Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Introduction</td>
<td>xi</td>
</tr>
<tr>
<td>Acronyms and Notations</td>
<td>xv</td>
</tr>
<tr>
<td>Chapter 1. Vehicular Ad Hoc Networks</td>
<td>1</td>
</tr>
<tr>
<td>1.1. VANET definition, characteristics and applications</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1. Definition of vehicular ad hoc network</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2. Characteristics of vehicular ad hoc networks</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3. Applications of vehicular ad hoc networks</td>
<td>5</td>
</tr>
<tr>
<td>1.2. VANET architectures</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1. Vehicular WLAN/cellular architecture</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2. Pure ad hoc architecture</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3. Hybrid architecture</td>
<td>9</td>
</tr>
<tr>
<td>1.3. Mobility models</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1. Random-based mobility models</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2. Geographic map-based mobility models</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3. Group-based mobility</td>
<td>14</td>
</tr>
<tr>
<td>1.3.4. Prediction-based mobility models</td>
<td>17</td>
</tr>
<tr>
<td>1.3.5. Software-tools-based mobility models</td>
<td>20</td>
</tr>
<tr>
<td>1.4. VANET challenges and issues</td>
<td>21</td>
</tr>
<tr>
<td>1.4.1. VANET routing</td>
<td>21</td>
</tr>
<tr>
<td>1.4.2. Vehicular network scalability</td>
<td>22</td>
</tr>
<tr>
<td>1.4.3. Computational complexity in VANET networking</td>
<td>22</td>
</tr>
</tbody>
</table>
1.4.4. Routing robustness and self-organization
in vehicular networks .. 23
1.4.5. Vehicular network security 23
1.5. Bibliography ... 23

CHAPTER 2. ROUTING FOR VEHICULAR AD HOC NETWORKS. ... 29
2.1. Basic concepts ... 29
 2.1.1. Single-hop versus multi-hop beaconing
 in VANETs ... 29
 2.1.2. Routing classification of VANETs. 31
2.2. Quality-of-service of VANET routing 35
 2.2.1. Quality-of-service definition 35
 2.2.2. Quality-of-service criteria 36
2.3. VANET routing standards 37
 2.3.1. Dedicated short range communication 38
 2.3.2. Standards for wireless access in vehicular
 environments (WAVE) 40
 2.3.3. VANET standards related to routing layers 42
 2.3.4. Other VANET routing standards 44
2.4. VANET routing challenges and issues 45
 2.4.1. Dynamics nature of VANETs
 (mobility pattern and vehicles’ velocity) 45
 2.4.2. Vehicular network density and scalability 46
 2.4.3. Safety improvement and quality-of-service 46
2.5. Bibliography ... 47

CHAPTER 3. CONVENTIONAL ROUTING PROTOCOLS FOR VANETS ... 51
3.1. Topology-based routing 51
 3.1.1. Reactive routing protocols 52
 3.1.2. Proactive routing protocols 55
 3.1.3. Hybrid routing protocols 57
 3.1.4. Critics of topology-based routing 58
3.2. Geography-based routing 59
 3.2.1. Geography-based routing principle 59
 3.2.2. Geography-based routing protocols 59
 3.2.3. Critics of geography-based routing 67
3.3. Cluster-based routing 68
 3.3.1. Cluster-based routing principle 68
Chapter 4. Bio-inspired Routing Protocols for VANETs

4.1. Motivations for using bio-inspired approaches in VANET routing
 - Network scalability: 80
 - Computational complexity: 80
 - Self-organization and adaptability: 81
 - Routing robustness: 81

4.2. Fundamental concepts and operations of bio-inspired VANET routing
 - Optimization problem definition: 82
 - Search space (SSp): 83
 - Objective function: 83
 - Population: 84
 - Individual encoding: 84
 - Initialization: 84
 - Stopping criterion: 85

4.3. Basic bio-inspired algorithms used in VANET routing literature
 - Genetic algorithm: 86
 - Ant colony optimization: 89
 - Particle swarm optimization: 90
 - Bees life algorithm: 92
 - Bacterial foraging optimization: 93

4.4. Evolutionary algorithms for VANET routing
 - Sequential genetic algorithms for VANET routing: 95
 - Parallel genetic algorithms for VANET routing: 100

4.5. Swarm intelligence for VANET routing
 - Ant colony optimization for VANET routing: 102
 - Particle swarm optimization for VANET routing: 106
 - Bee colony optimization for VANET routing: 108
 - Bacterial foraging optimization for VANET routing: 110

4.6. Another bio-inspired approach for VANET routing: 112

4.7. Bibliography: 113

Conclusion

- 121

Index

- 125