
 series, 167, 170
Enzacamene, 70
EPC, 223
Epichlorohydrin, 184
EPD, 186
Epoxides, 158
Equin, 67
Estanes, 30, 40–41, 158, 184
Estriadiol, 66–67
Estrogens, 66
Estrone, 67
ETBE, 176
Ethers, 30, 40–41, 70
Ethoxyethanol, 68, 143
Ethoxyethyl acetate, 143
Ethyls, 16, 66, 70–71, 83, 80, 119, 126, 143, 152, 176–177, 184–186, 241, 269
Ethylhexanoic acid, 65, 117–118
Etofolic, 71
Eucalyptol, 71, 118
Eutectic mixtures, inorganic, 5
Evaporation, 55, 116
Explosives, 139, 179
Extracolumn effects, 119
Extrapolation, 35

Fast capillary columns, 164–165
Fast chromatography, 217–228
Fast data acquisition systems, 97
Fast gas chromatography, 7, 11
Fatigue, 186, 200
Fatty acid(s)
characters of, 30, 40, 53, 56, 60, 66, 85, 117, 174–175, 177
free, see Free fatty acids (FFA)
methyl esters (FAMEs), 139, 174, 252–253
volatile, 233
Feedback, fused-silica columns, 103
Fenoldopam mesylate, 71
Ferrule materials and fittings
capillary columns, 187, 190–191, 194, 197, 200
quick-connect, 196
for packed columns, 57
Filling columns, 53
Film, generally
liquid-phase, 53
stability, 144
thickness, see Film thickness
Film thickness
capillary columns, 129–130, 153, 159, 161, 163, 195
fundamental resolution equation, 167–172
megabore columns, 166
stationary phase, 280
Filtrate, in packed column preparation, 55
Fingerprinting chromatograms, 165
Fittings
ferrule, see Ferrule materials and fittings
glass wool plugs and, 56–57
overtightening, 56
Flame ionization detection (FID), 9, 116, 127, 132, 142, 156, 159, 177, 180–183, 186, 190, 191, 213
Flammable materials, 187
Flash gas chromatography, 223–224
Flavors, 139
Flexibility, 2
Flexible input requirement standard technology (FIRST), 217
Flow rate, 6, 52–53, 58, 123, 126–127. See also
Differential flow; Stop-flow operation
Fludarabine phosphate, 71
Fludeoxyglucose, 71
Fluricinonide, 71
Fluoranthene, 171
Fluorene, 5, 171
Fluticasone propionate, 71
Food and flavor volatiles, 40, 139
Forced-air convection oven, 210–211, 228
Formaldehyde, 29–30, 161, 185, 256
Formalin solution, 256
Fourier transform infrared spectroscopy (FTIR), 97
FPD, 183
Fragrances, 139
Free acids, 253
Free fatty acid (FFA) phase, 38, 43, 233–234
Free-radical cross-linking, 133, 141, 145–147
Freon, 254
Fritted metal plugs, 15, 57
Fuel oil, 167
Functional groups, 33, 41, 112, 134, 140, 156, 195
Furans, 139, 158
Furural, 185
Furfuryl alcohol, 185
Fused-silica capillary columns
aluminum-clad, 106–107
characteristics of, 1–2, 4, 6–7, 100–106, 190–191
drawing process, 103–104
extrusion of, 103–106
historical perspectives, 9, 97
impurities in, typical, 101
mechanical properties of, 102
physical properties of, 102
PLOT columns and, 156
polyimide-clad, 113
stainless steel, 113
synthetic, 101
tubing, 105, 109
Fused-silica packed columns, 27, 60
Gadodiamide, 71
Gadoversetamide, 71
Gas chromatographic columns
central role played by, 6–8
evolution of, 1–6
ideal, 46
information resources, 11–13
selection and care, justification for, 8–11
size of, 1, 10
test mixtures in evaluation, 118
trends in, 9–10
Gas chromatography, historical perspectives, 5
Gas chromatography-mass spectroscopy
(GC-MS) systems, 11, 97, 132, 161, 187, 195
Gas-liquid chromatography (GLC), 11, 24, 203
Gas-liquid mechanisms, 30
Gas-liquid-solid chromatography (GLSC), 24
Gasoline, 174–177, 241, 265, 267
Gas-solid
adsorption mechanisms, 32
chromatography (GSC), 2, 10, 24–25
mechanisms, 30
packed columns, 11
GC-SOS (Gas Chromatography Simulation and
Optimization Software), 216–217
GC Racer, 226–228
Gels
silica, 2, 6, 24, 28
sol-gel, 116, 150–152
Gemminal silanols, 102
General elution problem, 211
Generators, see Gas generators
Gentamicin sulfate, 71
Geraniol, 119
Glass
beads, 15
capillary columns, see Glass capillary columns
chemical inertness, 56
coiled column, 57
drawing machines, 27
to-glass connections, 57
historical perspectives, 9
to-metal connections, 57
packed columns, 3, 55–56
wool/wool plugs, 15, 56–57
Glass capillary columns
characteristics of, 2, 98
composition, approximate, 101
development of, 95–96, 98, 100, 133
Glutaraldehyde, 185
Glycerin, 71
Glycerol, 5, 34
Glyceryl, 72
Glycidol, 184
Glycidyl, 158
Glycols, 28–30, 152
Golay, Marcel, 94
Golay equation, 122–124
Gold, 72, 105
Gonadorelin hydrochloride, 72
Gradient elution HPLC, 215
Grapefruit oil, 253
Graphite (G) columns, 57
Graphite ferrules, 187, 190
Graphite-Vespel composite ferrules, 187, 190
Graphitized carbon, 15, 23, 28, 30–31, 158
Grease, removal of, 56
Grob mixture, 120, 122
Grob procedure, 119
Guaifenesin, 72, 86
Guanabenz acetate, 72
Guard columns, 115, 196–200
Haloacetic acids, 179
Haloolkanes, 158
Halocarbons, 179, 247
Halocarboxylic acid esters, 158
Halocycloalkanes, 158
Halopropylene, 158
Haloethers, 25, 179, 200
Haloethers, 179, 250
Halogenated
aromatic hydrocarbons, 27
hydrocarbons, 175, 184
organics, 180
Halogens, 25, 56
Hastelloy tubing, 56
Hayesep, 23, 28–29, 38
Hdyroxycitronellal, 119
Headspace samples, 8, 127, 175, 180
Heat, see Temperature
of adsorption process, 25–26
transfer, 106
Heated column jacket, 223–228
Height equivalent to a theoretical plate (HETP),
46, 53, 125
Helium, 52, 125, 127–128, 170–171
Heptachlor, 176, 223
Heptadecane, 118
Heptane, 174
Herbicides, 40, 179, 183
Heterocyclics, 158, 239
INDEX

Hewlett-Packard, 2, 97
Hexachlorophene, 73
Hexadecane, 5, 118
Hexanes, 143, 159
Hexanol, 119
Hexane, 143
Hexylamine, 118
High boilers, 2
High-molecular-weight compounds, 25
High-performance liquid chromatography (HPLC), 179, 196, 201, 215
High-pressure materials, 187
High-resolution gas chromatography, 95, 178 separations, 9
High Resolution Chromatography, 218
 Isoflurane, 74
 Isofluorophate, 74
 Isomeric alcohols, 237
 Isomers, 161
 Isonyl acetate, 35
 Isoctane, 174
 Isopentane, 160
 Isophorone, 152, 179, 182, 185
 Isopropyls, 69, 73–76, 83–84, 87–88, 126, 143, 175
 Isosorhide, 74
 Isothermal conditions, 57, 164
 operations, 211–212
 separations, 128, 167
 Isotretinoin, 74
 Ivermectin, 74
 J&W, 12, 134–139
 Jet fuel, 95, 167
 Junction-point pressure, high-speed gas chromatography, 220–221
 Keesom orientation forces, 33
 Kelvin temperature, 39
 Kerosene, 267
 Ketones, 30, 40–41, 101, 158, 179, 184, 269
 Ketosteroids, 276
 Kovats Retention Index, 34–35, 40–44
 Kraft pulp mill stack gases, 273
 KRS-5 crystal, 27
 Labetalol hydrochloride, 74–75
 Lactic acid, 234
 Lacotones, 158
 Lamivudine, 75
 Lanolin, 75
 Lauric acid, 83
 Lead, 185
 Lemon oil analysis, 153, 155, 214, 254
 Length of column, significance of, 159, 164–165, 170, 280
 Lewis acids, 101, 103, 117
 Limonene, 119
 Lindane, 74, 186
 Linear amines, 158
 isomeric hydrocarbons with increasing degrees of unsaturation (LIHDUs), 26
 profile, in temperature programming, 212–213
 velocity, 6, 47, 52, 122, 125–126
 Line voltage, 210
 Linoleic acid, 83
 Linolenic acid, 83
 Liquid chromatography (LC), 11–13
 extraction, 181–183
 phases, 2–3, 32
 Literature resources, 11–12
 Lithium, 101
 Loading, 33, 53, 160
 Log adjusted retention, 35
 London dispersion forces, 33
 Longitudinal diffusion, 52–53, 122–123
 Losartan, 74
 Low-molecular-weight, 52, 175
 Low resolution mass spectrometry, 177
 Low thermal mass (LTM), 227–228
 Low vapor pressure, 32
 Lubricants, industrial-grade, 34
 McReynolds and Rohrschneider Classifications, 34–35, 40–44
 McReynolds constants, 133, 140, 204
 Mafenide acetate, 74
 Magnesium, 74, 101
 Malathion, 75, 186
 Maleate, 63
 Mangafodipir trisodium, 75
 Manganese, 101
 Manufacturers, comparison of columns, 134–140
 Mapp gases, 257
 Mass spectrometry (MS), 9, 97, 150, 190
 Mass transfer, 53, 123
 Mecamylamine hydrochloride, 75
 Megabore columns, 165–169
 Melting points, 24
 Menthol, 63, 75, 85
 Meperidine hydrochloride, 76
 Mepivacaine hydrochloride, 76
 Meradimate, 76
 Mercaptans, 272–274
 Meropenem, 76
 Mesalamine, 76
 Mesh support, advantages of, 52
 Mesityl oxide, 143
 Mepacet hydrochloride, 76
 Metal(s), see specific types of metals
 alkoxide, 150
 capillary columns, 95–96, 110
 -clad capillary columns, 113, 210
 columns, characteristics of, 1
 ferrule systems, 187
 ions, 111
 oxides, 26, 101
 packed column, 56–57
 -to-metal connections, 57
Metaproterenol sulfate, 76
Methane, 28, 127, 159–161, 262
Methanol, 56, 76, 84, 143, 185, 258, 268–269
Methohexital sodium, 76
Methoxyethanol, 68, 73, 81
Methoxyfluorane, 76
Methylal, 184
Methylated acids, 235
Methylcyclohexanone, 185
Methylene chloride, 76, 116, 119, 127, 143, 184, 243
Methoxyethanol, 143
Metoxyschlor, 223
Mevinphos, 185
Mibolerone, 76
Miconazole nitrate, 77
Microcrystalline wax, 267
Microextraction, 180
Microparticulates, 116
Microwave ovens, 211
Mineral spirits, 174
Mitoxantrone hydrochloride, 77
Mixed-phase packed columns, 220
Mixed phenols, 263
Mobile phase, 44, 53, 129
Modified van Deemter equation, 51
Modulators, multidimensional gas chromatography, 202–203
Molecular, generally
diffusion, 52–53
geometry, 28, 30
sieves, 26, 134, 158, 161
simulation studies, 11
weights, 32–33, 38, 41, 52, 106, 141, 150, 175, 201
Monomethyl ether, 81
Monopentaerythritol, 174
Moricizine hydrochloride, 77
Motor oil, 177
MSD, 180–183
MTBE, 176
Multidimensional gas chromatography, 201–203
Multilinear profiles, temperature programming, 213–214
Multiple-path effect, 52
MXT columns, 106, 111
Myristic acid, 83
Myristyl alcohol, 77
Naftifine hydrochloride, 77
Naltrexone hydrochloride, 77
Naphthalene, 118, 121, 171
Naphthas, 184, 267
Naphthylamines, 186
National Formulary, 59–90
National Institute for Occupational Safety and Health (NIOSH)
column dimensions, 184–186
column specifications, 172
Natural gas, 262
Nearest-neighbor technique, 41
Neopentyl glycol succinate, 5, 37
Nickel–chromium alloy, 56
tubing, 56
Nicotine, 77, 176, 245
Nitrites, 25
Nitrates, 30, 40–41, 161
Nitroaromatics, 179, 182
Nitrobenzenes, 184
Nitro compounds, 161
Nitro-containing compounds, 142
Nitroethane, 185
Nitrogen, 24, 28–29, 52, 56, 125, 127–128, 158, 170–171, 179, 188, 200, 252, 261, 271
Nitroglycerine, 185
Nitromethane, 40, 185
Nitroparaffins, 30
Nitropropane, 40, 143, 185
Nitrosamines, 179, 181, 185, 249
Nitroterephthalic acid, 38, 43
Nitrous oxide, 272
Noble gases, 161
Nomenclature codes, USP, 36–39, 135–139
Nonanal, 117–118
Nonane, 119
Nonequilibrium, packed column gas chromatography, 53
Nonoxynol, 37, 77
Nonylamine, 118
Nonylphenoxy(polyethylene-oxide)ether, 5, 37
Norpregnant, 77
North Sea, Oseberg, 266
NPD, 181, 183, 190, 195, 203
Nu-Check-Prep ester mixture, 89–90
Nujol, 5, 34
Ocatanethioll, 185
Occupational Safety and Health Administration (OSHA), column specifications, 172–173, 243
Octadecane, 118
Octamethylcyclotetrasiloxane (OMCTS), 27, 112
Octane, 35
Octanol, 117–118, 121
Octanone, 117–118, 121
Octinoxate, 77
Octisalate, 77
Octocrylene, 78
Octonone, 118
Octyl(s), 78, 118
Octyne, 40
Olofoxacin, 78
Oil, see specific types of oils
- products, 110, 174
- removal of, 56
- spills, 177
Oleate FAMEs, 253
Olefenics, 40, 158
Olefins, 41, 102, 161
On-column injection, 97, 106, 116
Open-tubular columns, 2, 27, 47, 49–50, 94
Operating temperature, stationary phases, 32–33
Optima Delta 3, 39
Orange oil analysis, 254
Ordinary diffusion, 52–53
Organic compounds, 177
- solvents, 175
- volatiles, 40
Organochlorine, 60, 177
Organophosphorus insecticides, 60
Orientation, 33
Oven design/geometries, 210. See also
- Convection oven; Microwave oven; Oven temperature control
Oven temperature control
- computer assistance, role in optimizing separations, 214–217
- fast/high-speed chromatography, 217–228
- profiles for programmed-temperature gas chromatography, 212–214
- subambient, 228
- temperature programming, advantage over isothermal operation, 211–212
- thermal performance variables, electronic considerations, 210–211
Overload of column, 163
Oxandrolone, 78
Oxidation, 55, 134, 145
Oxide formation, 56
Oxycodone hydrochloride, 78–79
Oxydipropionitrile, 5
Oxygen
- characteristics of, 24, 28–29, 102, 127, 141, 161
- sensitive detectors, 190
Oxygenates, 178
Oxygenation, 177
Ozone, 145

Packed column, see Packed column gas chromatography
- bleed, 58
- dimensions, selection of, 6
- efficiency, 15, 46–47, 50–51
- evaluation of, see Packed column evaluation
- preparation of, see Packed column preparation
- separation, see Packed column separations, optimization strategies

Packed Column Application Guide, The, 59
Packed column gas chromatography
- adsorbents for, 15, 22–31
- capillary column gas chromatography
 - compared with, 98–100
- characteristics of, 2–3, 15, 279
- column preparation, 53–59
- historical perspectives, 10
- liquid phase, 5
- methodologies, United States Pharmacopeia and National Formulary, 59–90
- PLOT columns and, 156
- required plate number, 48–50
- selection guide, 232–276
- separation, see Packed column separations
- solid supports for, 15–22, 54–55
- stationary phase, 15, 32–53
- USP/NF descriptions, 60–90

Packed column preparation
- coating methods, 55
- column care, 58–59
- conditioning columns, 58–59
- filling columns, 57–58
- glass wool plugs and column fittings, 56–57
- overview of, 53, 55
- tubing, materials and dimensions, 55–56

Packed column separations, optimization strategies
- diffusion, molecular, longitudinal, or ordinary, 52–53
- eddy diffusion term, 52

Packing
- material, 1–2
- retainers, 15

Padimate, 79
Paints, 174
Palmitic acid, 75, 83
Palmitoleic acid, 83
Pancake format, 4
Paraffin, 5, 161
Parallel chromatograms, 129
Parathion, 186
Paroxetine hydrochloride, 79
Particle size, 15
Particulate matter, 2, 196
Partitioning, 49
p-bonding, 101–102
Peak deformations, types of, 119–120
Peanut oil, 253
Penicillin G procaine, 79
Pentachloroethane, 185
Pentachlorophenol, 166
Pentadecane, 118
Pentanol, 268
Pentanone, 40
Peppermint oil, 98, 106, 111
Perflubron, 79
Perflutren, 79
Peripheral devices, 8
Perkin-Elmer gas-liquid chromatographic columns, 16, 135–139
Permanent gases, 56, 134, 161, 210, 261–262
Permeability, 50
Permethylation tubes, 56
Permethlated B-cyclodextrin, 137
Permethyl, 158
Peroxides, 145–147, 178
Pesticides, 40, 75, 83–84, 177, 179, 183, 249, 251, 263
Petrolatum hydrocarbon grease, 38
Petroleum/petroleum industry, 23, 106, 164, 174, 176, 178, 201
Pharmaceuticals, 40
Phase-height augmentation technology (PHAT), 166
Phase ratio, 170
Phenanthrene, 171
Phendimetrazine tartrate, 80
Phenobartital, 169
Phenols, 56, 174, 179, 181, 185, 248, 251, 263–264
Phenomenex, 12, 135–139
Phenoxy, 183
Phenoxyethanol, 80
Phenyl(s), 10, 36–38, 41–43, 80, 107, 134, 136–137, 141, 150–152
Phenylene phase, 150
Phenytoin sodium, 80
Pheromones, 264
Phthalate esters, 179
Phosphoric acid, 30, 56
Phosphorus, 179
Photomicrographs, 16
Phthalates, 2, 179, 181, 248–249
Physical adsorption research, 25–26
PID, 180–183
Pigtail configuration, 3
Piperdine, 36
Piperidine, 36
Plant sterols, 275
Plate height, 47
number, 48–50, 164
tiny theory, 44
Plumbing lines, 56
Plurisocyanate reagents, 148
Pneumatics, 8
Polar, generally
columns, 132
functional groups, 140–141
polyethylene glycols (PEGs), 6
properties, types of, 278
stationary phase, 33, 132
Polarization, 28
Poloxamer, 80
Polymides, 36, 105
Polyaromatic hydrocarbons (PAHs), 171
Polyarylene, 133–134
Polycarbophil, 80
Polychlorinated biphenyls (PCBs), 9–11, 40, 151, 174–175, 178, 183
dibenzo-dioxin (PCDD), 11
furan (PCDF), 11
Polychlorobenzenes, 186
Polychlorobiphenyl, 186
Polydimethylsiloxane, 141, 145
Polyesters, 5
Polyethylene, 5
oxide, 81
imines, 148
Polyhydrosiloxanes, 114
Polyimide (PI), 38, 57, 105, 190
Polyimide-clad fused silica capillary columns, 113
Polymer(s)
chain, 150
porous, 27–28, 158
Polymeric adsorbents, 8
stationary-phase composition, 141
Polymethylsilicones, 149
Polynuclear aromatic hydrocarbons, 179, 182, 186, 250
Polyoxyethyl ether, 81
Polyphenyl ether, 5
Polyphenylenes, 5, 16, 134
Polypyrrole, 115
Polysilylene, 150
Polysiloxanes, 6, 39, 41, 44, 112–113, 133, 140–141
Polysilphenylene, 133, 150
PONA analysis, 139
Porabond column, 162
Porapak, 23, 28–29, 156
Porous-layer open-tubular (PLOT) column, 2, 11, 156–161, 210, 279
Portable gas chromatographs, 106
Potassium, 101
Potassium hydroxide (KOH), 40
Pressure
controller, 219
programmed, 50
regulator, 130
vapor, 32
Primidone, 81
Procyclidine hydrochloride, 81
ProzGC, 215–216
Professional journals, as information resource, 11
Programmed Temperature Gas Chromatography
(Harris/Habgood), 212
Propadiene, 160–161
Propane, 159–160, 258, 260
Propanediol, 119
Propanol, 143, 152
Propionic acids, 235
Propionyl, 158
Propofol, 81
Propoxyphenes, 82
Propyls, 126, 143
Propylenes, 5, 26, 80, 82, 152, 160–161, 176, 178, 184, 258, 260
Propyne, 160
Protective coatings, fused-silica columns, 103, 105
Proton-acceptor/donor capabilities, 40
Psychotropic drugs, 246
Pyruvium hemicellulose, 82
Purge and trap sampling, 153, 164, 180–181, 210, 212
Pygeum, 82
Pyramids, chromatographic, 131
Pyran, 158
Pyrene, 171
Pyrethroid insecticides, 60
Pyridine, 24, 40, 84, 118, 185
Pyrolyzers, 8
Q-type PLOT, 161
Quadex, 135–139
Quartz tubing, 101
Quinapril hydrochloride, 82
Quinoline-brucine, 5
Rapeseed oil mixture, 252–253
Rapid
analysis, 218–219
heating and cooling, 224, 227–228
screening, 164–165
Reactive compounds, 56
Reagent vapors, 146
Reference gas oil, 265
Regeneration, capillary columns, 200
Relative retention data, 35
Relative volatility, 32, 49–50
Reoplex, 5
Residual solvents, 139
Resistance, packed column gas chromatography, 53
Resoflex, 5
Resolution
capillary columns, 163–165, 167–172
high-speed gas chromatography, 221
packed columns, 47–48, 50–51, 53–54
temperature programming and, 213–214
Resorcinol, 82
Restek, 52, 227
Retention
capillary columns, 164, 167–169, 196–200
factor, 123–124, 172–173
high-speed gas chromatography, 218
index, 35
multidimensional chromatography systems, 203
temperature programming and, 211, 214
time, see Retention time
Retention time
fused-silica capillary columns, 119
high-speed gas chromatography, 222
linear velocity and, 126
packed columns, analysis time and, 50
Revalidation, on capillary columns, 9
Reversible chemisorption, 26
Rimantadine hydrochloride, 83
Rosemary oil, chiral analysis, 153, 155
Rt-QPLOT column, 159
Rumen fluid, 234
RVM Scientific, 227
Saccharin, 83
Salsalate, 83
Salts, inorganic, 15, 24–27
Sampling methods, 212. See also Purge and trap sampling
Saturated compounds, 158
Saw palmetto extract, 83
Scanning electron micrographs (SEMs), 106, 109, 166
SciFinder Scholar, 11
Scopolamine hydrobromide, 84
Scotch whiskey, 236
Scott mix, 256–257, 261
Seals/sealing, 57, 196
Secobarbital sodium, 84
Selection, stationary-phase comparison of manufacturers, 134–140
cross-linked vs. chemically bonded phase, 142–149
historical perspectives, 132–134
MS-grade phases vs. poly(silylene) or
diffusivity, 41
Silarylene-siloxane groups, 141
Silylation chemistries, 1, 56
Sim Dist, 201
Simulated distillation, 200–201
Siphenylene(arylene), 149
Sodium, 84, 101, 161
Softening, 56
Solid support, 34, 54–55, 58–59
Solid waste, EPA specifications, 172, 180–182
Solubility, differential, 32
Solute diffusivity, 41
Solute-stationary phase interactions, 141
Solvent(s)
characteristics of, 161, 268–270
resistance, 144
rinse kit, 201
Sonication, 181–183
Sorbates, 24
Sorbent solids, 24
Sorbitol, 5, 36
Soy wax, 181–183
Special gas chromatographic techniques
computer modeling of stationary phases, 203
multidimensional gas chromatography, 201–203
simulated distillation, 200–201
Specialty columns
chiral stationary phases, 153, 155–156
EPA methods, 153
gas-solid adsorption capillary columns, 156–160
Spectinomycin hydrochloride, 84
Split injection, 125, 190
Squalane, 5, 35
Stabilwax, 37–38
Stack gases, 273
Stainless steel
capillary columns, 98, 100, 106–110
carrier gases and, 125
gases, 30, 271–274
PerkinElmer, 57
Sufentanil citrate, 85
Supercoated open-tubular column (SCOT), 279
Surface-stationary phase, 112
Tailing, 33, 56–57, 98, 111, 119, 191, 197
Tamoxifen citrate, 85
Tangerine oil analysis, 225–226
Tapping processes, 1
TCD cell, 156
Teflon
columns, 57
supports, 15, 22
tubing, 56
Temperature
capillary column performance and, 99–100, 130, 192–195
carrier gas velocity, 128
carrier gas, 128
carbon bonded and, 149–150
carbon bonded, 149–150
catalytic methods, 60–90
control, see Oven temperature control;
Temperature programming
carbonyl-silica capillary columns, 112, 120, 133–134
gas-liquid chromatography (GLC), 24
isothermal column, 39
packed column chromatography, 50, 59, 99–100
programming, see Temperature programming
selectivity and, 172
significance of, 11
stationary phase, 35, 53–54
Temperature programming
advantages over isothermal operation, 211–212
advantages over isothermal operation, 211–212
characteristics of, 6–7
conditions, 165, 168
cool-down rates, 212
high-speed, 218–219, 226
profiles, 212–214
Tenax, 23
Terazosin hydrochloride, 85
Terbinafine, 85
Terphenyls, 24, 186
Terpin hydrate, 85
Test mixtures, column evaluation
components of, diagnostic role, 119–122
types of, 117–119
Testosterone cypionate, 85
Tetrabromoethane, 185
Tetracaine, 85
Tetrachlorodibenzofuran, 86
Tetrachlorodibenzo-p-dioxin, 73, 86
Tetrachloroethane, 143, 184
Tetrachloromethane, 143
Tetradecane, 118
Tetraethoxysilane, 150
Tetraethylene glycol dimethyl ether, 5, 37
Tetrahydrofuran, 143, 184
Tetrahydro-2-furan carboxylic acid, 85
Tetraethyl pyrophosphate, 185
Tetrahydrofuran, 143, 184
Tetradecane, 118
Tetra(methylvinyl)cyclotetrasiloxane, 147
Tetrahydrofuran, 143, 184
Tetramethylbenzenes, 243
Tetra(methylvinyl)cyclotetrasiloxane, 147
Tetrahydrofuran, 143, 184
Tetra(methylvinyl)cyclotetrasiloxane, 147
THEED (tetrahydroxyethylenediamine), 5
Theophylline, 86
Theoretical plates, effective number of, 47, 49
Thermal degradation, 114, 193
Thermal desorption, 8, 164, 210
Thermal gradients, 1
Thermal shock, 59, 212
Thermal stability, 2, 6–10, 33, 41, 97, 106, 133, 140, 145, 147–148, 195
Thermodesics Detection, 224–225
Thermodynamic (s)
adsorbents and, 27
characteristics of, 24, 204
gas chromatographic retention index, 25
Thick-film columns, 164, See also Film thickness
Thin-film columns, 169
Thiodipropionitrile (TDPN), 37
Thiophene, 176
Three-component systems, 51
Thymol crystal, 119
Tiamulin, 86
Tide detergent, 2, 5, 34
Tiletamine, 86
Trimicosin, 86
Time management, fast analysis, 10
Time-of-flight mass spectroscopy (TOFMS), 203
Titanium, 101
TMS, 239, 245
Tocopherols, 86–87
Tolcapone, 86
Toluene, 36, 138, 143, 152, 175, 177–178, 186
Tolyl groups, 147
Toroidal geometry, 156
Total aromatics, 177–178
Toxicological analysis, 11
Trace analysis, 98
Trace water, 30
Trennzahl number, 117
Triazolam, 86
Tributyl citrate, 86
Trichloroethane, 184
Trichloroethylene, 143
Trichlorofluoromethane, 184
Triclosan, 86
Tricresyl phosphate, 5
Triton-X, 5
Tube capillary columns, 105, 109
fused-silica columns, 105, 142
historical perspectives, 6
packed columns, 55–56
quartz, 101
Turpentine, 174, 184
Two-dimensional gas chromatography (2DGC), 201–203, 218
Ucon oils, 5, 34
Ultra high-purity gases, 186
Undecane, 118–119, 121
Undecylenic acid, 66
U.S. Army Method, 252
U.S. Department of Labor, Occupational Safety and Health Administration, 173
U.S. Environmental Protection Agency (EPA), 10
United States Pharmacopeia (USP)
chromatographic methods, 59–90
column selection, 172
Nomenclature, 135–139
packed column, 10
solid support designations, 22–23
Unleaded gasoline, 167
Unsaturated compounds, 26, 40, 257–260
Urea, 87
Urethane prepolymer, 175
Utilization of theoretical efficiency (UTE), 132
U-type PLOT, 161
Vacuum system, 58, 164
Valeraldehyde, 185
Validation, capillary columns, 9
Valine amino acids, 235
Valproic acid, 87
Valrubin, 87
Valve-based modulators, 202
van Deemter expression, 16, 122–124
van der Waals forces, 32
Vanadium (II), 26
Vanillin, 119
Vaporizer, capillary column chromatography, 97
Vapor pressure, 32, 193
Varian, 12, 135–139
Velocity, 51, 125–130. See also Linear, velocity
Vespel/Vespel ferrule, 57, 187, 190
Vibration processes, 1
VICI Gig Harbor Group, 12
Vicinal silanols, 102
Vinyl
 bromide, 184
 chloride, 30, 176, 184, 243
cyclohexene, 126
 groups, 147
 pyridine, 23, 29
 pyrolidone, 29
Vinylidene chloride, 30, 184
Viscosity, 32–33, 41, 53, 133, 140, 144
Vitamins, 78, 87
Volatile compounds, 58, 161, 164, 244, 251. See also Volatile organic compounds (VOCs)
Volatile organic compounds (VOCs), 24, 30, 110, 138, 161, 179–180
Volatility, impact of, 24, 49–50, 116
Volumetric rate, 126
Vu-Union, 200
Wall-coated open-tubular (WCOT) column, 94, 279
Warfarin sodium, 87
Wastewater, 180–182
Water, 24, 28, 174–175, 272
Water vapor, 103
Wax/wax standard mix, 266, 268
Web sites, as information resource, 172–173, 227
Wetting ability, 32
Whisker-walled columns, 27
Whole milk free acids, 234, 253
Window diagram approach, 220
Wood, chloroform extract, 166
World Wide Web (WWW), see Internet resources
Xanthan, 88
Xylazine, 88
Xylene, 119, 126, 143, 152, 175, 177, 269
Xylitol, 88
Xylose, 88
Zeolites, 28
Zileuton, 88
Zinc, 5, 26
Zip Scientific, 227
Zirconium, 101
Zolazepam, 86