Outline

Part I: Growing

1. The Coffee Plant 3
2. Botany, Genetics and Genomics of Coffee 25
3. Coffee Selection and Breeding 61
4. Coffee Propagation 91
5. Biotechnologies Applied to Coffee 141
6. Environmental Factors Suitable for Coffee Cultivation 168
7. Establishing a Coffee Plantation 182
8. Crop Maintenance 250
9. Vermicomposting in Coffee Cultivation 328
10. Organic Coffee 343
12. Importance of Organic Matter and Biological Fertility in Coffee Soils 375
13. Sustainable Coffee Production 388

Part II: Pests & Diseases

1. Coffee Pests in Africa 425
2. Major Pests of Coffee in the Asia–Pacific Region 463
3. Nematodes in Coffee 478
4. Coffee Diseases 495
5. Viral Diseases in Coffee 550
6. Resistance to Coffee Leaf Rust and Coffee Berry Disease 557
7. Spraying Equipment for Coffee 571
8. Quarantine for Coffee 597
Outline

Part III: Harvesting & Processing

1 Yield Estimation and Harvest Period 601
2 Harvesting and Green Coffee Processing 610
3 Ecological Processing of Coffee and Use of Byproducts 724

Part IV: Storage, Shipment, Quality

1 Green Coffee Storage 741
2 Shipment of Green Coffee 759
3 Green Coffee Defects 766
4 Factors Influencing the Quality of Green Coffee 797
5 Coffee Bean Quality Assessment 818

Part V: Economics

1 Economic Aspects of Coffee Production 831
2 Technology Transfer 843

Part VI: Data & Information

1 Units and Conversion Tables 859
2 Information Sources 904
3 Data on Coffee 925
4 Acronyms and Terms used in Coffee Production 937

Index 965
2 Botany, Genetics and Genomics of Coffee 25
 A. Charrier, P. Lashermes and A. B. Eskes
 2.1 Introduction 25
 2.2 Botanical Description and Taxonomy 25
 2.2.1 Botany 25
 2.2.2 Botanical Information 26
 2.2.2.1 Herbaria 26
 2.2.2.2 Recent Collecting Missions 29
 2.2.3 Taxonomy 29
 2.3 Genetic Diversity and Phylogeny 33
 2.3.1 Genetic Diversity 33
 2.3.2 Phylogenies 34
 2.3.3 Origin of C. arabica 36
 2.4 Coffee genome 36
 2.4.1 Cytotaxonomy 36
 2.4.2 Genetic maps 37
 2.4.3 Genomic resources 38
 2.5 Cultivated Coffee Populations 38
 2.5.1 Cultivated Species 38
 2.5.2 C. arabica Populations 39
 2.5.2.1 Spontaneous and Subspontaneous Accessions 39
 2.5.2.2 Accessions from Yemen 42
 2.5.2.3 Genetic Structure 42
 2.5.2.4 Mutants of Commercial Interest 43
 2.5.2.5 Natural Crosses with Diploid Species 45
 2.5.3 C. canephora Populations 45
 2.5.3.1 Spontaneous Populations 46
 2.5.3.2 Traditionally Cultivated Populations 50
 2.5.3.3 Natural crosses with diploid species 50
 2.6 Conservation 51
 2.6.1 Coffee Gene Banks 51
 2.6.2 In Vitro Techniques and Cryopreservation 53
 2.6.3 In Situ Conservation 55
 2.7 Future Outlook 55
 2.8 Acknowledgments 56
3 Coffee Selection and Breeding 61
A. B. Eskes and Th. Leroy
3.1 Introduction 61
3.1.1 General context 61
3.1.2 Characteristics of Coffee Species related to Breeding 62
3.2 History of Coffee Selection 62
3.2.1 C. arabica 62
3.2.2 Diploid Coffee Species 63
3.2.3 Interspecific Crosses 64
3.3 Selection Criteria 65
3.3.1 Agronomic Traits 65
3.3.1.1 Yield 65
3.3.1.2 Vigor 65
3.3.1.3 Visual Breeders Score 65
3.3.1.4 Growth Habit 65
3.3.1.5 Yield Stability 66
3.3.2 Resistances 66
3.3.2.1 Fungal Diseases 66
3.3.2.2 Physiological Disorders 66
3.3.2.3 Resistance to Nematodes 66
3.3.2.4 Resistance to Insects 67
3.3.3 Quality 67
3.3.3.1 Technological Features 67
3.3.3.2 Flavor Features 68
3.4 Breeding Methods and Techniques 68
3.4.1 Generalities 68
3.4.2 Selection Methods Applied to C. arabica 69
3.4.2.1 Yield 70
3.4.2.2 Disease Resistance 70
3.4.2.3 Nematode Resistance 70
3.4.2.4 Insect Resistance 71
3.4.3 Selection Methods Applied to C. canephora 71
3.4.3.1 Conventional Hybrid Selection 71
3.4.3.2 Conventional Clone Selection 73
3.4.3.3 Reciprocal Recurrent Selection 73
3.4.3.4 Interspecific Hybridization 74
3.4.4 Breeding Techniques and Tools 74
3.5 Variety Trials 76
3.5.1 Statistical Layout 76
3.5.2 Observations to be Carried Out 77
3.5.3 Statistical Analyses 77
3.6 Description of Main Cultivated Varieties 78
3.6.1 Selected C. arabica Varieties 78
3.6.1.1 Typica-type Varieties 78
3.6.1.2 Bourbon-type Varieties 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.1.3 S795 Variety</td>
<td>78</td>
</tr>
<tr>
<td>3.6.1.4 Java Variety</td>
<td>79</td>
</tr>
<tr>
<td>3.6.1.5 Maragogipe</td>
<td>79</td>
</tr>
<tr>
<td>3.6.1.6 Caturra</td>
<td>79</td>
</tr>
<tr>
<td>3.6.1.7 Mundo Novo</td>
<td>79</td>
</tr>
<tr>
<td>3.6.1.8 Catuai</td>
<td>80</td>
</tr>
<tr>
<td>3.6.1.9 Catimor- and Sarchimor-type Varieties</td>
<td>80</td>
</tr>
<tr>
<td>3.6.1.10 Icatu</td>
<td>81</td>
</tr>
<tr>
<td>3.6.1.11 Ruiru 11</td>
<td>81</td>
</tr>
<tr>
<td>3.6.1.12 Root-stock Varieties for Nematode Resistance</td>
<td>81</td>
</tr>
<tr>
<td>3.6.2 Selected C. canephora Varieties</td>
<td>82</td>
</tr>
<tr>
<td>3.7 Multiplication of Selected Varieties</td>
<td>82</td>
</tr>
<tr>
<td>3.8 Conclusions and Perspectives</td>
<td>83</td>
</tr>
</tbody>
</table>

4 Coffee Propagation

J. N. Wintgens and A. Zamarripa C.

4.1 Background | 91 |
4.1.1 Productivity	91
4.1.2 Coffee Quality	91
4.1.3 Production Costs	91
4.2 Propagation Methods	92
4.3 The Choice of a Propagation System	92
4.3.1 Arabica	92
4.3.2 Coffea canephora (Robusta, Conillon) and other Allogamic Species (Excelsa, Liberica)	92
4.4 Propagation by Seeds	93
4.4.1 The Selection and Preparation of Seeds	93
4.4.2 Sowing Directly in the Field	95
4.4.3 Sowing in Nurseries	95
4.4.3.1 The Nursery Site	95
4.4.3.2 Layout of the Nursery	96
4.5 Vegetative Propagation	106
4.5.1 Grafting	106
4.5.1.1 Splice or Approach Grafting (Ingles Simple)	107
4.5.1.2 Wedge Grafting or Reyna Method (Injerto de Incrustación)	107
4.5.1.3 Grafting Transplanted Seedlings	111
4.5.1.4 Hypocotyledonary Grafting with Somatic Embryos and Microcuttings	111
4.5.1.5 Coffee Rehabilitation	112
4.5.1.6 Necessary Precautions to be taken when grafting or budding	115
4.5.1.7 Advantages of Grafting Arabica on Canephora	119
4.5.1.8 Disadvantages of Grafting	119
4.5.2 Horticultural Cutting	119
4.5.2.1 Choosing the Site for a Propagation Centre	119
4.5.2.2 The Root-stock Orchard	119
4.6 Conditions for Successful Grafting and Horticultural Cutting 130
4.6.1 The Influence of the Vegetal Material 130
4.6.2 Environmental Conditions 130
4.7 In Vitro Propagation 131
4.7.1 Microcuttings 131
4.7.2 Somatic Embryogenesis 133
4.8 Transfer of In Vitro Produced Material 133
4.8.1 Frozen or Dehydrated Cellular Mass (Calluses) 133
4.8.2 Frozen or Dehydrated Embryos 134
4.8.3 Sterile Microplants 134
4.8.4 Rooted Microplants (Non-sterile) 134
4.8.5 “Bare-root” Microplants (Non-sterile) 134
4.9 The Cost of Propagation Material 134
4.10 The Choice of a Propagation Method 136
4.10.1 The Pros and Cons of Different Varieties of Coffee 136
4.10.2 The Supply of Clonal Material 136
4.10.3 Requirements Influence the Alternative Choices 137
4.11 How to Plant Clones 137
4.12 Expression of the Potential of Planting Material 139

5 Biotechnologies Applied to Coffee 141
A. Zamarriga C. and V. Pétiard
5.1 Definition and Biological Bases 141
5.2 Markers for Identification/Genetic Mapping/Selection 142
5.2.1 Introduction 142
5.2.2 Techniques 143
5.2.2.1 Isozymes 143
5.2.2.2 RAPD 143
5.2.2.3 RFLP 144
5.2.2.4 SSRs 144
5.2.3 Applications to Coffee 146
5.3 Cryopreservation 148
5.3.1 Introduction 148
5.3.2 Methods 149
5.3.2.1 Conventional Cryoconservation 149
5.3.2.2 Simplified Method 149
5.3.2.3 Pre-drying/Freezing 149
5.3.3 Applications to Coffee 149
5.4 Haplomethods 150
5.4.1 Introduction 150
5.4.2 Methods 151
5.4.3 Applications to Coffee 152
5.5 Somatic Embryogenesis 152
5.5.1 Introduction 153
5.5.2 Methods 153
5.5.2.1 Induction 154
5.5.2.2 Multiplication 155
5.5.2.3 Expression: Production of Somatic Embryos 155
5.5.2.4 Maturation: Development up to the Green Stage 156
5.5.2.5 Acclimatization to Ex Vitro Conditions 156
5.5.3 Applications to Coffee 157
5.6 Somaclonal Variation 158
5.6.1 Introduction 158
5.6.2 Methods 158
5.6.3 Applications to Coffee 159
5.7 Genetic Engineering 159
5.7.1 Introduction 159
5.7.2 Methods 160
5.7.2.1 Gene of Interest 160
5.7.2.2 Introduction of the Gene of Interest: Transformation 161
5.7.2.3 Regeneration of Transformed Plants 162
5.7.2.4 Applications to Coffee 162
5.8 Conclusions 163

6 Environmental Factors Suitable for Coffee Cultivation 168
F. Descroix and J. Snoeck
6.1 Temperature 168
6.1.1 Arabica 168
6.1.2 Robusta 169
6.2 Water Availability 169
6.2.1 Rainfall 169
6.2.2 Atmospheric Humidity 170
6.3 Sunlight and Shading 171
6.4 Wind 171
6.5 Soil Characteristics 172
6.6 Topography 176

7 Establishing a Coffee Plantation 182
J. N. Wintgens and F. Descroix
7.1 Choice of Site 182
7.1.1 General Considerations 182
7.1.2 Environmental and Physical Factors 182
7.1.2.1 Macroclimatic Features 182
7.1.2.2 Topographic Features 183
7.1.2.3 Identification of Sites for more Detailed Study 183
7.1.2.4 Detailed Studies of Selected Sites 185
7.1.3 The Socioeconomic Environment 187
7.2 Planning the Plantation Infrastructure 189
7.2.1 Overall Layout of the Plantation 189
7.2.2 Housing and Social Infrastructure 189
7.2.3 Office Accommodation 190
7.2.4 Processing and Storage Facilities 190
7.2.5 Workshops and Machinery Sheds 190
7.2.6 Other Special Purpose Land Areas 190
7.2.7 Preparation of Plantation Area Map 191
7.3 Land Development 192
7.3.1 Land Clearance 192
7.3.2 Land Improvement Measures 194
7.3.3 Land Preparation before Planting the Coffee 196
7.3.3.1 Soil Conservation Needs 196
7.3.3.2 Contour Planting 197
7.3.3.3 Transversal Planting 202
7.3.3.4 Measures to Control Removal of Rainfall Run-off 202
7.3.3.5 Limitation of Topsoil Removal by Absorption Pits 205
7.3.3.6 Other Soil Conservation Measures 205
7.4 The Interplanting of Coffee 208
7.4.1 The Use of Cover Plants in Coffee 208
7.4.2 Strip Cropping for Erosion Control 212
7.4.3 Shade Trees in Coffee 214
7.4.3.1 Advantages and Disadvantages of Shade and Shade Trees 214
7.4.3.2 Choice of Shade Trees 216
7.4.3.3 Tree Species used as Shade Trees 216
7.4.3.4 Temporary Shade 219
7.4.3.5 Other Types of Shade Trees 220
7.4.4 Wind Breaks in Coffee 221
7.4.4.1 The Need for Wind Breaks 221
7.4.4.2 The Design of Wind Breaks 222
7.4.4.3 Plant Species for use as Wind Breaks 223
7.4.5 Intercropping in Coffee 224
7.4.5.1 Temporary Intercropping or Catch Cropping 224
7.4.5.2 Permanent Intercropping 225
7.5 Planting Practices 229
7.5.1 Density, Layout and Spacing 229
7.5.1.1 General Considerations 229
7.5.1.2 Robusta 229
7.5.1.3 Arabica with Normal Growth Habit 229
7.5.1.4 Dwarf Arabica 230
7.5.1.5 Other Layouts 231
7.5.1.6 Calculation of Planting Density 231
7.5.2 Staking, Holing, Refilling, Planting 232
7.5.2.1 Staking Out Planting Sites 232
7.5.2.2 Holing and Refilling 233
7.5.2.3 Fertilization at Planting 233
7.5.2.4 Planting Out 234
7.5.2.5 Planting Materials and Planting Methods 235
7.6 Mulching as a Post-planting Soil Management Tool 241
7.6.1 Functions of Mulching 241
7.6.2 Mulching as an Erosion Control Measure 241
7.6.3 Mulching as a Soil Moisture Conservation Measure 242
7.6.4 Mulching as a Weed Control Measure 242
7.6.5 Sources of Mulching Materials 243
7.6.6 Multi-purpose Plants used for the Production of Mulch 245
7.7 Conclusions and Prospects 248

8 Crop Maintenance 250
8.1 Fertilization 250
J. Snoeck and Ch. Lambot
8.1.1 Guidelines and Targets 250
8.1.2 Interaction with other Cultivation Practices 251
8.1.3 Fertilization: Organic Fertilization 251
8.1.4 Fertilization: Mineral Fertilization 252
8.1.4.1 Requirements of Coffee Trees 252
8.1.4.2 Depletion of Nutrients 252
8.1.4.3 The Fertilization Program 254
8.1.4.4 Practical Indications for Applying Fertilizers 260
8.1.5 Conclusions 262
8.1.6 Annexes 263
8.1.6.1 Physical Soil Composition 263
8.1.6.2 The Soil as a Reservoir of Nutrients 264
8.1.6.3 The C:N Ratio 266
8.1.6.4 Procedures for Leaf and Soil Sampling 267
8.1.6.5 Mixing Fertilizers 268
8.1.6.6 Mineral Deficiency Symptoms on Coffee Leaves 269
8.2 Soil Protection 274
Ch. Lambert and P. Bonharmont
8.2.1 Introduction 274
8.2.2 Weed Control 274
8.2.2.1 Principles and Objectives 274
8.2.2.2 Ground Cover Vegetation 275
8.2.2.3 Mulching 277
8.2.2.4 Plastic Sheets 280
8.2.2.5 Manual Soil Maintenance 280
8.2.2.6 Mechanized Soil Maintenance 281
8.2.2.7 Chemical Soil Maintenance – Herbicides 281
8.2.3 Shade Trees 282
8.2.3.1 Goals 282
8.2.3.2 Choice of Shade Trees 283
8.2.3.3 Maintenance of Shade Trees 284
8.2.3.4 Temporary Shade and the Production of Timber 285
8.2.3.5 Impact on Quality 285
Contents

8.2.4 Wind breaks 285
8.2.5 Infilling 286
8.2.6 Conclusions and Future Options 287
8.3 Pruning 288
\hspace{0.5em} Ch. Lambert and P. Bonharmont
8.3.1 Introduction 288
8.3.2 Pruning Systems 291
8.3.2.1 Pruning of Freely Growing Coffee Trees 292
8.3.2.2 Pruning System with Capping 295
8.3.3 The Rejuvenation of Coffee Trees 299
8.3.3.1 Principles and Objectives 299
8.3.3.2 Rejuvenation of Freely Growing Coffee Trees 299
8.3.3.3 Rejuvenation of Capped Coffee Trees 305
8.3.3.4 Criteria for Rejuvenation 309
8.3.4 Methods and Tools 310
8.3.5 How Pruning Influences Coffee Quality 310
8.3.6 Conclusions 310
8.4 Irrigation 312
\hspace{0.5em} R. Goodyear
8.4.1 Some Climatic Characteristics of Coffee-growing Countries 312
8.4.2 Effective Rainfall 312
8.4.3 Coffee Cultivation Practices to Maximize Effective Rainfall 314
8.4.3.1 Introduction 314
8.4.3.2 Soil and Water Conservation Measures 314
8.4.3.3 Use of Artificial Ground Cover 315
8.4.3.4 Use of Natural Organic Mulches 315
8.4.3.5 Use of Stones as a Ground Cover 316
8.4.4 Coffee Water Use 316
8.4.5 The Need for Irrigation in Selected Coffee-growing Countries 317
8.4.6 Factors affecting Irrigation Water Management 318
8.4.6.1 The Soil Water Reservoir 318
8.4.6.2 Soil Moisture-holding Characteristics 319
8.4.6.3 Irrigation and the Production Cycle 319
8.4.6.4 Irrigation Water Demand 321
8.4.6.5 Irrigation Water Quality 323
8.4.7 Methods of Irrigation 323
8.4.7.1 Surface Irrigation 323
8.4.7.2 Overhead Irrigation 324
8.4.7.3 Ground-level Irrigation 325
8.4.8 Conclusion 327

9 Vermicomposting in Coffee Cultivation 328
\hspace{0.5em} E. Aranda D., L. Duran O. and E. Escamilla P.
9.1 Introduction 328
9.2 Vermicomposting Studies on Coffee Pulp 329
9.2.1 In Vitro Earthworm Studies 329
9.2.2 Comparative Vermicomposting Development 329
9.2.3 Vermicomposting as a Plant Growth Medium 330
9.2.4 The Effect of Coffee Pulp Vermicompost on Coffee Plants 333
9.2.5 The Effect of Coffee Pulp Vermicompost on other Plants 333
9.3 The History of Vermicomposting 333
9.3.1 Vermicomposting throughout the World 333
9.3.2 Vermicomposting in Mexico 334
9.3.2.1 Earthworms 334
9.3.2.2 Substrates 335
9.3.2.3 Concepts 335
9.3.2.4 Equipment 336
9.3.2.5 Human Resources 336
9.3.2.6 Operational Methods 337
9.3.2.7 Pulp–Vermicompost Conversion 338
9.3.2.8 Vermicompost Harvesting 338
9.4 Vermicompost Qualities 339
9.4.1 Earthworm Fertilizer 339
9.4.2 Organic Composts or Fertilizers 339
9.5 Perspectives 340

10 Organic Coffee 343
 L. Sosa M., E. Escamilla P. and S. Diaz C.
10.1 Introduction 343
10.1.1 Organic Agriculture 343
10.1.2 Regulations 344
10.1.3 Quality of Products 344
10.1.4 Yield and Production Costs 344
10.1.5 Environmental Contamination 344
10.2 Organic Coffee Production 344
10.2.1 Introduction 344
10.2.2 Market Potential 345
10.2.3 Interplanting Coffee as a Parallel Source of Income 347
10.2.4 Certification, Production and Consumption 347
10.2.5 Certification of Organic Coffee in Mexico 348
10.2.5.1 General Procedures Required 348
10.2.5.2 Mexican Certification System 349
10.2.5.3 Problems with Foreign Certifiers 349
10.2.5.4 Domestic Inspection and Certification 350
10.2.5.5 Advantages of Domestic inspection and Certification 350
10.2.5.6 Important Items to be Included in Organic Coffee Projects 350
10.2.6 Agronomic Aspects 351
10.2.6.1 Soil Conservation Practices 351
10.2.6.2 Planting Materials 352
10.2.6.3 Pest and Disease Control 352
Contents

12.2.3 Chemical Properties 377
12.2.4 Biological Properties 377
12.2.5 Cultural Practices to Improve OM in Coffee Soils 377
12.3 Biological Nitrogen Fixation (BNF) in Coffee Soils 379
12.3.1 Importance of BNF 379
12.3.2 The Effect of Leguminous Plants on Pest and Disease Tolerance 382
12.4 Mycorrhizal Symbiosis 382
12.4.1 Description and Importance 382
12.4.2 The Effects of Mycorrhizae on Coffee Tolerance to Root Pests and Diseases 383
12.5 Other Microorganisms that have a Beneficial Effect on Coffee Roots 384
12.6 Conclusions 384

13 Sustainable Coffee Production 388
Moeko Saito
13.1 Background 388
13.1.1 Economic Crisis 388
13.1.2 Environmental Crisis 388
13.1.3 Social Crisis 389
13.2 Sustainable Coffee 389
13.4 Importance of Sustainable Coffee 390
13.4.1 Environmental Benefits 390
13.4.2 Economic Benefits 390
13.4.3 Social Benefits 391
13.5 Current Issues which Influence the Development of Sustainable Coffee-growing Practices 391
13.5.1 The Market for Sustainable Coffee 391
13.5.2 Quality Requirements 392
13.5.3 Certification 392
13.6 Potential Risks 393
13.7 Suggestions and Recommendations 393

14 Shade Management and its Effect on Coffee Growth and Quality 395
Reinhold G. Muschler
14.1 Introduction 395
14.2 Early Shade Management: Traditional Coffee Farms 396
14.3 “Intensification” of Coffee Production: Reduced Shade Levels 397
14.4 The Effects of Shade: How much Shade is Best? 399
14.4.1 Effects of Trees and Shade on the Ecosystem 400
14.4.1.1 Biodiversity 401
14.4.1.2 Soil and Water 402
14.4.2 Effects of Trees and Shade on Coffee 403
14.4.2.1 Coffee Productivity 403
14.4.2.2 Microclimate and Coffee Physiology 407
14.4.2.3 Plant Vigor and Nutrition 409
14.4.2.4 Pests, Diseases and Weeds 411
14.4.3 Effects of Trees and Shade on Coffee Quality 414
14.4.3.1 Fruit Weight 414
14.4.3.2 Fruit to Bean Conversion Factors 415
14.4.3.3 Bean Size 415
14.4.3.4 Visual Appearance and Organoleptic Attributes 416
14.5 How to Design the Ideal Shade 418
14.6 Conclusions and Research Recommendations 419

Part II: Pests & Diseases

1 Coffee Pests in Africa 425
 T. J. Crowe
 1.1 Introduction 425
 1.2 Grasshoppers and Crickets 426
 1.3 Termites 427
 1.4 Aphids 428
 1.5 Scale Insects and Mealybugs 429
 1.6 Sucking Bugs 433
 1.7 Thrips 437
 1.8 Wood-boring Beetles 438
 1.9 Coffee Berry Borer 443
 1.10 Leaf-eating Beetles 444
 1.11 Fruit Flies 445
 1.12 Lepidopterous Leaf Miners 447
 1.13 Berry-boring Lepidoptera 450
 1.14 Leaf-eating Caterpillars 453
 1.15 Ants 457
 1.16 Mites 459
 1.17 Storage Pests 460
 1.18 Vertebrates 461
 1.18.1 Amphibia 461
 1.18.2 Reptilia 461
 1.18.3 Aves 461
 1.18.4 Mammalia 461
 1.19 Future Trends in Pest Control 461

2 Major Pests of Coffee in the Asia-Pacific Region 463
 C. C. Lan and J. N. Wintgens
 2.1 Introduction 463
 2.2 Integrated Management of Insect Pests 463
 2.3 Major Coffee Pests 464
 2.3.1 Coffee White Stem Borer 464
 2.3.2 Coffee Brown Beetle 467
4.1.3.1 The Benefits of Genetic Engineering 500
4.1.3.2 Progress of Research on the Coffee Plant 500
4.1.4 Biological and Agronomical Control 501
4.1.4.1 Prophylactic Measures 501
4.1.4.2 Agricultural Practices 501
4.1.4.3 Biological control 502
4.1.4.4 Escape Strategies 502
4.1.5 Eradication Measures 502
4.1.6 International Exchange 504
4.2 Cryptogamic Diseases 504
4.2.1 Nursery Diseases 504
4.2.1.1 Damping Off 504
4.2.1.2 Seedling Blight 505
4.2.2 Root Diseases 506
4.2.2.1 Root Rot Diseases 506
4.2.2.2 Mealybug Root Disease or Phtiriosis 510
4.2.3 Diseases of Aerial Organs 510
4.2.3.1 Coffee Wilt Disease 510
4.2.3.2 Canker or “Machete Disease” 513
4.2.3.3 Phloem Necrosis 513
4.2.3.4 Leaf rust diseases 513
4.2.3.5 American Leaf Spot 525
4.2.3.6 Blister Spot 527
4.2.3.7 Brown Eye Spot or Cercospora Blotch 528
4.2.3.8 Other Smudgy Foliar Diseases 528
4.2.3.9 Thread Blight Diseases 529
4.2.3.10 Die-back 531
4.2.3.11 Pink Disease 532
4.2.3.12 Burn or Blight 533
4.2.4 Berry Diseases 534
4.2.4.1 Coffee Berry Disease (CBD) 534
4.3 Bacterial Diseases 545
4.3.1 Elgon Die-back or Bacterial Blight 545
4.4 Physiological Diseases 546
4.4.1 Hot and Cold Disease 546

5 Viral Diseases in Coffee 550
E. W. Kitajima and C. M. Chagas
5.1 Introduction 550
5.2 Coffee Ringspot Virus 550
5.2.1 History 550
5.2.2 Symptoms 550
5.2.3 Nature of the Causal Agent and Transmission 550
5.2.4 Geographical Distribution 554
5.2.5 Economic Importance 554
Contents

5.2.6 Control 554

6 Resistance to Coffee Leaf Rust and Coffee Berry Disease 557
 C. J. Rodrigues Jr and A. B. Eskes
 6.1 Introduction 557
 6.2 Coffee Leaf Rust 557
 6.2.1 History 557
 6.2.2 Races of CLR and Resistance Genes 559
 6.2.2.1 Races of CLR 559
 6.2.2.2 Differential Resistance Groups of Coffee and Resistance Genes 560
 6.2.3 Evaluation of Resistance 561
 6.2.3.1 Resistance Tests 561
 6.2.3.2 Recording of Resistance Reactions 561
 6.2.4 Resistant Varieties 562
 6.2.4.1 Resistance from C. arabica 562
 6.2.4.2 Resistance from C. liberica 563
 6.2.4.3 Resistance from C. canephora 563
 6.2.5 Prospects 563
 6.3 Coffee Berry Disease 564
 6.3.1 History 564
 6.3.2 Resistance Tests 565
 6.3.3 Breeding for Resistance 566
 6.3.4 Fungus Races 567
 6.3.5 Prospects 567
 6.4 International Cooperation 568

7 Spraying Equipment for Coffee 571
 H. Pfalzer
 7.1 Introduction 571
 7.1.1 Timing of the Treatment 571
 7.1.2 Spray Coverage 572
 7.1.3 Product Dosage 573
 7.1.4 Safety 573
 7.2 Application Equipment 573
 7.2.1 The Lever-operated Knapsack Sprayer 573
 7.2.2 Compression Sprayer 574
 7.2.3 Power-operated Spray Gun 576
 7.2.4 Motorized Knapsack Mistblower 576
 7.2.5 Tractor-mounted or -drawn Mistblowers 577
 7.2.6 Canon-type Mistblower 579
 7.2.7 Other Application Equipment 580
 7.2.7.1 Reduced-volume Sprayers, also known as Controlled Droplet Application (CDA) 580
 7.2.7.2 Electrostatic Spraying 580
 7.2.7.3 Fogging Equipment using Shear Force for Droplet Production 582
7.2.7.4 Granule Applicators 582
7.3 Calibrating the Application Equipment 583
7.4 Preparing for Spraying 584
7.4.1 Product Measurement and Mixing 584
7.4.1.1 Portable Equipment 584
7.4.1.2 Tractor-drawn Equipment 584
7.5 Spraying 584
7.5.1 General Points to be observed when spraying Coffee Trees 584
7.5.2 Spray Volumes 585
7.5.3 Spray Deposit Monitoring with Water-sensitive Papers 586
7.5.4 The Spray Nozzle 586
7.5.4.1 Nozzle Types and Parts 586
7.5.5 Nozzle Material 589
7.6 The Spray Droplets 589
7.7 Operator Safety 590
7.7.1 Exposure 590
7.7.2 Classification of Pesticides by Hazard 591
7.7.3 Necessary Precautions when Handling CPPs 592
7.7.4 Factors which Influence the Dermal Absorption of CPPs 592
7.7.5 Prevention of Adverse Health Effects 592
7.7.5.1 Education 592
7.7.5.2 Protective Practices 592
7.7.5.3 Protective Devices 594
7.7.5.4 Substitution 595
7.7.5.5 Specificity 595
7.8 Conclusions 595

8 Quarantine for Coffee 597

D. Bieysse

8.1 The Reasons behind Quarantine Measures 597
8.2 General Recommendations for the Transfer of Plant Material 597
8.3 Type of Plant Material 598
8.3.1 Ripe or Ripening Fruit 598
8.3.2 Grafts and Shoots 598
8.3.3 Shoots and Plants with Roots 598
8.4 Transfer 598

Part III: Harvesting & Processing

1 Yield Estimation and Harvest Period 601

Ch. Cilas and F. Descroix

1.1 Introduction 601
1.2 Different Approaches to Harvest Estimates 601
1.3 Presentation of the Method 602
1.3.1 Principles 602
2.4.4 Problems and Impact on Quality 681
2.4.5 Comments 682
2.5 Cleaning 683
2.5.1 Objective 683
2.5.2 Principle 683
2.5.3 Techniques and Equipment 683
2.5.4 Problems and Impact on Quality 684
2.5.5 Comments 685
2.5.5.1 Magnets 685
2.6 Destoning 685
2.6.1 Objective 685
2.6.2 Principle 685
2.6.3 Techniques and Equipment 685
2.6.4 Problems and Impact on Quality 686
2.6.5 Comments 687
2.7 Hulling and Polishing 687
2.7.1 Objective 687
2.7.2 Principle 687
2.7.3 Techniques and Equipment 687
2.7.3.1 Hullers/Polishers with Screw Rotors and Ribs 688
2.7.3.2 Double-compartment Hullers/Polishers 689
2.7.3.3 Hullers/Polishers with Cylinders with Cleats and Knives 690
2.7.3.4 Cross-beater Hullers 691
2.7.3.5 Combined Cleaning, Hulling and Separation Units 694
2.7.4 Problems and Impact on Quality 694
2.7.5 Comments 696
2.8 Size Grading 696
2.8.1 Objective 696
2.8.2 Principle 697
2.8.3 Techniques and Equipment 697
2.8.3.1 Flat-screen Graders 697
2.8.3.2 Rotary Graders 698
2.8.4 Problems and Impact on Quality 699
2.8.5 Comments 699
2.9 Gravity Separation 699
2.9.1 Objective 699
2.9.2 Principle 699
2.9.3 Techniques and Equipment 699
2.9.3.1 Catadors 700
2.9.3.2 Gravity separators 701
2.9.4 Problems and Impact on Quality 703
2.9.5 Comments 703
2.10 Color Sorting 704
2.10.1 Objective 704
2.10.2 Principle 704
2.10.3 Techniques and Equipment 705
3.4.7 Natural Fermentation versus Mechanical Mucilage Removing 731
3.4.8 The Disadvantages of Natural Fermentation 732
3.5 Treatment of Residual Water 733
3.6 Treatment Systems for Residual Water 733
3.6.1 Treatment of the Residual Water in Anaerobic Ponds 734
3.6.2 Recent Technology in Anaerobic Biodigestors 734
3.6.3 Disadvantages of the Anaerobic Systems 735
3.7 Options for the Treatment of Residual Water 735
3.8 Integral use of the Byproducts of Coffee 735
3.9 Key Words 735

Part IV: Storage, Shipment, Quality

1 Green Coffee Storage 741
J. Rojas
1.1 Introduction 741
1.2 Bean Physiology and Environmental Influences 742
1.2.1 Intrinsic Physiology 742
1.2.2 Viability 744
1.2.3 Moisture Content and RH 744
1.2.4 Temperature 745
1.2.5 Atmospheric Composition 746
1.2.6 Altitude 746
1.2.7 Duration 746
1.2.8 Other Factors 746
1.3 Main Storage Problems 747
1.3.1 Pests 748
1.3.1.1 Coffee Berry Borer 748
1.3.1.2 Khapra Beetle 748
1.3.1.3 Coffee Bean Weevil 748
1.3.1.4 Others 748
1.3.2 Fungi 749
1.3.3 Bacteria 749
1.3.4 Rats, Mice and Birds 749
1.4 Damage Assessment 749
1.5 Pest Control 750
1.6 Quality Impact 751
1.6.1 Cup 751
1.6.2 Color 751
1.6.3 Defects or Imperfections 751
1.7 Green Coffee Storage 752
1.7.1 Bags 752
1.7.1.1 General Recommendations and a Checklist for Warehouses 754
1.7.2 Big Bags 754
Contents

1.7.3 Silos 754
1.7.4 Containers 756
1.7.5 Controlled-Modified Atmosphere Storage 756
1.8 Conclusions 757

2 Shipment of Green Coffee 759
E. Blank
2.1 Introduction 759
2.2 Particularities 759
2.3 Bagging 759
2.4 Conventional Shipping Practices 760
2.5 Containers 760
2.5.1 Ventilated Containers 760
2.5.2 Standard, Dry Containers 760
2.6 Bulk Shipment 762
2.6.1 Loose Coffee in Bulk Vessels 762
2.6.2 Genuine Bulk Containers 762
2.6.3 Standard Dry Containers with Liner Bags 763

3 Green Coffee Defects 766
J. N. Wintgens
3.1 Introduction 766
3.2 Terminology 767
3.3 Green Coffee Bean Defects on Arabica 768
3.3.1 F Field Damaged Beans 768
3.3.2 FP Field or Process Damaged Beans 774
3.3.3 P Process Damaged Beans 777
3.3.4 PS Process or Storage Damaged Beans 783
3.3.5 S Storage Damaged Beans 785
3.3.6 DP Dried Parts of the Coffee Fruit 789
3.4 Reference Beans 791
3.4.1 Arabica 791
3.4.2 Robusta 791
3.5 Microphotographs of Coffee Beans 792
3.5.1 Arabica Washed – Fair Quality Beans: Ref. A(W) 792
3.5.2 Immature Arabica Bean, ref. F 12 793
3.5.3 Arabica “Cardenillo” Bean: Ref. PS 1 794
3.5.4 Arabica Black Beans: Ref. FP 1 795
3.6 Microorganisms which Attack Coffee Beans 795

4 Factors Influencing the Quality of Green Coffee 797
J. N. Wintgens
4.1 The Interactions between Market Situation and Quality 797
4.2 Influence of the Genotype 797
4.2.1 Size and Shape of the Beans 797
4.2.2 Color 799
4.2.3 Chemical Composition 799
4.2.4 Flavor 799
4.3 Influence of Environmental Factors 801
4.3.1 Climate 801
4.3.2 Altitude 802
4.3.3 Water Availability 802
4.3.4 Soils 802
4.3.5 Frost and Hail 803
4.4 Influence of Cultivation Practices 803
4.4.1 Fertilization 803
4.4.2 Shade 804
4.4.3 Crop Management 805
4.4.4 Use of Ripening Hormones 805
4.4.5 Pest and Diseases 805
4.4.6 Physiological Damage 806
4.4.7 Harvest 806
4.5 Influence of Post-harvest Treatment 807
4.5.1 Pulping 807
4.5.2 Mucilage Removal 807
4.5.3 Washing, Grading and Soaking 809
4.5.4 Drying 809
4.5.5 Hulling, Husking and Sorting 811
4.6 Storage 811
4.7 Summary of Factors affecting the Quality of Green Coffee 813
4.7.1 Genotype 813
4.7.2 Environment 813
4.7.3 Cultivation Practices 814
4.7.4 Post-harvest treatment 815
4.7.5 Storage 815
4.8 Conclusions 816

5 Coffee Bean Quality Assessment 818
J. N. Wintgens
5.1 Introduction 818
5.2 Green Coffee Grading 818
5.3 Determination of Defective Beans 819
5.4 Green Bean Color 821
5.5 Cup Tasting 821
5.6 Analytical Techniques 822
5.7 Profiles of Some Coffees 823
5.7.1 Brazil 823
5.7.2 Colombia 824
5.7.3 Costa Rica 824
5.7.4 Guatemala 824
Part V: Economics

1 Economic Aspects of Coffee Production 831
 B. Rodriguez P. and M. Vasquez M.
 1.1 Introduction 831
 1.2 Economic Concepts 831
 1.3 Production Systems 832
 1.4 Set-up and Development Costs 834
 1.5 Annual Production Costs 835
 1.6 Economic Indicators 836
 1.7 Sensitivity Analysis 837
 1.8 Recommendations 837

2 Technology Transfer 843
 F. Martinez, J. Rojas, and G. Castillo F.
 2.1 Introduction 843
 2.2 A Brief History of the Development of Coffee Growing 845
 2.2.1 The Origins of Coffee Growing 845
 2.2.2 The Expansion of Coffee during the Colonial Period 845
 2.2.3 The New Order 845
 2.2.4 The Institutional Era 846
 2.2.5 The Globalization Era 846
 2.3 Existing Schemes for Transmitting New Technologies and Developments 847
 2.3.1 Introduction 847
 2.3.2 Technological Transfer Groups (TTG) 847
 2.3.3 T & V System 848
 2.3.4 Community Scheme to Support Technology Transfer (MOCATT) 848
 2.3.5 Farmers Participatory Method (FPM) 849
2.3.6 Nestlé Integrated Model (NIM) 849
2.4 Main Aspects of Technology Transfer to Farmers 851
2.4.1 Financial and Entrepreneurial Aspects 851
2.4.2 Producer Needs 851
2.4.3 Sustainable Production Systems 852
2.4.4 Influence of the Local Situation on Choice of Technologies 852
2.4.5 Practical Learning (Producers and Consultants) 852
2.4.6 Responses to Price Fluctuations 853
2.4.7 Interaction and Dynamics 854
2.4.8 Initiative and Performance 854
2.5 Conclusions 854

Part VI: Data & Information

1 Units and Conversion Tables 859
 J. N. Wintgens and H. Waldburger
1.1 Introduction 859
1.1.1 Presentation of Units 859
1.1.2 Symbols and Abbreviations 860
1.2 Metric Units of Measures 862
1.2.1 Prefixes, Symbols and Powers of 10 862
1.2.2 Length 863
1.2.3 Area 863
1.2.4 Volume and Capacity 864
1.2.5 Weight 864
1.3 UK and US Units of Measures 865
1.3.1 Length 865
1.3.2 Area 865
1.3.3 Volume and Capacity 866
1.3.4 Weight (Avoirdupois) 866
1.4 Units of Measures from around the World 867
1.4.1 Length 867
1.4.2 Area 871
1.4.3 Volume and Capacity 875
1.4.4 Weight 880
1.5 Conversions 887
1.5.1 Conversions of UK and US Units to Metric Units 887
1.5.1.1 Decimal and Metric Equivalents of Fractions of 1 in 887
1.5.1.2 Length 889
1.5.1.3 Area 889
1.5.1.4 Volume and Capacity 889
1.5.1.5 Weight (Avoirdupois) 889
1.5.1.6 Household Measures 890
1.5.2 Volume per Area 890
Contents

1.5.3 Weight per Area 890
1.5.3.1 Application Rate and Yield 890
1.5.3.2 Double Conversion 891
1.5.4 Volume per Volume (Concentration or Dilution) 891
1.5.5 Weight per Volume 892
1.5.6 Concentrations per Parts 892
1.5.7 Temperature 892
1.5.7.1 Temperature conversion formulas 892
1.5.7.2 Examples of Temperature Conversion 893
1.5.7.3 Scale Comparison 893
1.5.7.4 Boiling Temperatures of Water and Barometric Pressures at Various Altitudes 893
1.5.8 Pressure 893
1.5.9 Energy 894
1.5.9.1 Units of Work 894
1.5.9.2 Units of Power 894
1.5.10 Wind (Beaufort Scale) 894
1.5.11 Speed 895
1.5.12 Fuel Consumption 895
1.5.13 Precipitation and Irrigation 895
1.5.14 Flow Rates 896
1.5.15 Flow Rate Calculation 896
1.5.16 Water Analysis Equivalents of (CaCO₃) 896
1.5.17 Soil Chemistry: Common Soil-related Conversions 897
1.5.18 Dry Soil 898
1.5.19 Slope Data 898
1.5.19.1 Degrees to Percent and Percent to Degrees 898
1.5.19.2 Natural Tangent to Degrees 900
1.5.20 Maps 900
1.5.21 Coffee Classification 901
1.5.21.1 Bean Sizing 901
1.5.21.2 Flat Bean Separation 901
1.5.21.3 Peabean Separation 901
1.5.22 Net Weight per Bag used in Producing Countries/Regions 902

2 Information Sources 904
C. Fardeau

2.1 List of Coffee Machinery Suppliers 904
2.2 Shade, Forest and Cover Plant Seed Sources 906
2.3 Coffee Books, Manuals and Reports 918
2.4 Coffee Periodicals 921
2.5 Coffee Associations, Organizations and Teaching Centers 922
2.6 Coffee Events 922
2.7 Important Coffee Research Organizations 923