1 Financial markets, prices and risk
 1.1 Prices, returns and stock indices 2
 1.1.1 Stock indices 2
 1.1.2 Prices and returns 2
 1.2 S&P 500 returns 5
 1.2.1 S&P 500 statistics 6
 1.2.2 S&P 500 statistics in R and Matlab 7
 1.3 The stylized facts of financial returns 9
 1.4 Volatility 9
 1.4.1 Volatility clusters 11
 1.4.2 Volatility clusters and the ACF 12
 1.5 Nonnormality and fat tails 14
 1.6 Identification of fat tails 16
 1.6.1 Statistical tests for fat tails 16
 1.6.2 Graphical methods for fat tail analysis 17
 1.6.3 Implications of fat tails in finance 20
 1.7 Nonlinear dependence 21
 1.7.1 Sample evidence of nonlinear dependence 22
 1.7.2 Exceedance correlations 23
 1.8 Copulas 25
 1.8.1 The Gaussian copula 25
 1.8.2 The theory of copulas 25
 1.8.3 An application of copulas 27
 1.8.4 Some challenges in using copulas 28
 1.9 Summary 29
2 Univariate volatility modeling
 2.1 Modeling volatility 31
 2.2 Simple volatility models 32
 2.2.1 Moving average models 32
 2.2.2 EWMA model 33
 2.3 GARCH and conditional volatility 35
 2.3.1 ARCH 36
 2.3.2 GARCH 38
 2.3.3 The “memory” of a GARCH model 39
 2.3.4 Normal GARCH 40
 2.3.5 Student-\(\tau\) GARCH 40
 2.3.6 (G)ARCH in mean 41
 2.4 Maximum likelihood estimation of volatility models 41
 2.4.1 The ARCH(1) likelihood function 42
 2.4.2 The GARCH(1,1) likelihood function 42
 2.4.3 On the importance of \(\sigma_1\) 43
 2.4.4 Issues in estimation 43
 2.5 Diagnosing volatility models 44
 2.5.1 Likelihood ratio tests and parameter significance 44
 2.5.2 Analysis of model residuals 45
 2.5.3 Statistical goodness-of-fit measures 45
 2.6 Application of ARCH and GARCH 46
 2.6.1 Estimation results 46
 2.6.2 Likelihood ratio tests 47
 2.6.3 Residual analysis 47
 2.6.4 Graphical analysis 48
 2.6.5 Implementation 48
 2.7 Other GARCH-type models 51
 2.7.1 Leverage effects and asymmetry 51
 2.7.2 Power models 52
 2.7.3 APARCH 52
 2.7.4 Application of APARCH models 52
 2.7.5 Estimation of APARCH 53
 2.8 Alternative volatility models 54
 2.8.1 Implied volatility 54
 2.8.2 Realized volatility 55
 2.8.3 Stochastic volatility 55
 2.9 Summary 56

3 Multivariate volatility models 57
 3.1 Multivariate volatility forecasting 57
 3.1.1 Application 58
 3.2 EWMA 59
 3.3 Orthogonal GARCH 62
 3.3.1 Orthogonalizing covariance 62
 3.3.2 Implementation 62
 3.3.3 Large-scale implementations 63
3.4 CCC and DCC models
 3.4.1 Constant conditional correlations (CCC)
 3.4.2 Dynamic conditional correlations (DCC)
 3.4.3 Implementation

3.5 Estimation comparison

3.6 Multivariate extensions of GARCH
 3.6.1 Numerical problems
 3.6.2 The BEKK model

3.7 Summary

4 Risk measures
 4.1 Defining and measuring risk
 4.2 Volatility
 4.3 Value-at-risk
 4.3.1 Is VaR a negative or positive number?
 4.3.2 The three steps in VaR calculations
 4.3.3 Interpreting and analyzing VaR
 4.3.4 VaR and normality
 4.3.5 Sign of VaR

 4.4 Issues in applying VaR
 4.4.1 VaR is only a quantile
 4.4.2 Coherence
 4.4.3 Does VaR really violate subadditivity?
 4.4.4 Manipulating VaR

 4.5 Expected shortfall

 4.6 Holding periods, scaling and the square root of time
 4.6.1 Length of holding periods
 4.6.2 Square-root-of-time scaling

 4.7 Summary

5 Implementing risk forecasts
 5.1 Application
 5.2 Historical simulation
 5.2.1 Expected shortfall estimation
 5.2.2 Importance of window size

 5.3 Risk measures and parametric methods
 5.3.1 Deriving VaR
 5.3.2 VaR when returns are normally distributed
 5.3.3 VaR under the Student-t distribution
 5.3.4 Expected shortfall under normality

 5.4 What about expected returns?
 5.5 VaR with time-dependent volatility
 5.5.1 Moving average
 5.5.2 EWMA
 5.5.3 GARCH normal
 5.5.4 Other GARCH models

 5.6 Summary
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Analytical value-at-risk for options and bonds</td>
<td>111</td>
</tr>
<tr>
<td>6.1</td>
<td>Bonds</td>
<td>112</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Duration-normal VaR</td>
<td>112</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Accuracy of duration-normal VaR</td>
<td>114</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Convexity and VaR</td>
<td>114</td>
</tr>
<tr>
<td>6.2</td>
<td>Options</td>
<td>115</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Implementation</td>
<td>117</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Delta-normal VaR</td>
<td>119</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Delta and gamma</td>
<td>120</td>
</tr>
<tr>
<td>6.3</td>
<td>Summary</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>Simulation methods for VaR for options and bonds</td>
<td>121</td>
</tr>
<tr>
<td>7.1</td>
<td>Pseudo random number generators</td>
<td>122</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Linear congruential generators</td>
<td>122</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Nonuniform RNGs and transformation methods</td>
<td>123</td>
</tr>
<tr>
<td>7.2</td>
<td>Simulation pricing</td>
<td>124</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Bonds</td>
<td>125</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Options</td>
<td>129</td>
</tr>
<tr>
<td>7.3</td>
<td>Simulation of VaR for one asset</td>
<td>132</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Monte Carlo VaR with one basic asset</td>
<td>133</td>
</tr>
<tr>
<td>7.3.2</td>
<td>VaR of an option on a basic asset</td>
<td>134</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Options and a stock</td>
<td>136</td>
</tr>
<tr>
<td>7.4</td>
<td>Simulation of portfolio VaR</td>
<td>137</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Simulation of portfolio VaR for basic assets</td>
<td>137</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Portfolio VaR for options</td>
<td>139</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Richer versions</td>
<td>139</td>
</tr>
<tr>
<td>7.5</td>
<td>Issues in simulation estimation</td>
<td>140</td>
</tr>
<tr>
<td>7.5.1</td>
<td>The quality of the RNG</td>
<td>140</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Number of simulations</td>
<td>140</td>
</tr>
<tr>
<td>7.6</td>
<td>Summary</td>
<td>142</td>
</tr>
<tr>
<td>8</td>
<td>Backtesting and stress testing</td>
<td>143</td>
</tr>
<tr>
<td>8.1</td>
<td>Backtesting</td>
<td>143</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Market risk regulations</td>
<td>146</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Estimation window length</td>
<td>146</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Testing window length</td>
<td>147</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Violation ratios</td>
<td>147</td>
</tr>
<tr>
<td>8.2</td>
<td>Backtesting the S&P 500</td>
<td>147</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Analysis</td>
<td>150</td>
</tr>
<tr>
<td>8.3</td>
<td>Significance of backtests</td>
<td>153</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Bernoulli coverage test</td>
<td>154</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Testing the independence of violations</td>
<td>155</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Testing VaR for the S&P 500</td>
<td>157</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Joint test</td>
<td>159</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Loss-function-based backtests</td>
<td>159</td>
</tr>
<tr>
<td>8.4</td>
<td>Expected shortfall backtesting</td>
<td>160</td>
</tr>
<tr>
<td>8.5</td>
<td>Problems with backtesting</td>
<td>162</td>
</tr>
</tbody>
</table>
8.6 Stress testing
8.6.1 Scenario analysis
8.6.2 Issues in scenario analysis
8.6.3 Scenario analysis and risk models

8.7 Summary

9 Extreme value theory
9.1 Extreme value theory
9.1.1 Types of tails
9.1.2 Generalized extreme value distribution
9.2 Asset returns and fat tails
9.3 Applying EVT
9.3.1 Generalized Pareto distribution
9.3.2 Hill method
9.3.3 Finding the threshold
9.3.4 Application to the S&P 500 index
9.4 Aggregation and convolution
9.5 Time dependence
9.5.1 Extremal index
9.5.2 Dependence in ARCH
9.5.3 When does dependence matter?
9.6 Summary

10 Endogenous risk
10.1 The Millennium Bridge
10.2 Implications for financial risk management
10.2.1 The 2007–2010 crisis
10.3 Endogenous market prices
10.4 Dual role of prices
10.4.1 Dynamic trading strategies
10.4.2 Delta hedging
10.4.3 Simulation of feedback
10.4.4 Endogenous risk and the 1987 crash
10.5 Summary

APPENDICES

A Financial time series
A.1 Random variables and probability density functions
A.1.1 Distributions and densities
A.1.2 Quantiles
A.1.3 The normal distribution
A.1.4 Joint distributions
A.1.5 Multivariate normal distribution
A.1.6 Conditional distribution
A.1.7 Independence 201
A.2 Expectations and variance 201
A.2.1 Properties of expectation and variance 202
A.2.2 Covariance and independence 203
A.3 Higher order moments 203
A.3.1 Skewness and kurtosis 204
A.4 Examples of distributions 206
A.4.1 Chi-squared (χ^2) 206
A.4.2 Student-t 206
A.4.3 Bernoulli and binomial distributions 208
A.5 Basic time series concepts 208
A.5.1 Autocovariances and autocorrelations 209
A.5.2 Stationarity 209
A.5.3 White noise 210
A.6 Simple time series models 210
A.6.1 The moving average model 210
A.6.2 The autoregressive model 211
A.6.3 ARMA model 212
A.6.4 Random walk 212
A.7 Statistical hypothesis testing 212
A.7.1 Central limit theorem 213
A.7.2 p-values 213
A.7.3 Type 1 and type 2 errors and the power of the test 214
A.7.4 Testing for normality 214
A.7.5 Graphical methods: QQ plots 215
A.7.6 Testing for autocorrelation 215
A.7.7 Engle LM test for volatility clusters 216

B An introduction to R 217
B.1 Inputting data 217
B.2 Simple operations 219
B.2.1 Matrix computation 220
B.3 Distributions 222
B.3.1 Normality tests 223
B.4 Time series 224
B.5 Writing functions in R 225
B.5.1 Loops and repeats 226
B.6 Maximum likelihood estimation 228
B.7 Graphics 229

C An introduction to Matlab 231
C.1 Inputting data 231
C.2 Simple operations 233
C.2.1 Matrix algebra 234
C.3 Distributions 235
C.3.1 Normality tests 237
C.4 Time series 237
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.5 Basic programming and M-files</td>
<td>238</td>
</tr>
<tr>
<td>C.5.1 Loops</td>
<td>239</td>
</tr>
<tr>
<td>C.6 Maximum likelihood</td>
<td>242</td>
</tr>
<tr>
<td>C.7 Graphics</td>
<td>243</td>
</tr>
</tbody>
</table>

D Maximum likelihood	245
D.1 Likelihood functions	245
D.1.1 Normal likelihood functions	246
D.2 Optimizers	247
D.3 Issues in ML estimation	248
D.4 Information matrix	249
D.5 Properties of maximum likelihood estimators	250
D.6 Optimal testing procedures	250
D.6.1 Likelihood ratio test	251
D.6.2 Lagrange multiplier test	252
D.6.3 Wald test	253

Bibliography 255

Index 259