Contents

List of Contributors xix

Part One: Overview of State-of-the-Art Technologies and Challenges 1

1 Continuous Bioprocess Development: Methods for Control and Characterization of the Biological System 3
Peter Neubauer and M. Nicolas Cruz-Bourazou
1.1 Proposed Advantages of Continuous Bioprocessing 3
1.1.1 Introduction 3
1.2 Special Challenges for Continuous Bioprocesses 5
1.2.1 The Biological System in Continuous Biomanufacturing 5
1.2.2 Inherent Changes in the Microbial System – Problem of Evolution 6
1.2.3 Lack of Process Information 7
1.2.3.1 Models-Based Process Development and Control for Continuous Processes 8
1.2.3.2 Engineering Approach to Complex Systems 8
1.2.4 Limited Control Strategies 9
1.2.4.1 Traditional Control Strategies for Continuous Cultures 9
1.3 Changes Required to Integrate Continuous Processes in Biotech 11
1.3.1 A Better Physiological Understanding of the Organisms and Their Responses on the Reactor Environment 11
1.3.1.1 Model Complexity 11
1.3.1.2 Models 12
1.3.2 Model-Based Process Monitoring 13
1.3.3 Implementation of Model Predictive Control 14
1.3.3.1 Model-Based Control 14
1.4 Role of Iterative Process Development to Push Continuous Processes in Biotech 14
1.4.1 Methods for Development of Continuous Processes 14
1.4.1.1 Alternative: Fed-Batch as a System to Simulate Quasi Steady-State Conditions 16
Part Two: Automation and Monitoring (PAT) 107

4 Progress Toward Automated Single-Use Continuous Monoclonal Antibody Manufacturing via the Protein Refinery Operations Lab 109
David Pollard, Mark Brower, and Douglas Richardson

4.1 Introduction 109
4.2 Protein Refinery Operations Lab 111
4.2.1 Introduction 111
4.2.2 Protein Refinery Operations Lab: Design and Implementation 112
4.2.3 Protein Refinery Operations Lab: Process Analytical Technology (PAT) and Product Attribute Control (PAC) for the Transition to Real-Time Release (RTR) 117
4.2.3.1 Protein Refinery Operations Lab: Current State of PAT Technologies 118
4.3 Protein Refinery Operations Lab: Case Studies 122
4.3.1 Case Study: Perfusion 122
4.3.2 Case Study: Continuous Purification 124
4.3.3 Case Study: Proof of Concept Automated Handling of Deliberate Process Deviations 127
4.3.3.1 Perfusion Process Deviation Analysis (Bioreactor Temperature Shift) 127

3.3 Case Studies 74
3.4 Status and Needs for Research and Development 77
3.5 Engineering Challenges 79
3.5.1 Platform Method of QbD-Driven Process Modeling Instead of Unit Operation Oriented Platform Approaches 80
3.5.2 Data Driven Decisions 81
3.5.3 Analytics 82
3.5.4 QbD Methods 82
3.5.5 Upstream and Downstream Integration 82
3.5.6 Buffer Handling/Recycling 83
3.5.7 Process Integration of Innovative Unit Operations 84
3.5.8 ABC (Anything But or Beyond Chromatography) and AAC (Anything and Chromatography) 84
3.5.8.1 Liquid–Liquid Extraction Based on ATPE 84
3.5.8.2 Precipitation 86
3.5.8.3 Membrane Adsorbers 87
3.5.8.4 Innovative Materials Like Fibers or Matrices 88
3.5.9 Process Concepts for mAbs and Fragments 88
3.5.10 Single-Use Technology 91
3.5.11 Guided Decision for CBP 91
3.6 Conclusion and Outlook 96

Acknowledgments 97
References 97
8.2.1 Upstream Operating Modes 206
8.2.1.1 Fed-Batch Process 206
8.2.1.2 Continuous/Perfusion Process 207
8.3 The Upstream Continuous/Perfusion Process 207
8.3.1 Upstream Process-Type Selection 209
8.3.2 Component of Continuous Upstream and Downstream Processes 209
8.3.2.1 Upstream Components: Stainless Steel and Single-Use (Su) 209
8.3.2.2 Downstream Components: Stainless Steel and Single-Use (Su) 209
8.3.3 Cell Retention Devices Used in Perfusion Process 210
8.3.3.1 Spin Filters 210
8.3.3.2 The ATF System 210
8.3.3.3 Biosep Acoustic Perfusion System 212
8.3.3.4 TFF Cell Retention Device 213
8.4 Manufacturing Scale-Up Challenges 214
8.4.1 Process Complexity and Control 214
8.4.2 Cell Line Stability 215
8.4.3 Validation 215
8.5 Single-Use Technologies: A Paradigm Change 215
8.5.1 Application of SUBs in Continuous Processing 218
8.5.2 Single-Use Continuous Bioproduction 218
8.5.3 Single-Use Perfusion Bioreactors 219
8.5.3.1 Type of Single-Use Bioreactors for Perfusion Culture 219
8.5.4 Single-Use Accessories Supporting Perfusion Culture 220
8.5.4.1 Hollow Fiber Media Exchange 220
8.5.4.2 Continuous Flow Centrifugation 220
8.5.4.3 Acoustic Wave Separation 220
8.5.4.4 Spin Filters 220
8.6 FDA Supports Continuous Processing 221
8.7 Making the Switch from Batch/Fed-Batch to Continuous Processing 222
8.8 Costs and Benefits of Continuous Manufacturing 222
8.9 Costs of Adoption 223
8.10 Continuous Downstream Processing 223
8.11 Integrated Continuous Manufacturing 224
8.12 Concluding Remark 227
Acknowledgment 228
References 228

9 Study of Cells in the Steady-State Growth Space 233
Sten Erm, Kristo Abner, Andrus Seiman, Kaarel Adamberg, and Raivo Vilu
9.1 Introduction 233
9.1.1 On Physiological State of Cells: Steady-State Growth Space Analysis 234
9.1.2 Challenge of Comprehensive Quantitative Steady-State Growth Space Analysis (SSGSA) 236
9.1.3 Chemostat Culture – A Classical Tool for SSGSA 236
9.2 Advanced Continuous Cultivation Methods – Changestats 237
9.2.1 Accelerostat (A-stat) 237
9.2.2 Family of Changestats – A Set of Flexible Tools for Scanning Steady-State Growth Space 240
9.3 Review of the Results Obtained Using the Changestats 242
9.3.1 Acetate Overflow Metabolism in E. Coli 242
9.3.2 A-Stat in Study of Physiology of Yeast 243
9.3.3 Integration of A-Stat with High-Throughput Omics Methods and Modeling 243
9.3.4 A-Stat in Bioprocess Development 243
9.3.5 Deceleration-stat (De-stat) 244
9.3.6 Dilution Rate Stat (D-Stat) 244
9.3.7 Auxoaccelerostats 245
9.3.8 Adaptastat 246
9.4 SSGSA Using Parallel-Sequential Cultivations 247
9.5 Modeling in Steady-State Growth Space Analysis 248
References 250

Part Five: Continuous Downstream Bioprocessing 259

10 Continuous Downstream Processing for Production of Biotech Therapeutics 261
Anurag S. Rathore, Nikhil Kateja, and Harshit Agarwal
10.1 Introduction 261
10.2 Continuous Manufacturing Technologies for Downstream Processing 262
10.2.1 Continuous Cell Lysis 262
10.2.2 Continuous Centrifugation 263
10.2.3 Continuous Refolding 264
10.2.4 Continuous Precipitation 267
10.2.5 Continuous Chromatography 267
10.2.6 Continuous Extraction 271
10.2.7 Continuous Filtration 272
10.3 Continuous Process Development 274
10.4 Case Studies Related to Continuous Manufacturing 276
10.5 Summary 279
References 279

11 Evolving Needs For Viral Safety Strategies in Continuous Monoclonal Antibody Bioproduction 289
Andrew Clutterbuck, Michael A. Cunningham, Cedric Geyer, Paul Genest, Mathilde Bourguignat, and Helge Berg
11.1 Introduction 289
11.1.1 Current Regulations and Practices 293
11.1.2 Evolving Needs: Process versus Regulatory 294
11.1.3 Current Technology Landscape 295
11.2 Batch versus Continuous: Potential Impacts on Virus Safety 297
11.2.1 Raw Material Safety/Testing 299
11.2.2 Upstream and Bioreactor Safety 301
11.2.3 Downstream Virus Removal Strategies 304
11.2.3.1 Viral Reduction by Normal Flow Filtration (NFF) 304
11.2.3.2 Chemical Inactivation (Low pH or Solvent Detergent) 308
11.2.3.3 Chromatography 311
11.2.3.4 Other Techniques 312
11.3 Validation of Viral Reduction Steps in Continuous Manufacturing Processes 313
11.3.1 Protein A Capture Chromatography 314
11.3.2 Chemical Inactivation (Low pH/Solvent Detergent) 315
11.3.3 Intermediate and Polishing Chromatography 315
11.3.4 Viral Reduction Filtration 316
11.4 Conclusion 318
References 319

Part Six: Continuous Chromatography 321

12 Multicolumn Continuous Chromatography: Understanding this Enabling Technology 323
Kathleen Mihlbachler
12.1 Introduction 323
12.2 Modes of Chromatography 326
12.3 Interaction Mechanisms Used in Chromatographic Systems 328
12.4 Batch Chromatography 330
12.5 Semicontinuous and Continuous Batch Chromatography 331
12.5.1 Single Column 331
12.5.2 Multicolumn Parallel Operation 333
12.5.3 Multicolumn Parallel and Interconnected Operation 337
12.6 Multicolumn, Countercurrent, Continuous Chromatography 340
12.6.1 Implementing Traditional SMB Technology 341
12.6.2 SMB Technology for Biomolecules 343
12.6.3 Additional Examples of SMB Purifications 349
12.7 Risk Assessment of Continuous Chromatography 353
12.8 Process Design of Continuous Capture Step 357
12.9 Conclusion 360
References 361

13 Continuous Chromatography as a Fully Integrated Process in Continuous Biomanufacturing 369
Steffen Zobel-Roos, Holger Thiess, Petra Gronemeyer, Reinhard Ditz, and Jochen Strube
13.1 Introduction 369
13.2 Continuous Chromatography 370
13.2.1 SMB 370
13.2.2 Serial Multicolumn Continuous Chromatography 377
13.2.3 Continuous Countercurrent Multicolumn Gradient Chromatography 378
13.2.4 Integrated Countercurrent Chromatography 379
13.3 Conclusion and Outlook 386
Symbols 388
References 389

14 Continuous Chromatography in Biomanufacturing 393
Thomas Müller-Späth and Massimo Morbidelli
14.1 Introduction to Continuous Chromatography 393
14.2 Introduction to Manufacturing Aspects of Chromatography 396
14.3 Trade-Offs in Batch Chromatography 399
14.4 Capture Applications 400
14.4.1 Introduction 400
14.4.2 Process Principle 403
14.4.3 Application Examples 405
14.5 Polishing Applications 406
14.5.1 Introduction 406
14.5.2 MCSGP (Multicolumn Countercurrent Solvent Gradient Purification) Principle 407
14.5.3 MCSGP (Multicolumn Countercurrent Solvent Gradient Purification) Process Design 409
14.5.4 MCSGP (Multicolumn Countercurrent Solvent Gradient Purification) Case Study 412
14.6 Discovery and Development applications 414
14.7 Scale-Up of Multicolumn Countercurrent Chromatography Processes 416
14.8 Multicolumn Countercurrent Chromatography as Replacement for Batch Chromatography Unit Operations 417
14.9 Multicolumn Countercurrent Chromatography and Continuous Upstream 419
14.10 Regulatory Aspects and Control of Multicolumn Countercurrent Processes 419
References 421

15 Single-Pass Tangential Flow Filtration (SPTFF) in Continuous Biomanufacturing 423
Andrew Clutterbuck, Paul Beckett, Renato Lorenzi, Frederic Sengler, Torsten Bisschop, and Josselyn Haas
15.1 Introduction 423
15.2 Tangential Flow Filtration in Bioproduction 426
15.2.1 Batch versus Single-Pass Tangential Flow Filtration 426
15.2.2 Membrane Type and Format for TFF Applications 426
15.2.3 Single-Pass Tangential Flow Filtration (SPTFF) 428
15.2.4 Process Design 430
15.2.5 Laboratory-Scale Process Development Example 438
Part Seven: Integration of Upstream and Downstream 457

16 Design of Integrated Continuous Processes for High-Quality Biotherapeutics 459
Fabian Steinebach, Daniel Karst, and Massimo Morbidelli
16.1 Introduction 459
16.2 Perfusion Cell Culture Development 463
16.2.1 Objectives and Requirements 463
16.2.2 Bioreactor Setup 463
16.2.3 Physical Bioreactor Characterization 464
16.3 Continuous Capture Development 466
16.3.1 Objectives and Requirements 466
16.3.2 Continuous Two-Column Capture Process 467
16.3.3 Process Performance 468
16.3.4 Process Control 469
16.4 Operation of the Continuous Integrated Process 470
16.4.1 Bioreactor Operation 470
16.4.2 Cell Growth 470
16.4.3 Monoclonal Antibody Production 471
16.4.4 Monoclonal Antibody Capture 472
16.4.5 Process Performance 473
16.4.6 Product Quality 474
16.5 Conclusion 476
Acknowledgment 477
References 477

17 Integration of Upstream and Downstream in Continuous Biomanufacturing 481
Petra Gronemeyer, Holger Thiess, Steffen Zobel-Roos, Reinhard Ditz, and Jochen Strube
17.1 Introduction 481
17.2 Background on Upstream Development in Continuous Manufacturing 483
17.3 Background on Downstream Development in Continuous mAb Manufacturing 484
17.4 Challenges in Process Development 485
17.4.1 Impact of Changing Titers and Impurities on Cost Structures 485
17.4.2 Impurities as Critical Parameters in Process Development 487
17.4.3 Host Cell Proteins as Main Problem in Process Development 488
17.4.4 Regulatory Aspects 490
17.5 Trends and Integration Approaches 490
17.6 Methodical Approach of Integrating USP and DSP Regarding Impurity Processing 492
17.6.1 Case Study: Influence of Media Components on Impurity Production 494
17.6.2 Case Study: Influence of Harvest Operations on Impurity Production 495
17.6.3 Nonchromatographic Continuous DSP Operation 497
17.6.3.1 ATPS 498
17.6.3.2 Precipitation 499
17.6.3.3 One Step Toward a Chromatography Free Puriﬁcation Process 500
17.7 Conclusion and Outlook 500
References 501

Part Eight: Quality, Validation, and Regulatory Aspects 511

18 Quality Control and Regulatory Aspects for Continuous Biomanufacturing 513
Guillermina Forno and Eduardo Ortí
18.1 Introduction 513
18.2 FDA Support for Continuous Manufacturing 513
18.3 PAT as a Facilitator for Continuous Manufacturing Implementation 514
18.4 PAT Applications in the Pharmaceutical Industry 516
18.5 Process Validation for Continuous Manufacturing Processes 519
18.6 Regulatory Documents Related to Process Validation 520
18.7 ICH 520
18.8 FDA 520
18.9 EMA 521
18.10 ASTM 521
18.11 Special Considerations for Continuous Manufacturing Process Validation 521
18.12 Scale-Down for Continuous Bioprocessing 524
18.13 Impact of Single-Use Systems in Process Validation 526
18.14 Batch and Lot Deﬁnition 527
18.15 Conclusion 528
References 528

19 Continuous Validation For Continuous Processing 533
Steven S. Kuwahara
19.1 Quality Management 533
19.2 Regulatory Considerations 534
19.3 Setting Specifications 534
19.4 Sequence of Events 535
19.5 Verification of Validated States 536
19.6 Choice of Test Methods 536
19.7 Types of Monitoring 536
19.8 Process Stream Analyzers 538
19.9 Validation/Qualification of Process Stream Analyzers 538
19.10 Control Charting 540
19.11 The Moving Range Chart 541
19.12 Continuous Validation 541
19.13 Choosing Other Control Charts 542
19.14 Information Awareness 542
19.15 Cost Issues 543
19.16 Revalidations 544
19.17 Management and Personnel 544
References 545

20 Validation, Quality, and Regulatory Considerations in Continuous Biomanufacturing 549
Laura Okhio-Seaman
20.1 Introduction 549
20.1.1 What is Continuous Biomanufacturing? 549
20.1.2 Improvement in Product Quality 550
20.1.3 Manufacturing Consistency 550
20.1.4 Efficient Facility and Personnel Utilization 550
20.1.5 Reduction in Capital Expenditure and Cost 550
20.2 Quality 551
20.2.1 Other Considerations in Quality 552
20.2.1.1 Contract Manufacturing Organizations (CMO's) 552
20.2.1.2 Good Manufacturing Practices (GMP) 555
20.2.1.3 Supply Chains 555
20.2.1.4 Change Management and Control 556
20.3 Validation 557
20.3.1 Validate to Eliminate! 557
20.3.2 Test Conditions for Extractable and Leachable Analysis 560
20.3.3 Test Solutions for Extractable and Leachable Analysis 561
20.3.4 Analytical Techniques for Leachables Analysis 561
20.3.5 Description of the Model Approach 562
20.3.6 Actual Formulation Approach 563
20.4 Regulatory 564
20.4.1 Current Regulatory References 565
20.5 Conclusion 566
Further Reading 566
Evaluation of Continuous Downstream Processing: Industrial Perspective

Venkatesh Natarajan, John Pieracci, and Sanchayita Ghose

21.1 Biogen mAb Downstream Platform Process

21.2 Potential Platform Process Bottlenecks Pertaining to Large Scale Manufacturing

21.3 Continuous Downstream Process

21.3.1 Multicolumn Chromatography (MCC) for Continuous Capture

1. **Background**
2. **Process Optimization**
3. **Experimental Results**

21.3.2 Continuous Viral Inactivation

21.3.3 Connected Chromatography Steps

1. **Comparison of Current and Pool-Less Process**

21.3.4 Continuous UF/DF Processes

21.4 Productivity Comparison of Batch and Continuous Downstream Process

References

Index