Contents

Series Preface xxiii
Preface xxv
Acknowledgements xxvii
List of Abbreviations xxix
Weight and Mass xxxiii
Introduction 1

PART 1 AERODYNAMIC THEORY 5

1 Preliminaries 7
 1.1 Air Density 7
 1.1.1 The Effect of Air Density 7
 1.1.1.1 Lift 7
 1.1.1.2 Thrust 8
 1.1.1.3 Fuel Flow 8
 1.1.1.4 Speed Conversion 8
 1.1.1.5 Combined Effects 8
 1.1.1.6 Power/Thrust Augmentation 8
 1.1.2 Speeds 9
 1.2.1 The Effect of Altitude on Speeds 9
 1.2.1.1 Below the Tropopause 9
 1.2.1.2 Above the Tropopause 9
 1.3 Engine Performance 10
 1.3.1 Piston-Engine Performance 11
 1.3.1.1 Altitude 11
 1.3.1.2 Critical Power Unit 11
 1.3.2 Turbo-Propeller-Engine Performance 11
 1.3.2.1 RPM 12
 1.3.2.2 Altitude 12
 1.3.3 Jet-Engine Performance 12
 1.3.3.1 Thrust 12
 1.3.3.2 Definitions 12
 1.3.3.3 Thrust Rating 12
 1.3.3.4 Factors Affecting Jet-Engine Performance 13
 1.3.3.5 Mass 13
CONTENTS

1.3.3.6 RPM 13
1.3.3.7 Airspeed 13
1.3.4 Specific Fuel Consumption (SFC) 13
1.3.5 Fuel Flow 14
1.3.6 Flat Rating 16
1.3.6.1 Take-off 16
Self-Assessment Exercise 1 17

2 Level Flight Aerodynamics 19
2.1 Stability 19
2.2 Angle of Attack and Pitch Angle 19
2.3 The Four Forces 21
2.4 Mass 21
2.5 Lift 22
2.5.1 Stalling Angle 24
2.5.2 Stalling Speed 24
2.5.3 The Use of Flap 24
2.6 Drag 24
2.6.1 Induced Drag 25
2.6.1.1 The Effect of Speed 25
2.6.1.2 The Effect of Mass 26
2.6.1.3 Effects Summary 26
2.6.2 Parasite (Profile) Drag 26
2.6.3 Total Drag 27
2.7 Analysis of the Total Drag Curve 27
2.7.1 The Minimum Drag Speed (V_{IMD}) 27
2.7.2 Speed Stability 29
2.7.3 The Minimum Power Speed (V_{IMP}) 29
2.7.4 The Maximum EAS/Drag Ratio (V_{I}/D_{max}) 29
2.8 The Effect of the Variables on Drag 30
2.8.1 The Effect of Mass 30
2.8.2 The Effect of Flap 31
2.8.3 The Effect of Altitude 31
2.9 The CL v CD Polar Diagram 32
2.10 Analysis of the Lift/Drag Ratio 33
2.11 Thrust 34
2.12 Analysis of the Thrust Curves 34
2.12.1 Thrust Available 34
2.12.2 Thrust Required 35
2.12.3 Maximum Speed (EAS) 36
2.13 The Effect of the Variables on Thrust 36
2.13.1 The Effect of Altitude 36
2.13.2 The Effect of Mass 38
2.14 Power 40
2.15 Analysis of the Power Curves 40
2.15.1 Maximum Speed 41
2.15.2 V_{MP} and V_{MD} 41
2.16 The Effect of the Variables on Power 42
2.16.1 The Effect of Altitude 42
2.16.2 The Effect of Mass 43
2.17 Summary 45
Self-Assessment Exercise 2 47
CONTENTS

3 Take-off and Climb Aerodynamics 53
 3.1 Take-off 53
 3.1.1 Take-off Technique 53
 3.1.2 The Four Forces at Take-off 53
 3.2 The Effect of the Variables on Take-off 54
 3.2.1 Air Density 54
 3.2.2 Mass 54
 3.2.3 Flap Setting 54
 3.3 Climbing Flight 55
 3.3.1 The Four Forces in a Climb 55
 3.4 The Effect of the Variables on the Climb 56
 3.4.1 The Effect of Altitude 56
 3.4.2 The Effect of Mass 56
 3.4.3 The Effect of Flap Setting 56
 3.5 Climb Gradient 56
 3.5.1 Vx and Vy 57
 3.5.2 Vx 57
 3.5.2.1 Speed Sequence 59
 3.5.3 Climb Gradient Calculations 59
 3.5.3.1 Method 1 59
 3.5.3.2 Method 2 61
 3.6 Rate of Climb 63
 3.6.1 Vy 63
 3.7 Aircraft Ceiling 64
 3.7.1 Vy at the Absolute Ceiling 65
 3.7.2 The Effect of Altitude on the Value of Vx and Vy 66
 3.7.2.1 Piston/Propeller Aeroplanes 67
 3.7.2.2 Jet Aeroplanes 67
 3.7.3 The Effect of Mass and Flap on Vx and Vy 68
 3.7.4 The Minimum Climb Speed 68
 3.7.5 Rate of Climb Calculations 68
 3.7.6 The Effect of Climbing Speed Variations 69
 3.8 Climb Regimes 70
 3.8.1 The Climb Variables 71
 3.8.1.1 Angle of Attack 71
 3.8.1.2 Climb Gradient 71
 3.8.1.3 Rate of Climb 71
 3.8.2 The Constant IAS Climb 72
 3.8.3 The Constant Mach Number Climb 72
 Self-Assessment Exercise 3 75

4 Cruise Control 83
 4.1 Specific Air Range (SAR) 83
 4.1.1 Optimum Altitude 83
 4.1.2 The Effect of Mass 84
 4.1.3 The Effect of the Thrust Setting 84
 4.2 Buffet 84
 4.2.1 Low-Speed Buffet 84
 4.2.2 High-Speed Buffet 85
 4.3 The Buffet Onset Boundary Chart 85
 4.4 Cost Index 87
CONTENTS

4.5 Turns 87
 4.5.1 Lift in a Turn 87
 4.5.2 The Load Factor in a Turn 87
 4.5.3 The Stalling Speed in a Turn 88

4.6 Types of Cruise 88
 4.6.1 The Level Cruise 88
 4.6.2 The Cruise-Climb 89
 4.6.3 The Stepped-Climb Cruise 89

4.7 Range and Endurance: General 89
 4.7.1 Maximum Range Cruise 89
 4.7.1.1 Wind Effect 90
 4.7.2 Maximum Endurance Cruise 90

4.8 Cruise Techniques for Piston-engined Aeroplanes 91
 4.8.1 Constant Power Cruise 91
 4.8.2 Constant Speed Cruise 91
 4.8.3 Maximum Range Cruise 91
 4.8.4 Long-Range Cruise 92
 4.8.5 Maximum Endurance Cruise 92

4.9 Cruise Techniques for Turbo-prop Aeroplanes 92
 4.9.1 Maximum Range Cruise 92
 4.9.1.1 The Effect of Altitude 93
 4.9.1.2 Recommended Range Speed (RRS) 93
 4.9.1.3 The Effect of Mass 93
 4.9.1.4 The Effect of Wind Component 93
 4.9.2 Long-Range Cruise 93
 4.9.3 High Speed Cruise 94
 4.9.4 Constant Speed Cruise 94
 4.9.5 Maximum Endurance Cruise 94

4.10 Cruise Techniques for Jet Aeroplanes 94
 4.10.1 High Speed Cruise 94
 4.10.2 Constant Altitude Cruise 95
 4.10.3 Minimum Cost Cruise 95
 4.10.4 Maximum Range Cruise 95
 4.10.4.1 The Effect of the Variables on Maximum Range 96
 4.10.5 Long-Range Cruise (LRC) 97
 4.10.6 Maximum Endurance Cruise 97

4.11 Summary 99
 4.11.1 Piston/Propeller Aircraft 99
 4.11.2 Turbo-propeller Aircraft 99
 4.11.3 Jet Aircraft 99

Self-Assessment Exercise 4 101

5 Descent Aerodynamics 109
 5.1 The Forces in a Descent 109
 5.1.1 The Glide Variables 110
 5.2 Gliding for Maximum Range 110
 5.2.1 The Effect of the Variables on Gliding Range 111
 5.2.1.1 The Effect of Wind Component 111
 5.2.1.2 The Effect of Flap 112
 5.2.1.3 The Angle of Attack 112
 5.2.1.4 The Effect of Mass 113
CONTENTS

5.3 Gliding for Maximum Endurance 113
5.4 Descent Regimes 114
 5.4.1 The Constant Mach Number Descent 114
 5.4.2 The Constant IAS Descent 114
Self-Assessment Exercise 5 115

PART 2 Scheduled Performance Theory 119

6 Performance Planning 121
 6.1 Regulations and Requirements 121
 6.1.1 Scheduled Performance 121
 6.2 The Performance Class System 122
 6.2.1 Class ‘A’ Aeroplanes 122
 6.2.2 Class ‘B’ Aeroplanes 123
 6.2.3 Class ‘C’ Aeroplanes 123
 6.2.4 Unclassified 123
 6.3 Performance Legislation 123
 6.3.1 Operational Regulations 124
 6.3.2 Airworthiness Requirements 124
 6.4 Aeroplane Performance Levels 125
 6.4.1 Measured Performance 125
 6.4.2 Gross Performance 125
 6.4.3 Net Performance 125
 6.5 Performance Planning 125
 6.5.1 Essential Data 126
 6.5.2 The International Standard Atmosphere 126
 6.5.2.1 ISA Deviation 126
 6.5.2.2 JSA Deviation 126
 6.5.2.3 Height and Altitude 126
 6.5.2.4 Pressure Altitude 127
 6.5.2.5 Density Altitude 129
 6.6 Altimeter Corrections 129
 6.6.1 Barometric Error 129
 6.6.2 Temperature Error 129
 6.6.3 Temperature Considerations 130
 6.7 Flight Manuals 130
 6.7.1 Validity of Information 131
 6.7.2 Specific Conditions and Associated Ranges 131
 6.7.2.1 Aerodrome Altitude 131
 6.7.2.2 Cruising Altitude 131
 6.7.2.3 Temperature 132
 6.7.2.4 Wind 132
 6.7.2.5 Runway Slope 132
 6.8 Performance Calculations and Limitations 132
 6.8.1 Performance Calculations 132
 6.8.2 Distances 133
 6.8.2.1 Available 133
 6.8.2.2 Required 133
 6.8.2.3 Unqualified 133
 6.8.3 Limitations 133
 6.8.3.1 Structural Limitations 134
 6.8.3.2 Overloading Effects 134
CONTENTS

6.8.3.3 CG Envelope 134
6.8.3.4 Crosswind Limitation 135
6.8.3.5 Brake-Energy Limitation 135
6.8.3.6 Tyre Speed Limitation 136
6.8.4 Practical Considerations 136

6.9 Noise Abatement Procedures 136
6.9.1 NADP 1 136
 6.9.1.1 First Segment 136
 6.9.1.2 Second Segment 137
 6.9.1.3 Third Segment 137
6.9.2 NADP 2 137
 6.9.2.1 First Segment 137
 6.9.2.2 Second Segment 137
 6.9.2.3 Third Segment 138

Self-Assessment Exercise 6 139

7 Aerodrome Geometry 143
7.1 Field Lengths Available 143
7.2 Take-off Run Available (TORA) 144
 7.2.1 The Definition of TORA 144
 7.2.2 The Length of TORA 144
 7.2.3 Runway Alignment Reduction 144
 7.2.4 Starter Extension 144
 7.2.5 Temporarily Reduced TORA Length 144
 7.2.6 Slope 145
 7.2.7 Width 145
 7.2.8 Promulgation 145
7.3 Obstacles 145
 7.3.1 Definition 145
 7.3.2 Frangibility 146
 7.3.3 Runway Length Enhancement 146
7.4 Stopway 146
 7.4.1 Definition 146
 7.4.2 Characteristics 146
7.5 Accelerate/Stop Distance Available (ASDA) 147
 7.5.1 Definition 147
7.6 Clearway 148
 7.6.1 Definition 148
 7.6.2 Types of Clearway 148
 7.6.3 Width 148
 7.6.4 Length 148
 7.6.5 Slope 148
7.7 Take-off Distance Available (TODA) 150
 7.7.1 Definition 150
 7.7.2 Length 150
 7.7.3 Slope 150
 7.7.4 Obstacles 150
7.8 Balanced and Unbalanced Field Lengths 150
 7.8.1 Balanced Field-Length Definition 150
 7.8.2 Unbalanced Field-Length Definition 150
7.9 Field-Length-Limited Take-off Mass Calculations 152
7.10 Runway Alignment Reduction 152
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.10.1</td>
<td>152</td>
</tr>
<tr>
<td>7.10.2</td>
<td>152</td>
</tr>
<tr>
<td>7.11</td>
<td>155</td>
</tr>
<tr>
<td>7.11.1</td>
<td>155</td>
</tr>
<tr>
<td>7.11.2</td>
<td>155</td>
</tr>
<tr>
<td>7.12</td>
<td>156</td>
</tr>
<tr>
<td>7.12.1</td>
<td>156</td>
</tr>
<tr>
<td>7.13</td>
<td>157</td>
</tr>
<tr>
<td>7.14</td>
<td>158</td>
</tr>
<tr>
<td>Self-Assessment Exercise 7</td>
<td>159</td>
</tr>
</tbody>
</table>

8 Runway Surfaces 163

8.1 Aerodrome Pavement Strength 163
8.1.1 Pavement Types 163
8.1.2 Stress Effects 163
8.1.3 Aerodrome Surface Mass Limitations 163
8.1.4 Runway Surfaces 164
8.1.5 Stopway Surfaces 164

8.2 The Pavement Strength Reporting System 164
8.2.1 First Procedure 164
8.2.2 Second Procedure 165
8.2.3 The Pavement Strength Report 165
8.2.3.1 Pavement Classification Number (PCN) 165
8.2.3.2 Pavement Type 165
8.2.3.3 Sub-grade Strength Category 165
8.2.3.4 Tyre Pressure Category 165
8.2.3.5 Evaluation Method 166

8.3 Aircraft Classification Number (ACN) 166
8.3.1 Conditions Required for ACN to Exceed PCN 166

8.4 Contaminated Surfaces 166
8.4.1 Runway Condition Definitions 167
8.4.1.1 Contaminated Runway 167
8.4.1.2 Damp Runway 167
8.4.1.3 Wet Runway 168
8.4.1.4 Dry Runway 168

8.5 Braking Coefficient of Friction 168
8.5.1 Contaminated Runway Surface Measurements 168
8.5.2 Braking Action Assessment Methods 168
8.5.2.1 Mu-meter 168
8.5.2.2 Tapley Meter 169
8.5.3 Measurement of Braking Action 169
8.5.4 Improvement of Braking Action 169
8.5.5 Reported Braking Action to the Pilot 169
8.5.6 Interpretation of Braking Action Assessments 169

8.6 Surface Contaminants 170
8.6.1 Standing Water 170
8.6.2 Slush 170
8.6.3 Wet Snow 170
8.6.4 Dry Snow 170
8.6.5 Very Dry Snow 171
8.6.6 Compacted Snow 171
CONTENTS

8.6.7 Ice 171
8.6.8 Specially Prepared Winter Runway 171
8.6.9 Mixtures 171
8.6.10 Contaminant Drag 171
8.6.11 Water Equivalent Depth 171

8.7 The Effect of Runway Contamination 172
8.7.1 Take-off 172
8.7.2 Extract from UK AIC 15/2006 (Pink 92) General Recommendations for Take-off on Contaminated Runways 173
8.7.3 Take-off Calculations 175
8.7.4 Aerodrome Requirements 175
8.7.4.1 Twin-engined Class 'B' Aeroplanes 175
8.7.4.2 Single-engined Class 'B' Aeroplanes 175
8.7.4.3 Take-off Procedure Class 'B' Aeroplanes 176
8.7.5 Landing 176
8.7.6 Extract from UK AIC 15/2006 (Pink 92) General Recommendations for Landing on Contaminated Runways 176
8.7.7 The Effect of Heavy Rain 177

8.8 Hydroplaning 178
8.8.1 Dynamic Hydroplaning 178
8.8.2 Viscous Hydroplaning 179
8.8.3 Combined Hydroplaning 179
8.8.4 Reverted Rubber Skids 179
8.8.5 Factors Affecting Hydroplaning 180

Self-Assessment Exercise 8 181

9 The Variables 185
9.1 Air Density 185
9.1.1 Altitude 185
9.1.2 Air Temperature 185
9.1.3 Water Vapour Content 186
9.1.4 The Effect of Air Density 186
9.1.4.1 Engine Performance 186
9.1.4.2 Speed 186
9.1.4.3 Overall Effect on Take-off 187

9.2 Wind Component 187
9.2.1 The Along-Track Wind Component 188
9.2.1.1 Take-off 188
9.2.1.2 Take-off Climb 189
9.2.1.3 Landing 189

9.2.2 The Across-Track Wind Component 189

9.3 Aeroplane Flap Setting 190
9.3.1 Take-off 190
9.3.2 Climb 190
9.3.3 Landing 191

9.4 Aeroplane Mass 191
9.4.1 Effect of Mass on Take-off, Climb and Landing 192
9.4.1.1 Effect on Take-off 192
9.4.1.2 Effect on Climb 192
9.4.1.3 Effect on Descent 192
9.4.1.4 Effect on Landing 192
CONTENTS

9.5 Runway Slope and Surface
 9.5.1 Runway Slope
 9.5.1.1 Take-off
 9.5.1.2 Landing
 9.5.2 Runway Surface
9.6 Miscellaneous Variables
 9.6.1 Aeroplane Air Conditioning System
 9.6.2 The Aeroplane Centre of Gravity
 9.6.3 The Power Management Computer
 9.6.4 The Aeroplane Anti-Skid System
 9.6.5 Variable Combinations
 9.6.5.1 Maximum Take-off Thrust
 9.6.5.2 Maximum Field-length Limited TOM
 9.6.5.3 Shortest TOR and TOD
 9.6.5.4 Maximum Climb Gradient
 9.6.5.5 Maximum Climb-Limited TOM
9.7 The Maximum Take-off Mass
9.8 Calculations
Self-Assessment Exercise 9

10 Speeds
 10.1 General
 10.1.1 Airspeed Indicator Reading (ASIR)
 10.1.2 Indicated Airspeed (IAS)
 10.1.3 Rectified Airspeed (RAS)
 10.1.4 Calibrated Airspeed (CAS)
 10.1.5 Equivalent Airspeed (EAS)
 10.1.6 True Airspeed (TAS)
 10.1.7 Mach Number
 10.2 Summary
 10.3 Stalling Speeds
 10.3.1 \(V_{CL_{\text{max}}} \)
 10.3.2 \(V_{S} \)
 10.3.3 \(V_{MS0} \)
 10.3.4 \(V_{MS1} \)
 10.3.5 \(V_{S} \)
 10.3.6 \(V_{S_{0g}} \)
 10.3.7 \(V_{S0} \)
 10.3.8 \(V_{S1} \)
 10.3.9 \(V_{SR} \)
 10.3.10 \(V_{SR0} \)
 10.3.11 \(V_{SR1} \)
 10.4 Take-off Speeds
 10.4.1 \(V_{MC} \)
 10.4.2 \(V_{MC\text{G}} \)
 10.4.2.1 The Effect of the Variables on \(V_{MC\text{G}} \) and \(V_{MC} \)
 10.4.3 \(V_{EF} \)
 10.4.4 \(V_{1} \)
 10.4.4.1 The Effect of the Variables on \(V_{1} \)
 10.4.5 \(V_{R} \)
 10.4.5.1 Rotation
 10.4.5.2 Over-Rotation
CONTENTS

10.4.5.3 Under-Rotation 214
10.4.5.4 Early Rotation 214
10.4.5.5 Late Rotation 214
10.4.5.6 V_{min} 214
10.4.5.7 The Effect of the Variables on V_{R} 214

10.4.6 V_{MU} 215
10.4.7 V_{LOF} 215
10.4.8 V_{TIRE} 215
10.4.9 V_{MBE} 215
10.4.9.1 The Effect of the Variables on V_{MBE} 215

10.4.10 V_2 215
10.4.10.1 V_{2min} 216
10.4.10.2 The Effects of the Variables on V_2 216

10.4.11 V_3 217
10.4.12 Screen Height Speed 218

10.4.13 Other Variables 218
10.4.13.1 The Air Conditioning System 218
10.4.13.2 The Anti-icing System 219
10.4.13.3 The Power Management Computer (PMC) 219
10.4.14 Summary of the Effects of the Variables 219

10.5 V Speeds and Take-off Field Lengths 220
10.5.1 Take-off Run (TOR) 220
10.5.2 Accelerate/Stop Distance (ASD) 220
10.5.3 Take-off Distance (TOD) 220
10.5.4 Screen Height 220
10.5.5 The V_1/V_{R} Ratio 221

10.6 Climb Speeds 221
10.6.1 V_X 221
10.6.2 V_Y 222
10.6.3 V_{YSE} 222
10.6.4 V_4 222
10.6.5 Minimum Climb Speed 222
10.6.6 V_{FTO} 222
10.6.7 V_{FTO} in Icing Conditions 223

10.7 Control Speeds 223
10.7.1 V_{MCL} 223
10.7.2 V_{MCL} (1 out) 223
10.7.3 $V_{\text{MCCL-2}}$ 223
10.7.4 The Effect of the Variables on Control Speeds 224

10.8 Landing Speeds 224
10.8.1 V_{LE} 224
10.8.2 V_{LO} 224
10.8.3 Approach-Climb Speed 224
10.8.4 Landing-Climb Speed 225
10.8.5 Threshold Speeds 226
10.8.5.1 V_{REF} 226
10.8.5.2 V_T 226
10.8.5.3 V_{MAX} 226
10.8.5.4 V_{MIN} 226
10.8.5.5 V_{AT} 227
10.8.5.6 V_{ATO} 227
10.8.5.7 V_{AT1} 227
CONTENTS

10.9 Other Significant Speeds 227
 10.9.1 VFE 227
 10.9.2 VFO 227
 10.9.3 VMO/MMO 227
 10.9.4 VNE 227
 10.9.5 VP 228
Self-Assessment Exercise 10 231

PART 3 Scheduled Performance Practice 239

11 Class ‘B’ Take-off 241
 11.1 General Regulations 241
 11.1.1 Single-engined Aeroplanes 241
 11.1.2 Twin-engined Aeroplanes 241
 11.2 Take-off Speeds 242
 11.2.1 Rotation Speed 242
 11.2.2 Screen Height 243
 11.2.3 Screen Height Speed 243
 11.3 Take-off Requirements 243
 11.3.1 Surface Correction Factor 243
 11.3.2 Runway Slope Correction Factor 243
 11.4 Take-off Distance Requirements 244
 11.4.1 Aerodrome with No Clearway or Stopway 244
 11.4.2 Aerodrome with Clearway and/or Stopway 244
 11.5 Class ‘B’ Take-off Calculations 245
 11.5.1 CAP 698 – General 245
 11.5.2 Take-off Field-length Calculations 246
 11.5.3 Field-length-limited TOM Calculations 248
Self-Assessment Exercise 11 253

12 Class ‘B’ Take-off Climb 257
 12.1 General Requirements 257
 12.1.1 Definition 257
 12.1.2 Maximum Angle of Bank 257
 12.1.3 Minimum Gradient Requirements 257
 12.2 Climb Minimum-Gradient Requirements 258
 12.2.1 All-Engines-Operating 258
 12.2.1.1 At 50 ft above RZ 258
 12.2.2 One-Engine-Inoperative 258
 12.2.2.1 At 400 ft above RZ 258
 12.2.2.2 At 1500 ft above RZ 258
 12.2.3 The Climb-Limited TOM 258
 12.3 Obstacle Clearance Requirements 259
 12.3.1 The Obstacle Accountability Area 259
 12.3.2 Minimum Vertical Separation 259
 12.3.3 Lateral Avoidance of Obstacles 259
 12.3.4 VFR Operations 259
 12.3.5 IFR Operations 260
 12.3.6 IFR Day Operations 260
 12.3.7 IFR Night Operations 260
CONTENTS

12.3.8 Visual Guidance Minima 262
 12.3.8.1 VFR Operations 262
 12.3.8.2 IFR Operations 262

12.4 Take-off Climb Calculations 263
 12.4.1 SEP1 Maximum Climb Mass 263
 12.4.2 Determining the Maximum Assumed Altitude for the SEP1 264

12.5 Climb Calculations – SEP1 & MEP1 265
 12.5.1 Ground Distance Travelled 265
 12.5.2 The Calculation of Height Gain 267
 12.5.3 The Obstacle-Limited TOM 267
 12.5.4 Before Reaching the Cloud Base 268
 12.5.5 After Reaching the Cloud Base 268
 12.5.6 The Wind Effective Climb Gradient 271

Self-Assessment Exercise 12 273

13 Class ‘B’ En-route and Landing 277
 13.1 En-route 277
 13.1.1 Ceilings 277
 13.1.1.1 Gross Ceiling 277
 13.1.1.2 Net Ceiling 277
 13.1.1.3 Maximum Assumed Ceiling 277
 13.1.2 Single-engined Aeroplanes 277
 13.1.2.1 In-flight Procedure 278
 13.1.2.2 En-route Requirements 278
 13.1.2.3 Maximum Mass En-route 278
 13.1.3 Twin-engined Aeroplanes 278
 13.1.3.1 In-flight Procedure 278
 13.1.3.2 En-route Requirements 279
 13.1.4 The Landing-Climb Gradient Requirements 279
 13.1.4.1 Missed Approach Requirement 279
 13.1.4.2 Baulked Landing Requirement 280
 13.2 Landing 280
 13.2.1 General 280
 13.2.2 The Landing Field-Length Requirements 280
 13.2.2.1 General Requirements 280
 13.2.2.2 Definitions 281
 13.2.2.3 Steep Approaches 281
 13.2.2.4 Runway Slope 281
 13.2.2.5 Surface Condition Factors 281
 13.2.3 Dry Runway Requirements 282
 13.2.3.1 Dry Hard Surface 282
 13.2.3.2 Dry Grass Surface 282
 13.2.4 Wet Runway Requirements 282
 13.2.4.1 Wet Hard Surface 283
 13.2.4.2 Wet Grass Surface 283
 13.2.4.3 Contaminated Surface 284
 13.2.5 Short Landing Operations 284
 13.2.5.1 Declared Safe Area 284
 13.2.5.2 Conditions 284
 13.2.6 Short Landing Requirements 284
 13.2.6.1 Factors Affecting the LD and LGR 285
CONTENTS

13.2.7 The Despatch Rules 285
13.2.8 Landing Calculations 285
13.2.8.1 Landing Distance 285
13.2.8.2 Landing Mass Calculations 287
13.2.8.3 In-flight Landing Mass Calculation 287
13.2.8.4 Scheduled Landing Mass Calculation 289

Self-Assessment Exercise 13 293

14 Class ‘A’: Take-off Theory 297
14.1 General Regulations 297
14.1.1 \(V_1\), Decision Speed 298
14.1.1.1 \(V_1\) ‘wet’ 298
14.1.2 \(V_R\) 299
14.2 Field-Length Requirements 299
14.2.1 Take-off Run Required (TORR) CS 25.113(c) 299
14.2.1.1 TORR – Dry, Hard Surface 299
14.2.1.2 TORR – Wet, Hard Surface 301
14.2.2 Accelerate/Stop Distance Required (ASDR) CS 25.109 301
14.2.2.1 ASDR – Dry, Hard Runway Surface 301
14.2.2.2 ASDR – Wet, Hard Runway Surface 302
14.2.3 Take-off Distance Required (TODR) CS 25.113(a) & (b) 303
14.2.3.1 TODR – Dry, Hard Runway Surface 303
14.2.3.2 TODR – Wet, Hard Runway Surface 303
14.2.4 Certificated Take-off Distance 304
14.3 Class ‘A’ FLL TOM Analysis 305
14.3.1 Continued Take-off Data 306
14.3.2 Abandoned Take-off Data 306
14.3.3 Variable Configuration Data 306
14.4 Field-Length Requirements Analysis 306
14.4.1 Take-off Run Required (TORR) 307
14.4.2 Accelerate/Stop Distance Required (ASDR) 308
14.4.3 TORR v ASDR 309
14.4.4 Take-off Distance Required (TODR) 310
14.4.5 The Complete Take-off Analysis 311
14.4.6 TORR (one-engine-inoperative) Limiting 311
14.4.7 TODR (one-engine-inoperative) Limiting 313
14.4.8 TODR (all-engines-operating) Limiting 313
14.4.9 TOM Limited to less than FLL TOM 314
14.4.10 Range of \(V_{1S}\) 314
14.4.11 Wet Runway Analysis 315
14.5 Rapid Calculation Methods 316
14.5.1 ‘D’ and ‘X’ Graphs 317
14.5.2 ‘D’ and ‘\(V_1/V_R\)’ Graphs 319
14.5.3 Balanced-Field Graphs 320
14.5.4 Regulated Take-off Graphs 320

Self-Assessment Exercise 14 323

15 Take-off Calculations 327
15.1 Field-Length-Limited Take-off Mass 327
15.2 The Aeroplane Flight Manual (AFM) 327
15.2.1 The Effect of Air Density 328
15.2.2 The Effect of Flap 328
CONTENTS

15.3 CAP 698 Section 4 328
15.4 Take-off Mass and Distance Calculations 328
 15.4.1 Tyre-Speed-Limited TOM Calculations 331
 15.4.2 Take-off Speed Calculations 332
 15.4.3 V_{mbe} Calculations 334
 15.4.4 V_{mbe} Limited TOM Calculations 336
15.5 Take-off Abnormalities 336
 15.5.1 Contaminated Runway TOM Calculations 336
 15.5.2 Anti-Skid Inoperative 338
 15.5.2.1 Anti-Skid Inoperative Calculations 338
 15.5.3 Reverse Thrust Inoperative 339
 15.5.4 Variable Take-off Thrust 339
 15.5.5 Derated Take-off Thrust 341
 15.5.6 Increased V_2 Take-off 341
 15.5.6.1 No Take-off Climb Path Obstacles 341
 15.5.6.2 With Take-off Flight Path Obstacles 344
15.6 The Maximum Take-off Mass 344
Self-Assessment Exercise 15 345

16 Class ‘A’ Take-off Climb 349
 16.1 The Take-off Climb Requirements 349
 16.1.1 The Take-off Climb Path 350
 16.1.2 Example 1: Turbo-propeller driven aircraft 351
 16.1.3 Example 2: Turbo-jet aircraft 352
 16.2 The Relationship of NFP to GFP 353
 16.2.1 Gradient Diminishment Requirements 354
 16.2.2 Minimum Gradient Requirements 354
 16.2.3 Flap Retraction Height 355
 16.2.3.1 Minimum Flap Retraction Height 355
 16.2.3.2 Maximum Flap Retraction Height 356
 16.2.3.3 Height at the end of the Climb Path 357
 16.3 Climb-Limited TOM 357
 16.3.1 Graphical Presentation 358
 16.3.2 Jet Aeroplane Graphs 358
 16.3.2.1 Flat-Rating 359
 16.3.3 Turbo-Propeller Aeroplane Graphs 359
 16.4 MRJT Climb-Limited TOM Calculations 362
 16.5 Obstacle Clearance 363
 16.5.1 The Obstacle Accountability Area 363
 16.5.1.1 Vertical Separation 364
 16.6 MRJT Obstacle-Limited TOM Calculations 365
 16.7 Planned Turns 367
 16.7.1 Bank Angle Restrictions 367
 16.7.2 Performance in a Climbing Turn 367
 16.7.3 Scheduled Turns with Increased Bank Angles 369
 16.7.4 Lateral Avoidance of Obstacles 370
 16.7.5 Safe Routing 370
 16.7.6 Turn Plotting 370
 16.8 The Performance-Limited Take-off Mass 371
Self-Assessment Exercise 16 373
CONTENTS

17 Class ‘A’ En-Route 381
 17.1 En-route Required Navigation Performance 381
 17.1.1 Definition 382
 17.1.2 Commonly Used Values 382
 17.2 Descent Gradient Diminishment Requirements 382
 17.3 Terminal Aerodromes 382
 17.3.1 Adequate Aerodrome 382
 17.3.2 Suitable Aerodrome 383
 17.4 En-Route Requirements for all Class ‘A’ Aircraft 383
 17.4.1 One-engine-inoperative En-route Scheduling Requirements 383
 17.4.1.1 Route Planning Conditions 383
 17.4.1.2 Minimum Cruise Altitude 383
 17.4.1.3 Aircraft Configuration 383
 17.4.1.4 Use of Fuel 384
 17.4.1.5 Fuel Jettisoning 384
 17.4.1.6 Landing Aerodrome 384
 17.4.2 Two-engines-inoperative En-route Requirements 384
 17.4.2.1 Operational Requirements 384
 17.4.2.2 Route Restriction 384
 17.4.2.3 Over-water Speed 385
 17.5 En-Route Requirements for Three and Four-engined Aircraft 385
 17.5.1 Two-engines-inoperative En-route Requirements 385
 17.5.1.1 Operational Requirements 385
 17.5.1.2 Route Restriction 385
 17.5.1.3 Over-water Speed 385
 17.6 En-Route Requirements for Twin-engined Aircraft 385
 17.6.1 Non-ETOPS Class ‘A’ Aeroplanes 385
 17.6.1.1 Aircraft over 45,360 kg MTMA or with 20 or More
 Passenger Seats 385
 17.6.1.2 Aircraft less than 45,360 kg MTMA with less than 20
 Passenger Seats 385
 17.6.2 Non-ETOPS Class ‘B’ and Class ‘C’ Aeroplanes 386
 17.7 Maximum Distance from an Adequate Aerodrome (Non-ETOPS Aeroplanes) 386
 17.7.1 Non-ETOPS Critical Fuel Scenario 386
 17.8 ETOPS Aeroplanes 387
 17.8.1 ETOPS Critical Fuel Scenario 387
 17.8.2 Critical Fuel Reserve 388
 17.8.3 Planning Minima for an ETOPS En-route Alternate Aerodrome 388
 17.8.4 The Route and Drift-Down Technique 388
 17.9 Obstacle Clearance Requirements: All Class ‘A’ Aeroplanes 389
 17.9.1 One-Engine-Inoperative 389
 17.9.2 Two-Engines-Inoperative 390
 17.10 Ceilings 390
 17.10.1 The Aerodynamic Ceiling 390
 17.10.2 The Absolute Ceiling 390
 17.10.3 The Gross Ceiling 390
 17.10.4 The Net Ceiling 391
 17.11 Drift-Down Technique 391
 17.11.1 Restart/Relight Possible 391
 17.11.2 Restart/Relight Not Possible 391
 17.11.3 Stabilization 391
 17.11.4 Drift-Down Speed 392
 17.12 Stabilizing Altitudes 392
 17.12.1 One-engine-inoperative Stabilizing Altitudes 392
 17.12.2 Two-engines-inoperative Stabilizing Altitudes 392
CONTENTS

17.13 Route Profile Comparisons
17.13.1 The Effect of Wind Velocity 394
17.13.2 Single Obstacle 394
17.13.3 Determining the Most Critical Position 394
17.13.4 En-route Terrain Clearance Calculation 395
17.13.4.1 The Minimum Cruise Altitude 395
17.13.4.2 Drift-down Analysis 395
17.14 En-route Alternate Aerodromes 395
17.15 Fuel Jettisoning 395
17.15.1 The Drift-Down Path 396
17.16 En-route Calculations 397
17.16.1 Stabilizing Altitude 397
17.16.2 CAP 698 Section 4 MRJT1, p. 39, Figure 4.22 397
17.16.3 CAP 698 Section 4 MRJT1, p. 40, Figure 4.23 398
17.16.4 CAP 698 Section 4 MRJT1, pp. 41–4, Figures 4.24–4.27 399

Self-Assessment Exercise 17 405

18 Class ‘A’ Landing
18.1 The Landing Regulations 409
18.1.1 All Field-Length Landing Calculations 409
18.1.1.1 Wind Component 409
18.1.1.2 Surface Condition 409
18.1.2 Scheduled Landing Field-Length Calculations 410
18.1.3 In-Flight Landing Field-Length Calculations 410
18.2 The Landing Field-Length Requirements 410
18.2.1 General Requirements 412
18.2.1.1 Retardation 412
18.2.1.2 Abnormal Configurations 412
18.2.2 The Landing Graph (CAP 698 Section 4 MRJT1, p. 46, Figure 4.28) 412
18.2.3 Dry Runway Requirements 412
18.2.4 Wet Runway Requirements 413
18.2.5 Contaminated Runway Requirements 413
18.3 Approaches 415
18.3.1 Normal Approaches 415
18.3.2 Steep Approaches 415
18.4 Short-field Landings 415
18.4.1 Declared Safe Area 416
18.4.2 Approval 416
18.4.3 Short Landing Distance Calculations 416
18.5 The Climb-Limited Landing Mass 416
18.5.1 The Approach Climb 416
18.5.2 The Landing Climb 417
18.5.3 The Climb-Limited Landing Mass 417
18.6 Climb-Limited Landing Mass Calculations 417
18.6.1 CAP 698 Section 4 MRJT1, p. 47, Figure 4.29 417
18.7 Normal Field-Length Limited Landing Mass Calculations 419
18.7.1 The Calculation of Landing Mass 420
18.7.2 The Calculation of Landing Distance Required 421
18.8 Scheduled Landing Mass Calculations 421
18.8.1 The Despatch Rules 422
CONTENTS

18.9 The Quick Turnaround Limit 425
 18.9.1 The Brake Cooling Schedule 425
Self-Assessment Exercise 18 427

PART 4 CONCLUSION 431

19 Definitions 433
 19.1 Speeds 433
 19.1.1 Airspeed Indicator Reading (ASIR) 433
 19.1.2 Indicated Airspeed (IAS) 433
 19.1.3 Rectified Airspeed (RAS) 433
 19.1.4 Calibrated Airspeed (CAS) 433
 19.1.5 Equivalent Airspeed (EAS) 433
 19.1.6 True Airspeed (TAS) 434
 19.1.7 Approach-Climb Speed 434
 19.1.8 Landing Climb Speed 434
 19.1.9 V Speeds 434
 19.2 Distances 439
 19.3 Altitude, Elevation and Height 441
 19.4 Weight and Mass 442
 19.4.1 Definitions of Weight and Mass 442
 19.4.2 Further Definitions 442
 19.5 ETOPS 444
 19.6 Obstacles 444
 19.7 Performance 445
 19.8 Power Unit(s) 445
 19.9 Surfaces and Areas 446
 19.10 Temperature 446
 19.11 Formulae used in Performance 447
 19.11.1 Aerodynamic Theory 447
 19.11.1.1 Speeds 447
 19.11.1.2 Level Flight 447
 19.11.1.3 Climb 447
 19.11.1.4 Descent 447
 19.11.2 Meteorology 448
 19.11.3 Aerodrome Dimensions 448
 19.11.3.1 Runway Slope 448
 19.11.3.2 Obstacle Domain 448

20 Answers to Self-Assessment Exercises 449
 Self-Assessment Exercise 1 449
 Self-Assessment Exercise 2 449
 Self-Assessment Exercise 3 450
 Self-Assessment Exercise 4 452
 Self-Assessment Exercise 5 452
 Self-Assessment Exercise 6 452
 Self-Assessment Exercise 7 454
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Assessment Exercise 8</td>
<td>454</td>
</tr>
<tr>
<td>Self-Assessment Exercise 9</td>
<td>455</td>
</tr>
<tr>
<td>Self-Assessment Exercise 10</td>
<td>455</td>
</tr>
<tr>
<td>Self-Assessment Exercise 11</td>
<td>459</td>
</tr>
<tr>
<td>Self-Assessment Exercise 12</td>
<td>462</td>
</tr>
<tr>
<td>Self-Assessment Exercise 13</td>
<td>464</td>
</tr>
<tr>
<td>Self-Assessment Exercise 14</td>
<td>466</td>
</tr>
<tr>
<td>Self-Assessment Exercise 15</td>
<td>470</td>
</tr>
<tr>
<td>Self-Assessment Exercise 16</td>
<td>478</td>
</tr>
<tr>
<td>Self-Assessment Exercise 17</td>
<td>482</td>
</tr>
<tr>
<td>Self-Assessment Exercise 18</td>
<td>485</td>
</tr>
<tr>
<td>Bibliography</td>
<td>487</td>
</tr>
<tr>
<td>Index</td>
<td>489</td>
</tr>
</tbody>
</table>