Contents

Preface xi
Contributing authors xiii

Part I METHODOLOGY 1

1 Introduction 3
 1.1 What is a trend? 4
 1.2 Why analyse trends? 5
 1.3 Some simple examples 6
 1.3.1 Dutch wind speeds 6
 1.3.2 North Sea haddock stocks 8
 1.3.3 Alkalinity in the Round Loch of Glenhead 10
 1.3.4 Atmospheric ozone in eastern England 12
 1.4 Considerations and difficulties 14
 1.4.1 Autocorrelation 14
 1.4.2 Effect of other variables 15
 1.4.3 Lack of designed experiments 15
 1.4.4 Consideration of auxiliary information 16
 1.4.5 The necessity of extrapolation 17
 1.5 Scope of the book 19
 1.6 Further reading 20
References 21

2 Exploratory analysis 25
 2.1 Data visualisation 25
 2.1.1 Time series plots 26
 2.1.2 Boxplots 28
 2.1.3 The autocorrelation function 30
 2.1.4 Irregularly spaced data – the variogram 35
 2.1.5 Relationships between variables 38
 2.2 Simple smoothing 41
 2.2.1 Moving averages 41
 2.2.2 Local polynomial fitting 42
 2.2.3 Further considerations 43
4.2.2 The backfitting algorithm 142
4.2.3 Inference for additive models 144
4.2.4 Handling autocorrelation 148

4.3 Other nonparametric estimation techniques 151
4.3.1 Lowess smoothing 151
4.3.2 Wavelets 154
4.3.3 Varying coefficient models 160
4.3.4 Discontinuity detection 161
4.3.5 Quantile regression 162

4.4 Parametric or nonparametric? 166

References 167

5 Stochastic trends 171

5.1 Stationary time series models and their properties 171
5.1.1 Autoregressive processes 171
5.1.2 Moving average processes 174
5.1.3 Mixed ARMA processes 174
5.1.4 Model identification 175
5.1.5 Parameter estimation 177
5.1.6 Model checking 182
5.1.7 Forecasting 186
5.1.8 The backshift operator 190

5.2 Trend removal via differencing 193
5.2.1 ARIMA models 194
5.2.2 Spurious regressions 199

5.3 Long memory models 201

5.4 Models for irregularly spaced series 205

5.5 State space and structural models 207
5.5.1 Simple structural time series models 207
5.5.2 The state space representation 209
5.5.3 The Kalman filter 213
5.5.4 Parameter estimation 217
5.5.5 Connection with nonparametric smoothing 219

5.6 Nonlinear models 228

References 231

6 Other issues 235

6.1 Multisite data 235
6.1.1 Visualisation 236
6.1.2 Modelling 239

6.2 Multivariate series 241
6.2.1 Dimension reduction 241
6.2.2 Multivariate models 244

6.3 Point process data 245
6.3.1 Poisson processes 246
6.3.2 Other point process models 249
6.3.3 Marked point processes 250

6.4 Trends in extremes 250
6.4.1 Approaches based on block maxima 251
PART II CASE STUDIES

7 ADDITIVE MODELS FOR SULPHUR DIOXIDE POLLUTION IN EUROPE

Marco Giannitrapani, Adrian Bowman, E. Marian Scott and Ron Smith

7.1 Introduction 267
7.2 Additive models with correlated errors 269
 7.2.1 An introduction to additive models 269
 7.2.2 Smoothing techniques 270
 7.2.3 Smoothing correlated data 272
 7.2.4 Fitting additive models 273
 7.2.5 Comparing nonparametric models 276
7.3 Models for the SO_2 data 277
7.4 Conclusions 281
Acknowledgement 282
References 282

8 RAINFALL TRENDS IN SOUTHWEST WESTERN AUSTRALIA

Richard E. Chandler, Bryson C. Bates and Stephen P. Charles

8.1 Motivation 283
8.2 The study region 285
8.3 Data used in the study 285
8.4 Modelling methodology 289
 8.4.1 Generalised linear models for daily rainfall 289
 8.4.2 Temporal and spatial dependence 290
 8.4.3 Covariates considered 291
 8.4.4 Modelling strategy 292
8.5 Results 293
 8.5.1 Diagnostics 294
 8.5.2 Trends in wet-day precipitation amounts 295
 8.5.3 Trends in precipitation occurrence 296
 8.5.4 Combined trends in occurrence and amounts 302
8.6 Summary and conclusions 303
References 304

9 ESTIMATION OF COMMON TRENDS FOR TROPHIC INDEX SERIES

Alain F. Zuur, Elena N. Ieno, Cristina Mazziotti, Giuseppe Montanari, Attilio Rinaldi and Carla Rita Ferrari

9.1 Introduction 307
9.2 Data exploration 311
9.3 Common trends and additive modelling 314
 9.3.1 Adding autocorrelation to the additive model 316
 9.3.2 Combining the data from the eight stations 319
 9.3.3 Doing it all within a parametric model 323
9.4 Dynamic factor analysis to estimate common trends 324
 9.4.1 The underlying model 324
9.5 Discussion 328
Acknowledgement 329
References 329

10 A space–time study on forest health 333
 Thomas Kneib and Ludwig Fahrmeir
10.1 Forest health: survey and data 333
10.2 Regression models for longitudinal data with ordinal responses 336
10.3 Spatiotemporal models 340
 10.3.1 Penalised splines 341
 10.3.2 Interaction surfaces 343
 10.3.3 Spatial trends 344
 10.3.4 Inference in spatiotemporal models 346
10.4 Spatiotemporal modelling and analysis of forest health data 348
Acknowledgements 357
References 357

Index 359