INDEX

Note: page numbers in italics refer to figures; page numbers in bold refer to tables

ablation tills, 356
accommodation-driven deltas, 406
accretionary prism, 578
accretionary subduction complexes, 576, 577, 578
acid hydrolysis, 6–8, 649, 655
aluminium-release from silicates, 12, 14, 654
acid mine drainage, 649
‘acid rain’, 12
acid weathering see chemical weathering
acidity, 649
acropora, 39
adhesion-accreted sands, 305
aeolian ripples, 147, 149, 154
aeolian sediments, 295–318
aeolian system state, 297
siliciclastic sediment sourcing, 24–5
see also wind-formed bedforms
Agadir Canyon, 194, 195
Airy waves, 104
aklī dunes, 163–4
Alabama, USA, Mobile Bay, 423
Alaska, USA
Bering Glacier, 350
Variegated Glacier, 354
Alberta, Canada
Lake Peyto, Plate 9
Peyto Lake, 322
algae, 38, 663
algal marshes, 469–70, 469
algal mats, 52–4, 53, 464, 466
algaliiths, 38, 663
Algeria
Erg Mehedjibat, Plate 4
Erg Oriental, 166
mud mound build-ups, 485, 486
alkali weathering, 20–1
alkalinity, 649
alluvial architecture (rivers), 274–80, 277
scale, controls and time, 278–80, 279
alluvial fans (subaerial), 282, 283
debris-flow-dominated, 287–8, 291
megafans, 285, 286, 290, 291, 292
physical processes, 283–7
classification of ancient fans, 289–94, 293
size and gradient, 284–5, 285
stratigraphic models, 293
stream-flow-dominated, 288–9
alluvial ridges, 270
aluminium-release by acid hydrolysis, 12, 14, 654
Amazon River
downstream changes, 248
plume emanating from, Plate 14
submarine fan, 534
ambient fluid, 96, 98
Amonton’s laws, 171
anastomosing rivers, 248, 250, 252, 262, 265, 265
Andean fold-thrust belt, 620
Andean foreland basin system, 587
Angastaco basin, Argentina, 627
Angola, continental margin, 522
angular speed, 77
angular velocity, 77
anhydrite
evaporite precipitates, 47, 47, 465, 467, 507, 508
gypsum reaction, 43, 44, 507, 663
precipitation, 43
Antarctic, polar ice-sheets, 348, 349, 350
Antarctic Circumpolar Current, 546
antecedent karst theory, 493
antidunes, 140, 141–2, 687
apatite, 11
apatite fission tracks (AFT), 231
aqueous environments
carbon dioxide in solution, 649, 651
density currents, 184
stability of minerals, 651–2, 652
water chemistry, 646–51
see also freshwater environments; marine environments; seawater
Arabian Gulf, 466, 478
aragonite, 656–7
ion activity products (IAP), 29
platform margin slopes and basins, 495–6
precipitation in seawater, 659–60, 659, 660
saturation as a function of latitude/temperature, 30
saturation as a function of ocean depth, 40
seafloor precipitation, 656, 656
solubility products (K) and, 29
see also ooid carbonate grains
Argentina
Angastaco basin, 627
Ischigualasto–Villa Unión, 339, 340
Published 2011 by Blackwell Publishing Ltd.
in situ sediment production rates, 38–9, 462
precipitation in seawater, 38–40, 657–61
oceanic compensation mechanism, 39–40
rates in Bahamas Bank, 29–30, 31
see also aragonite; calcite; dolomite
calcium carbonate shelves and basins
cool ramps, 478–82, 479, 480, 481, 482, 483
open-shelf carbonate ramps, 474–82
platform margin reefs and carbonate build-ups, 482–93, Plate 15, Plate 16
annual sediment production, 489, 489, 490
changes in reef development, 490–3, 492, 494
effects of disease and hurricanes, 489, 491
framebuilt reefs in shallow warm waters, 487–93
low wave-energy and deep cold-water, 485–7, 486, 487
nomenclature, 483–4, 484
platform margin slopes and basins, 493–9, 495, 499, 500, 501
interglacial/glacial mineralogy, 495–6, 498
platform/rimmed shelves, 462, 463
ramp shorelines and shelves, 462, 464, 465
warm ramps, 463, 473, 477–8, 497
calcium carbonate shorelines
arid carbonate tidal flats, lagoons and evaporite sabkhas, 464–7, 466, 467, 468
humid carbonate tidal flats and marshes, 463, 467–70, 469
lagoons and bays, 470–2, 471, 473
tidal delta and margin-spillover carbonate tidal sands, 472–4, 475, 476, 477
calcrete, 42
California, USA
Coast Range and Sierran mountains, 216
continental margin, 518, 519
Death Valley, Plate 10
Imperial Valley earthquake, 199
Loreto basin, 625
San Francisco Bay, 451
San Gabriel Fault, 593, 594, 595
Canada
Cloridorme Formation, Quebec, 193
Deschanbault Formation, Quebec, 464
Fraser River, 374
Lake Peyto, Alberta, Plate 9
Nova Scotia, continental margin, 520
Peyto Lake, Alberta, 322
Saskatchewan River, 272–3, 274–5
South Saskatchewan River, 253
Upper Columbia River, 265
William River delta, 397
Canary Islands, debris flows and avalanches, 194, 529
canyons, 614, 615
depth, 517–19, 518
canyons, deep ocean, 519, 520
Cape Cod, Massachusetts, USA, 432
Capitan reef complex, New Mexico, 230
carbon dioxide
atmospheric, 607
concentration in solution, 649, 651
dissolution in seawater, 39, 657–8
silicon as geosink for, 652
consumption rates for various rock types, 16
in solution, 649
carbonate boundstone, 483
carbonate build-ups, 482–93
nomenclature, 483–4, 484
carbonate compensation depth (CCD), 35, 39, 40, 550, 553
carbonate cycle, 41–2
carbonate–clastic cycles, 505, 506
catch-up reefs, 490
Cauchy–Riemann equations, 665, 667
caves, speleothem carbonates, 41–2
CCD (carbonate compensation depth), 35, 39, 40, 550, 553
Celtic Sea, Kaiser Bank, 449, 454
Chaco foreland basin system, 620
chain silicates, 9–10
chamosite, 50
channel form, 247–52, 250
charcoal (fusinite), 24
charophytes, 663
chemical bonding, 646–8, 647
chemical equilibrium, 649–51
chemical index of alteration (CIA), 11, 13
chemical sediment, definition, 1
chemical weathering, 4, 647–54
rates and mechanisms, 611, 653–4
dissolution rates for various minerals, 16
solute fluxes in catchments, 6
thermodynamics, 651–2
Chezy coefficient, 676
Chile, El Chingue Bluff, 541
China, Huanghe River, 127, 270, 271, 390, 398
chute-and-pool bedforms, 143, 144
Circumpolar Deep Water (CPDW), 546
clastic sediments, 1
see also siliciclastic sediment; weathering
clay lumps, 200, 205
carbonate mounds, 483
carbonate minerals, 654
crystal growth, 661–2
crystal growth habits, 661–2
grain structure, 32–3
identification, 654
see also calcium carbonate
carbonate pinnacle, 483
carbonate saturation depths (CSD), 39, 40
carbonate sediments, 324
carbonate–clastic cycles, 505, 506
catch-up reefs, 490
Catch-up Riemann equations, 665, 667
caves, speleothem carbonates, 41–2
CCD (carbonate compensation depth), 35, 39, 40, 550, 553
Celtic Sea, Kaiser Bank, 449, 454
Chaco foreland basin system, 620
chain silicates, 9–10
chamosite, 50
channel form, 247–52, 250
charcoal (fusinite), 24
charophytes, 663
chemical bonding, 646–8, 647
chemical equilibrium, 649–51
chemical index of alteration (CIA), 11, 13
chemical sediment, definition, 1
chemical weathering, 4, 647–54
rates and mechanisms, 611, 653–4
dissolution rates for various minerals, 16
solute fluxes in catchments, 6
thermodynamics, 651–2
Chezy coefficient, 676
Chile, El Chingue Bluff, 541
China, Huanghe River, 127, 270, 271, 390, 398
chute-and-pool bedforms, 143, 144
Circumpolar Deep Water (CPDW), 546
clastic sediments, 1
see also siliciclastic sediment; weathering
clay lumps, 200, 205
carbonate mounds, 483
carbonate minerals, 654
crystal growth, 661–2
crystal growth habits, 661–2
grain structure, 32–3
identification, 654
see also calcium carbonate
carbonate pinnacle, 483
carbonate saturation depths (CSD), 39, 40
carbonate sediments, 324
carbonate–clastic cycles, 505, 506
catch-up reefs, 490
Cauchy–Riemann equations, 665, 667
caves, speleothem carbonates, 41–2
CCD (carbonate compensation depth), 35, 39, 40, 550, 553
Celtic Sea, Kaiser Bank, 449, 454
Chaco foreland basin system, 620
chain silicates, 9–10
chamosite, 50
channel form, 247–52, 250
charcoal (fusinite), 24
charophytes, 663
chemical bonding, 646–8, 647
chemical equilibrium, 649–51
chemical index of alteration (CIA), 11, 13
chemical sediment, definition, 1
chemical weathering, 4, 647–54
rates and mechanisms, 611, 653–4
dissolution rates for various minerals, 16
solute fluxes in catchments, 6
thermodynamics, 651–2
Chezy coefficient, 676
Chile, El Chingue Bluff, 541
China, Huanghe River, 127, 270, 271, 390, 398
chute-and-pool bedforms, 143, 144
Circumpolar Deep Water (CPDW), 546
clastic sediments, 1
see also siliciclastic sediment; weathering
clay lumps, 200, 205
carbonic acid, 32
clay minerals, 10–11
erosion and transport processes, 124–5
hyperconcentrated freshwater turbulent flows, 126–7, 128
settling velocity and particle concentration, 126
settling velocity vs. floc size, 126
shear-thickening, 127
climate, global, 214–21
general atmospheric circulation, 214–15, 214
'greenhouse effect', 215–18
climate, global (Continued)
landforms influence, 215, 216
oceanic temperatures, 655
orbitally induced radiation changes, 215–18, 217, 218
sedimentological evidence, 219–21, 220
speleothem carbonate studies, 641–3, 643, 644
colluvial mantle, 18
climbing ripple cross-lamination, 135, 137
coastal plains, 574–6, 575
corals, 662
sea-level changes see also siliciclastic shelves
continental slopes, 515–17, 515, 516
continuity equation, 665–7, 667
turbidite pathway systems
connecting slopes and basin plains, 543, 544
turbidite fans, 543–600, 564
continental rift basins, 563–600, 564
with axial through-drainage, 567, 569
back-arc basins, 583–5, 586
basin inversion, 597, 598, 599
continental plains, shelf terraces and continental rises, 573, 574–6, 574, 575
continental/marine siliciclastic gulf, 567, 570, 572–3
continental environments
classification, 368–9, 369
coastal plains, 574–6, 574, 575
continental brines/evaporites, 43–4, 46
continental environments, 241–2
continental margins
fans and aprons, 530–43
thermohaline currents and contourite drifts, 543–7, 545, 548
turbidite pathway systems connecting slopes and basin plains, 543, 544
continental rift basins, 563–600, 564
with axial through-drainage, 567, 569
back-arc basins, 583–5, 586
basin inversion, 597, 598, 599
continental plains, shelf terraces and continental rises, 573, 574–6, 574, 575
continental/marine siliciclastic gulf, 567, 570, 572–3
continental environments
classification, 368–9, 369
continental plains, 574–6, 574, 575
continental brines/evaporites, 43–4, 46
continental environments, 241–2
continental margins
fans and aprons, 530–43
thermohaline currents and contourite drifts, 543–7, 545, 548
continental slopes, 515–17, 515, 516
continuity equation, 665–7, 667
turbotidite pathway systems
connecting slopes and basin plains, 543, 544
continental rift basins, 563–600, 564
with axial through-drainage, 567, 569
continental shelves
global continental elevation and gradients, Plate 7, Plate 8
continental shelves
global continental elevation and gradients, Plate 7, Plate 8
continental slopes, 515–17, 515, 516
continuity equation, 665–7, 667
turbotidite pathway systems
connecting slopes and basin plains, 543, 544
continental rift basins, 563–600, 564
with axial through-drainage, 567, 569
continental shelves
global continental elevation and gradients, Plate 7, Plate 8
debris avalanches, 177–9, 178
submarine, 526, 528, 529
debits, 179–82, 181
submarine, 530
deep-water waves, 104–5
Delaware estuary, USA, 382
deltas see alluvial fans (subaerial); river deltas
density currents, 96, 184
atmospheric, 98
fan deltas, 413
glacimarine, 354, 362
lake stratification, 321, 322
siliciclastic shelves, 445, 446–7
density inversions, 200–1
density of water, 648
denudation rates, 231–3
dissolution rates for various minerals, 16
global-scale, 233–8
speculative time series, 236
methodologies, 235
isotopic, 237–8, 237
modelling, 233
Deschambault Formation, Quebec, Canada, 464
desert varnish, 51
deserts, 295–7
world distribution, 296
see also ergs
desiccation cracks, 205, 208
Devon, UK
Culm River, 268
Start Point, 243
dewatering pipes, 200, 201
diagenetic sediments, 1
diamicite, 351–2
diapirs, 200–3
salt diapirs, 202–3
differential calculus, 697–8, 698
dilatant expansion, 171
dish-and-pillar structures, 200, 204
dissolution rates for various minerals, 16
dolomite, 654, 657
dissolution rate, 16
evaporite precipitates, 47, 47, 465
ion activity products (IAP), 29
solubility products (K) and, 29
Dolomites, Middle Triassic build-ups, 500
double diffusion, 102–3
draa bedforms, 162, 164
drag-reducing behaviour, 115–16
drainage density, 246–7, 246
drainage migration, 614, 616, 617
drainage reversal, 617, 618, 619
drift currents, 323, 446, 447
drumlin, 356
du Boys tractive stress equation, 675, 676
dunes
river channel, 252, 253
subaqueous, 136–41, 138
cross-stratification, 139
dimensions and flow depth, 139, 141
flow and turbulence over, 141, Plate 3
form drag, 148
height and flow depth, 687
‘lag’ effects, 685–6, 686
liquefaction, 200
scour pool and ripple fan, 140
symmetric or humpback, 139
tidal shelf, 449, 451
wind-formed, 160, 161–9, 161–2
see also ergs
complex, 167–8, 167
flow-transverse, 163–4
granular flow
avalanches, 174–5, 176
linear, 164–7, 164–5
morphological classification, 158
star-shaped, 166, Plate 4
vegetated parabolic, 168–9, 168
dunoids, 687, 688
duricrusts, 19
dynamic viscosity, 70
Dzereg basin, Mongolia, 598
East African rift system, 331–3, 334, 618
Ebro River, Spain, 293
echinoderms, 662
eddies, 89, 90, 92–4, 94
eddy mixing length, 675
momentum transfer, 89, 94, 673, 674–5
eddy viscosity, 89
edge waves, 421
Eh, 648
soils, 20
water properties, 648, 653
Eh–Ph diagrams, 649, 650
Ekman spiral, 322, 692
El Chingue Bluff, southern Chile, 541
El Hacho, Spain, 414
electron transfer, 648
evaporation, 19
energy, work and power, 81–2, 81
environmental variables, 209, 210
epicontinental shelves, 441
epikarst, 41
equilibrium constants, 649–51, 651
equipotential lines, 664–5, 665, 666
Erg Mehedjibat, Algeria, Plate 4
Erg Oriental, Algeria, 166
ergs, 297
ancient desert facies, 312–16, 313
construction, stasis and destruction, 307–12, 308, 309, 310, 311
climate effects, 307–8, 313
evolution, 305–7
formation, 297–301, 301
margins and interbedform areas, 301–5, 302
flood pond evolution, 303, 304
models for aeolian aggradation, 315–16
sedimentary architecture, 305–7, 305, 306
world distribution, 298
erosion rates see denudation rates
eskers, 361–2, 363
estuaries, 371–85
definition, 371
dynamics, 371–5, 372, 373, 374, 375, 376
hydrodynamic classification, 372–5, 374
morphology and sedimentary environments, 376–9, 377, 378, 379, 380, 382
sequence stratigraphy, 379–85, 381, 383, 384
tidal flow, 372, 692–3
Eulerian systems, 75
European continental shelf, 448, 448
sizing methods, 58
statistics, 701
grain statics, 171, 173
Gran Desierto dune field, Mexico, 308, 309
Grand Canyon, 614, 615
ganodiorite, 11, 12, 15
granular fluids, 65
great Australian Bight (GAB), 481, 482, 483
Great Bahama Bank, 31, 463, 477–8, 477, 495, Plate 16
Great Barrier Reef (GBR), 462, 488, 502, 503
Great Lakes, North America, 324
Great Oxygenation Event (GOE), 607, 609
Great Sand Dunes, Colorado, USA, 157
Green River Formation, USA, 339
Greenland, ice sheet, 349
ground-line debris fans, 358
growth faults, 203–4
Guadiana estuary, Spain, 374
Guadix shelf, southwest Spain, 505
Gulf of Cadiz, 441, 538
Gulf of Mexico, 459, 524
gulf
marine carbonate, 571, 573
siliciclastic, 567, 570, 572–3
gullies, deep ocean, 516–17
gutter marks, 146, 154
gypsum
anhydrite reaction, 43, 44, 507, 663
precipitation, 43
subaqueous growth, 507, 508, 510
gyres, 323, 324
Hack’s law, 247
haematite, 48, 664
halite, 43
halokinesis, 202
harmonic fluid motion, 77, 77
heavy minerals, 24
Heinrich layers, 555
hemiturbidites, 535
highstand shelf sediments, 447–58
bedload partings, 448
tidal ridges, 448–9
tide-dominated, high river
input, 451–3, 455, 456
tide-dominated, low river
input, 447–51, 450
weather-dominated, 453–9, 457, 458
Himalayan rivers
fluvi al megafans, 286, 290, 291
longitudinal profiles, 249
Huanghe River, China, 271, 398
Huksan Mud Belt (HMB), 452–3, 456
hurricanes, 489, 491
hydroclustering, 126
hydrographs, 246
hydrological cycle, 4
hydroxylation, 8
hyperconcentrated flows, 126–7
hypercynal jets/underflows, 389–90
hypoxia, 459, 515, 550
ice
major environments, 334–5
minimum density, 648
ice flows
depositional environments, 353, 354–62
glacilacustrine environments, 361–2, 363
glacimarine environments, 358–61
ice flow rates, 346–7, 348, 349
ice-sheets, 119
ice-sheets, 347–50
incremental mass balance, 345
ice-floe, 119
incremental mass balance, 345
ice-produced, 354–7
glaciomarine environments, 361–2, 363
grain aggregates
bulk properties, 60
kinetic filtering, 175, Plate 5,
Plate 6
packing shapes, 172, 174
permeability, 61
grain fall through stationary fluids, 113–15, 114, 681, 682
effect of grain non-sphericity, 114
fall velocity and diameter relation, 114
grain Reynolds number, 87
and fall through stationary fluids, 114–15, 114
vs. shear stress, 119
grain shape and form, 60
effect on fall through stationary fluids, 114–15
visual determination, 60
grain size, 57
grain statics, 171, 173
Gran Desierto dune field, Mexico, 308, 309
Grand Canyon, 614, 615
ganodiorite, 11, 12, 15
granular fluids, 65
great Australian Bight (GAB), 481, 482, 483
Great Bahama Bank, 31, 463, 477–8, 477, 495, Plate 16
Great Barrier Reef (GBR), 462, 488, 502, 503
Great Lakes, North America, 324
Great Oxygenation Event (GOE), 607, 609
Great Sand Dunes, Colorado, USA, 157
Green River Formation, USA, 339
‘greenhouse effect’, 215–18
Greenland, ice sheet, 349
ground-line debris fans, 358
growth faults, 203–4
Guadiana estuary, Spain, 374
Guadix shelf, southwest Spain, 505
Gulf of Cadiz, 441, 538
Gulf of Mexico, 459, 524
sizing methods, 58
statistics, 701
grain statics, 171, 173
ganodiorite, 11, 12, 15
granular fluids, 65
ice sheets, 334–5, 345
climate change, 215–16, 222, 224
distributions of water for the polar ice sheets, 349
flow lofting from turbidity currents, 190
glacimarine environments, 358
 glaciofluvial processes, 357
 ice flow, 346, 349–50
 mass balance estimates, 346
 ice-rafted debris (IRD), 555, 556–7
 ice-sheets, 334, 358, 361
 ice-streams, 334–5, 348, 350
 ice-shelves, 334, 358, 361
 ice-wedge casts, 357
 ikaite, 30
 Illinois, USA, Wabash River, 242, 256
 illite, 10–11
 Imperial Valley, California earthquake, 199
 India, Kosi River, 290, 291, 292
 integral calculus, 699, 699
 integrated sedimentary systems, 629–35
 internal waves, 108, 108
 lakes, 323
 siliciclastic shelves, 446
 interstellar dust, 635
 intra-arc basins, 581, 583
 intraclasts, 38
 inverse grading, 175, 181
 Ion Activity Product (IAP), 29, 649, 651
 ionic charge and radius, 7
 ionic potential, 7, 648
 ionic strength, seawater, 29
 Ipswich Bay, Massachusetts, USA, 428
 Iran, Lut Desert, 299
 Ireland, County Clare
 Cliffs of Moher, 399
 mudlump intruding prodelta and delta-front sediments, 205
 Ross Slump, 207
 Irish Sea, Kaiser Bank, 449, 454
 iron minerals, 48–51
 electron transfer and Eh, 648
 freshwater diatoms from mid-holocene sediments, 49
 iron hydroxide dehydration, 663
 microbial reduction and oxidation, 48, 663
 sulphide reactions, 50
 iron ooids, 50
 iron oxides, 24
 Ischigualasto–Villa Unión, Argentina, 339, 340
 isovolumetric weathering, 4
 Italy
 Gioia Basin, 523
 Latemar platform, 499
 Po delta, 394, 400
 Po River, 271, 394
 Tiber delta, 399–400, 406
 Jamuna River, Bangladesh, 261, 262,
 Plate 11
 Japan, Kyushu, flow path of debris avalanche, 179
 jumbo piston cores (JPC), 524
 Kaiser Bank, Celtic Sea, 449, 454
 Kelvin–Helholtz instability, 98, 98, 99, Plate 2
 Kelvin waves, 445, 694–6, 694, 695
 Kentucky, USA, Breathitt Group, 206
 Kenya, Lake Turkana, 333
 kettleholes, 351
 Keum River, 456
 kinematic viscosity, 71
 kinetic filtering, 175
 Kivu rift, East Africa, 619
 knockpoint, 276
 knoll reef, 483
 Kosi River
 avulsion, 292
 megafan, 290, 291
 Kyoga, Lake, 618
 lag deposits, 52
 lagoons, 470–2, 471, 473
 arid, 464–7, 466, 468
 Lagrangian systems, 75
 lakes, 319–43
 biological processes and cycles, 329–31, 332
 chemical processes and cycles, 321, 323–4, 325
 continental rift basins, 565, 568
 dissolved oxygen, 331
 evolution, 335–41
 glacial, 350, 357–8
 glacial flows into, 361–2
 pluvial, 337, 338
 saline, 324–9
 sedimentary facies, 331, 335–41, 337
 ancient, 337–41, 340, 341, 342
 sedimentary processes, 320, 325–6
 stratification, 320–1, 321
 tropical freshwater, 331–3, 334, 335
 turbidity currents, 321–2, 322
 types, 319–20
 wind-forced physical processes, 322–3
 world’s largest and deepest, 333, 335, 336
 laminar flow, 84–6, 85, 86
 velocity profile, 88
 Laplace’s equation, 665, 667
 Latemar platform, northern Italy, 499
 lateritic (aka ferralitic) soils, 8
 ‘law of the wall’, 90, 674, 675
 levees, 265–6
 limestones, 17
 limonite/goethite dehydration, 663
 liquefaction, 198–203
 mechanisms, 199–200
 sedimentary structures formed, 199–203
 liquefied slope failure, 199
 listric faults, 203–4, 206
 lithostratigraphy, 226
 Little Bahamas Bank, 474, 475, 476, 477, 495, 497
 Little Manly Slump, 208
 load casts, 201, 206
 lodgement tills, 351–4, 353, 354
 loess, 297
 logarithm, 697
 longshore currents, 419, 420, 421
 longshore drift, 184, 378, 390, 421, 428, 429
 Loreto basin, Baja California, 625
 Louisiana, USA, Raccoon Island, 426
 low relief bed waves, 144, 147
 lower-stage plane beds, 136, 148
 Lut Desert, Iran, 299
 lysocline, 39
 Madri River, Morocco, 629
 Madrid, Lake, Spain, 341–2
 magnetite, 48–9
 magnetotactic bacteria, 48
 Magnus effect, 121
 Main Central Thrust (MCT), 249
 Malawi, Lake, 331–3
 manganese oxides, 51–2
 manganese/calcium (Mg/Ca) ratio, 605–7, 606, 659–60
 mangrove swamp, 438
 mantle delamination, 609
 Mariana Arc, 585
Index 761

marine environments, 367–9
brines/evaporites, 43–7, 44
calcite distribution, Plate 1
calcium carbonate cycle, 28–31
calcium carbonate
dissolution, 39–40
carbonate grains from marine plants
and animals, 35–7
variation of carbonate
mineralogy, 36
carbonate muds, oozes and
chaks, 37
chemical composition and fluxes
vs. freshwater, 27–8, 28
grain transport, 115
ionic strength, 29
pH, 29
silica cycle, 47–8, 49
subaqueous evaporite
precipitates, 46–7, 47
see also coastal environments; ocean
environments
marine organisms, 33–7, 662–3
‘marine snow’, 550, 550
marls, 663
Mars, atmospheric and liquid
flows, 635–8, 636
Massachusetts, USA
Cape Cod, 432
Ipswich Bay, 428
mathematical functions, 697
McKenzie delta, Canada, 403
Mediterranean Inflow (MI), 546
Mediterranean Outflow
(MO), 546–7, 548, 549
megabreccia, 176
megafans, 285, 286, 290, 291, 292
megaturbidite, 190
meltout, 356
Merian’s formula, 693
metallic ions, 648
meteorological currents, 445
methane gas hydrates, 182, 184
Mexico
Gran Desierto dune field, 308, 309
Yucatan shelf ramp, 473
micas, 9, 16, 24
micrite envelopes, 37–8
microbial reduction and
oxidation, 10, 48, 663
microorganisms
bacterial ferric iron reduction, 48,
663
biogenic CO$_2$, 651
calcareous nanoplanckton, 663
calcimicrobes, 483
Middle Atlantic Bight, 456–7, 458
mid-oceanridge (MOR) activity, 605,
607
Milankovitch effect, 217, 344
mineral abundance versus depth, 8
mineral precipitation, 5–8, 6, 646–8,
651–2, 652
Mississippi delta, 389, 392, 395–7,
400, 401, 402, 442, Plate 13
mixing mechanisms, 98
Mobile Bay, Alabama, USA, 423
modelling, 238–9, 238
aerial aggradation, ergs, 315–16
alluvial architecture, 279–93, 279
denudation rates, 233
foreland basins, 617–18, 620, 634
inputs-outputs model for a brine
basin, 46
integrated sedimentary
systems, 629–35, 630, 631,
632–3
Molasse basin, Austria, 526
molecular properties, 646–9
molecular viscosity, 70
molluscs, 662
momentum-gravity approach, 669,
669
Mona moraine, Norway, 359
Mongolia, Dzereg basin, 598
monsoon intensity, 611, 613–14, 613
Monterey Canyon, 518
MOR (mid-oceanridge) activity, 605,
607
moraines, 356–7, 359
Moroccan Jurassic carbonate platform
slope, 501
Moroccan Turbidite System
(MTS), 543, 544
Morocco, Ouarzazate basin, 629
mud curls, 205
mud mounds, 485, 485, 486, 487
muds
carbonate muds, oozes and
chaks, 37
erosion processes, 125
increase of shear strength with
marine depth, 125
settling velocity vs. floc size and
particle concentration, 126
mud–sand interlayers, 200–1
‘Muesli’ effect, 175, 181
muscovite, 9, 24
Namib Desert, 165, 299
Navier–Stokes equation, 670
nepheloid layers, 543, 546, 547
Netherlands
Rhine–Meuse Rivers, 276, 277
Zeeland banks, 453
Nevada, USA
Dixie and Pleasant Valleys, 564
Pilot Valley playa, 326
Nevados Huascaran avalanche and
debris flow, 178
New Jersey shelf, 444
New Mexico, USA
Capitan reef complex, 230
Hueco Formation, 384
Rio Grande, 206, 271, 623–4
White Sands, 161
New Zealand
Mt Thomas, 180
Rangitaiki Fault, 621
South Island Glacier, Plate 12
Newark, Lake, USA, 338–9
Newtonian fluids, 67, 72
Newton’s laws of motion, 80, 667–8
nickel/iron (Ni/Fe) ratio, 609
Niger delta, 397–8, 404
Nile River
channel–levee systems and lobes fed
by, 533
delta, 398–9, 405
Nilometer, 269
Nioabra crevasse splay, 266
nodal avulsion, 282
Non-Newtonian fluids, 67
non-obligate calcifiers, 663
nonuniform flow, 76
Norfolk, UK, Thornham
marshes, 434
North Sea basin
Heligoland Bight, 455
Permian ergs, 313
tidal sand ridges, 449, 452
Norway
Briksdalsbreen, 355
Mona moraine, 359
Nova Scotia, Canada, continental
margin, 520
nutrients
hypoxia, 459, 515, 550
in lakes, 329–31, 332
OAE (Oceanic Anoxic Events), 551
ocean environments, 514–60
biological and chemical
processes, 547–50, 550
components of the coupled
ocean–atmosphere
system, 368
ocean environments (Continued)
continental margin deposition
fans and aprons, 530–43
thermohaline currents and
contourite drifts, 543–7, 545, 548
turbidite pathway systems
connecting slopes and basin
plains, 543, 544
palaeo-oceanography, 553–7
particle fluxes to the oceans, 515, 517
pelagic sediments, 550–1, 550
anoxic, 551–3, 554
progradational and erosional
continental margins, 516
resedimentation, 526–30
sculpturing and
resedimentation, 515–25
turbidity flows, 517
Oceanic Anoxic Events (OAE), 551
oceanic composition, 605–7, 606
oceanic circulation, 555
see also thermohaline currents
oceanic floods, 454
oceanic pH, 657–9
oceanic temperatures, 655
Odiel estuary, Spain, 374
offshore bars, 421, 422, 425
ooligotrophic lakes, 331
olivine, 10, 16
Oman, Wahiba Sands, 310, 311
Ontario, Canada, Lake
Crawford, 332
oid carbonate grains, 31–5, 32, 33
tidal sands, 474, 476
oolite shoals, 472–4, 475, 476, 477
opaline silica, 551, 553
ophiolite, 578–9
Orcadian basin, Scotland, UK, 339
organic deposition, river deltas, 392, 397
organic grains, 24
marine plants and animals, 35–7
algaliths, 38, 663
faecal pellets, 38
genus Penicillus, 35, 663
variation of carbonate
mineralogy, 36
organic groups, 36, 662–3
marine organisms, 35–7, 662–3
see also microorganisms
organic processes, 1–2, 19
deep ocean, 547–50
orogenic belts, 14, 221, 561, 587, 589, 634
oscillation ripples, 148, 156, 305
ostracods, 662
Ouarzazate basin, Morocco, 629
Ouémé River estuary, 380
oxygen, atmospheric, 607, 609
oxygen minimum layers, 531
P cycle, 11
Pacific Ocean
aragonite and calcite saturation as
function of depth, 40
California continental
margin, 518, 519
distribution of trenches and back-
arcs, 586
packing structure, 60–1
palaeoaltimetry, 611
palaeoclimatic, 219–21
palaeocurrent measurement, 687
palaeohydraulic analysis, 675–7
palaeosols, 219–21
alluvium, 276
classification, 21
latitudinal (zonal) distribution, 220
transition to pond facies, 342
palaeothermometry, 655
partial differential symbol, 699
partial pressure, 649
patch reef, 483
pelagic phyla, 35, 662
pelagic sediments, 550–1, 550
anoxic, 551–3, 554
Penicillus, 35, 663
Peripacific shelves, 441
peri-glacial conditions, 357
permeability and deposition
rates, 61
Peruvian Andes, Nevados Huascaran
avalanche and debris flow, 178
Peruvian Desert, Landsat image, 299
Peyto Lake, Alberta, Canada, 322
pH, water, 649, 653
seawater, 657–9, 658
phosphates, 52, 661–2
apatite and the P cycle, 11
freshwater lakes, 323–4, 331
seawater, 659, 660
phyllolaxis, 24, 51
physical weathering, 4, 17–18
piedmont glaciers, 335
pillar structures, 200
Pilot Valley playa, Nevada, USA, 326
piping flow, 200, 202
placers, 24
plagioclase
abundance vs. depth, 8
feldspar, 11, 12, 16
provenance, 24
planar cross-lamination, 134, 136
planetary processes, 635–8, 636, 637
platform margin reefs and carbonate
build-ups, 482–93
annual sediment production, 489,
489, 490
changes in reef
development, 490–3, 492, 494
effects of disease and
hurricanes, 489, 491
framebuilt reefs in shallow warm
waters, 487–93
low wave-energy and deep-coldwater, 485–7, 486, 487
nomenclature, 483–4, 484
platform margin slopes and
basins, 493–9, 495, 499, 500, 501
interglacial/glacial
mineralogy, 495–6, 498
platform-rimmed shelves, 462, 463
playas
chemical processes and
cycles, 324–6, 327, 328
evolution, 326, 330
sedimentary processes, 325–6, 329
typical, 326
plumose markings, 205
Po delta, Italy, 271, 394, 400
Pochnoi submarine fan, 538
podzolic weathering, 19–20
podzols, 8, 12, 19–20
point bars, 254–5, 257, 258, 259, 260
polar ice-sheets, 344–5, 346
see also ice flows
potential flow techniques, 664–5, 666
power of a number, 697
Prandtl’s law, 674, 675
pressure drop, 85
protodolomite, 657
pteropods, 662
pyrite, 50
oxidation, 18, 649
provenance, 24
quantitative models, 238–9, 238
quartz
abundance vs. depth, 8
dissolution, 8, 16
fall of grains through stationary
fluids, 13–15, 14
San Francisco Bay, California, USA, 451
San Gabriel Fault, California, USA, 593, 594, 595
sand banks, 448–9, 452, 453, 454, 457–9, 458
sand dunes see dunes
sand ribbons, 449, 450, 451
sand ridges, 448–9, 452, 453, 454, 457–9, 458
sand seas see ergs
sand sheets, 297, 301, 302
sand volcanoes, 199, 200, 203, 204
sand-flow lines, 299–301, 300
sandstone balls, 201
sandur, 357
sanidine, radiogenically dating, 24
saprolite, 4
mineral abundance vs. depth, 8, 11, 12
weathering zone, 15, 18, 19
sapropels, 551–2
Saskatchewan River, Canada, 272–3, 274–5
scalar quantities, 700
SCE (sediment continuity equation), 685, 685
Scotland, UK, Orcadian basin, 339
sea-level changes, 221–9, 228
alluvial fans, 292
calcium carbonate deposition rates, 38–9
carbonate reef development, 493, 494
erg construction, stasis and destruction, 307–8, 313
estuarine stratigraphy, 379
foreland basins, 591
main tectonic controls, 225
marine carbonate sediments, 499–501
reefs and speleothem fine-scale tuners, 638–41
eriver deltas, 405–10, 409
sequence stratigraphy, 225–9, 227, 228, 230
siliciclastic shelves, 441, 441
tectonics and sediment yield, 629–35, 630, 631, 632–3
seawater composition, 605–7, 606
secular change, 656, 657
as geosink for CO2, 658–9
pH, 657–9, 658
secondary flow, 99
sediment budgeting and modelling, 617–18, 620
sediment classification, 1
sediment continuity equation (SCE), 685, 685
sediment definitions, 1
sediment drifts, deep ocean, 545
sediment dykes, 200
sediment grain evolution, 23
sediment relaxation time, 628
sediment slides, 182, 183
submarine, 203–5
deep ocean, 526, 528, 529–30, 531
sediment slumps, 182, 183
submarine, 203–5, 207, 208
canyons, 517
deep ocean, 526, 529
sediment yield, 231
sedimentary basins, 563–600
architecture, 561–2, 562
tectonics, 229, 233, 234
see also platform margin slopes and basins; rift basins; submarine basins
sedimentary environments, 209–12
see also aqueous environments;
coastal environments;
continental environments
sedimentary process models, 238–9, 238, 239, 428, 476
seepage liquefaction, 199–200
seiches, 323
sepiolite, 607
Severn Estuary, current ripples, 133
shallow-water waves, 105, 106
Shark Bay, Western Australia, 468
shear flows, 87–9, 90–100
between current and overlying fluid, 96, 98, 98
instabilities, 96, 98, 98, 102
stratified flow, 102–3
shear stress, 87, 87, 95–6, 96
critical for grain transport, 117–19, 120
shear velocity, 90, 92
critical for grain transport, 116–18, 118
shering force, 668, 668
shear-thickening, 126
shelf terraces, 574–6, 574, 575
shelf turbidity currents, 184
shelf-edge reef, 484
Hildes diagram, 119
shoreface, 421–2
shorelines
calcium carbonate
arid carbonate tidal flats, lagoons and evaporite sabkhas, 464–7, 466, 467, 468
humid carbonate tidal flats and marshes, 463, 467–70, 469
lagoons and bays, 470–2, 471, 473
ramp shorelines and shelves, 462, 464, 465
tidal delta and margin-spillover carbonate tidal sands, 472–4, 475, 476, 477
fan deltas, 412–15
siliciclastic, 417–39
across-shoreface transport, 426
ancient clastic facies, 436–8, 437
barrier-inlet-spit systems, 426–31, 426, 427, 428, 430, 431, 432, 433
beachface morphology and sedimentation, 421–6, 422, 425
longshore currents, 421
sequence stratigraphy, 436, 437
tidal flats, salt marsh and chenier ridges, 431–6, 434, 435, 436
types, 417, 418
waves and currents, 418–21, 419, 420
shrinkage cracks, 205, 208
siderite, 50
silica, 47–8, 49, 663
silicate minerals
chemical weathering, 5–15, 652
rates and mechanisms, 12–17, 16, 17, 653, 654
silicic oozes, 551
siliciclastic gullfs, 567, 570, 572–3
siliciclastic sediment, 1, 22–5
siliciclastic shelves, 440–60
architectures, 440–3, 442, 444
components of the shelf-current velocity field, 445
highstand shelf sediments, 447–58
bedload partings, 448
tidal ridges, 448–9
tide-dominated, high river input, 451–3, 455, 456
tide-dominated, low river input, 447–51, 450
weather-dominated, 453–9, 457, 458
lowstand bypass, 441
shelf density currents, 446–7
shelf tides, 443–6
shelf water dynamics, 443–7, 445
wind drift currents, 446, 447
siliciclastic/carbonate cycles, 502–4, 503, 505, 506
Skagen Odde coastal complex, 433
skin friction, 90, 137
slide, 330
slope aprons, 517
slope failure, 198
subaqueous deltas, 392, 399
slumps, 182, 183
submarine, 203–5, 207, 208
canyons, 517
deep ocean, 526, 529
small-scale cross-lamination, 133
smectites, 11, 51
Sm–Nd systems, 22
sodic soils, 20
solids
ablation tills, 356
acid weathering, 8, 19–20
age, chemical weathering and weathered-rock removal, 21–2
alkali weathering, 20–1
chemical and physical weathering dependence, 21, 22
chemical processes in terms of Eh (redox potential) and pH, 20
classification, 19
climate, vegetation, weathering and soil types, 20
formation, 4, 4, 19–20, 269
gley-type soil horizons, 648
mineral abundance vs. depth, 8, 11
mineral abundance vs. time, 16, 16
palaeosols see palaeosols
pH, 7–8, 12, 19
as valves and filters for the natural landscape, 18–21
solifluction, 357
solitary waves, 104, 107–8, 107, 108, 189
solitons, 108
solubility products (K), 29, 650, 651
solute flux, 12–15
processes affecting, 6
rates for various rock types, 16
Solway Firth, current ripples, 135, 138
South Saskatchewan River, Canada, 253
Spain
carbonate–clastic cycles, 506
Ebro River, 293
El Hacho, 414
Galicia catchment denudation rates, 235
Galicia Islas Cies bay barrier, 431
Guadiana and Odiel estuaries, 374
Guadix shelf, 505
Gulf of Cadiz, 441, 538
Lake Madrid, 341–2
Teruel Basin, 329
speleothem carbonates, 41–2
dating, 614, 615
palaeoclimatic studies, 615, 641–3, 643
secular sea-level change, 639–41, 640
'spur-and-groove', 487–8, 488
stalagmites, palaeoclimatic studies, 641–2, 643
standing waves, 421, 693–4
star-shaped dunes, 166, Plate 4
Start Point, Devon, 243
Start Point, Devon, UK, 243
Stokes and Gerstner waves, 104
Stokes law, 113, 681, 682
strandplains, 422
strata, 1
stratified deposits, 1
stratified flow, 102–3
stratigraphic process models, 238–9, 238
see also modelling
stratigraphy, 225–9
stream magnitude, 246
stream power, 676
streamfunction, 664–5
streamlines, 664–5, 665
streamtubes, 665
strike-slip basins, 229–30, 235, 593, 594, 595, 597–9
stromatolites, 52–4, 53, 662
subaqueous dunes
flow and turbulence over, Plate 3
subaqueous evaporites, 47, 504–9, 508
subcritical flow, 100
submarine avalanches, 526, 528, 529
see also sediment slides
submarine basins, 493–9, 495, 499, 500, 501
basin floor channels, 521–4, 521, 522, 523, 525, 526
interglacial/glacial mineralogy, 495–6, 498
submarine fans, 523, 524, 530–2, 534–5
channels, 532–5, 533, 534, 535, 536
depositional pattern, 540–2, 541, 542
flow stripping, 539
ice-sourced, 540
input to subduction margin, 579
lobes, 532, 533, 535, 536, 537, 538
sectors, 532
sediment waves, 538, 539–40, 539
submarine landslides, 203–4
submarine slides, 526, 528, 529–30, 531
submarine turbidites, 517, 521–2, 527, 530, 535–6, 540, 541–3, 541
substantiate derivative, 666
Suez rift, 622
sulphate concentration, seawater, 605–7, 606
Sumatra trench system, 581, 582
Sunda fore-arc basin, 583
supercritical flow, 100–2
supercritical flow bedforms, 141–4, 143
supply-driven deltas, 406
surface (chemical) reactions, 653–4, 655
surface gravity waves, 104–5
surface tension, water molecules, 648
surface wave energy, 105
suspended load-transport, 122, 123, 683–4
intraparticle stresses, 682–3
suspended sediment, 121
autosuspension in turbidity current, 690
dediment suspension theory, 684–5
suspensions, 682–3
Switzerland, Lake Zurich, 325
syn-rift, 563, 564
talus aprons, 282
talus cones, 283, 284, 284, 293
Tanganyika, Lake, 331–3, 334
Taylor–Görtler vortices, 99
tectonics, 229–31
vs. climate depositional control, 626–8, 627
Colorado Plateau uplift and Grand Canyon incision, 614
fault growth and amalgamation, 618–22, 621, 622
river channels, 622
tectonics (Continued)

unsteady strain and the sedimentary response, 623–6, 625
regional drainage reversal, 617
river channels and large-scale regional tilting, 614–17
sediment yield and sea level change, 629–35, 630, 631, 632–3
sediments and sea-water composition, 606–7
tectonic tilting, 614, 617, 622
Tibetan Plateau uplift, 614, 617, 622
telescopic fans, 286, 287
temperature and reaction rates, 5
temperature and viscosity, 72, 73
temperature stratification, shear flows, 102–3
tensors, 701
terminal fall velocity, 113
terminal fans, 290–1
Teruel Basin, Spain, 329
Terzaghi effective normal stress, 198
Texas, USA, Brazos delta, 401–2, 408
Thalassiothrix, 536
thermobaric effect, 648
thermohaline currents, 543–7
thermokarst, 357
Thornham marshes, Norfolk, UK, 434
thrombolites, 54, 562–3
Tiber delta, Italy, 399–400, 406
Tibet, Golmud River, 287
Tibetan Plateau uplift, 609–14, 610, 612
tidal banks, 448–9, 452, 453, 454
tidal current ellipses, 696, 696
tidal currents, 445
transport paths, 448–9, 448
tidal flats, 417–18, 431–6, 433, 434, 435
arid, 464–7, 466
humid carbonate, 467–70, 469, 470
tidal flow, 109
dunes, 140
estuaries, 372, 692–3
origins, 680–1, 681
resonant effects, 693–4, 693
rotary tidal (Kelvin) waves, 694–6, 694, 695
siliciclastic shelves, 443–6
tidal resonance, 451
tidal rhythmites, 438
tidal ridges, 448–9, 452, 453, 454
tidewater glaciers, 335
tilt blocks, 231, 573, 586
see also tectonics
Tonga Arc, 585
tool marks, 146, 154
total derivative, 666
translatory ripple, 156
transport processes, 116, 124–30
bedload and suspended-load transport, 116, 683
bedload transport see bedload transport
categories of transported sediment, 121–2, 123
debris flows see debris flows
deposition or erosion?, 129
granular flows see granular flows
initiation of grain motion, 116–20
distribution of approximate pressure differences, 117
force moment-balance diagram, 118
freshwater streams, 119–20
under waves and combined flows, 120
natural flows, 115–16
nonequilibrium effects, 127–9
paths of grain motion, 120–1, 121
river flood deposits, 676–7
rivers, 252–80
sediment continuity equation, 129, 130
sediment hysteresis effects, 129
sedimentary and stratigraphic process models, 238–9
viscosity and structure as a function of applied shear stress, 127
vs. wind flows, 122, 124, 124
wind transport see wind transport
transitional fault-termination basins, 596, 599
transverse ribs, 142
travertine, 42
trenches and trench-slope basins, 578–9, 579, 580, 581, 582
trough cross-lamination, 134, 135, 136, 687, 689
tsunami, 105, 107, 421, 425
tufa, 42, 42
turbidite pathway systems, 543, 544
turbidites, 190–3, 190
acceleration matrix, 185
depositional sequence, 191–2, 192, 193
evidence for downslope transformation, 192
submarine, 517, 521–2, 527, 530, 535–6, 540, 541–3, 541
turbidity currents, 184–5
double shear boundaries, 185
wave-induced, 454
transient turbidity flows, 184–90
transient buoyancy reversal and flow lofting, 189–90
deep ocean, 517, 519, 521–2, 526–7, 529–30, 531
transitional flow, 120
freshwater turbidity currents in the oceans, 189–90
turbulent kinetic energy, 673
turbulent stresses, 673
transient turbidity currents, 186–9, 188, 189
turbulent flow, 84–6, 85, 86, 88–96, 670–1, 673–7
bed-attached hairpin vortex, 95
boundaries with sediment grains, 90, 91
boundary layer, 92, 94, 95
debris flows, 89, 90, 92–4, 94
momentum transfer, 89, 94, 673, 674–5
energy losses, 89
flow velocity profile, 90, 91, 675
flow velocity time series, 89
H2-bubble blocks in water, 93
mean stresses, 675–7
turbulent kinetic energy, 673
turbulent stresses, 673
turdebrites, 530
Turkana, Lake, Kenya, 333
Udden–Wentworth scale, 58
uniform flow, 75
unsteady flow, 75
United Kingdom
Culm River, Devon, 268
Orcadian basin, Scotland, 339
Start Point, Devon, 243
Thornham marshes, Norfolk, 434
Windemere, Lake, Cumbria, 323
upper-stage plane beds, 140, 141, 148
time series of elevation and velocity profiles, 142
uranium-series dating, 641–2
Urey equation, 652
USA
Delaware estuary, 382
eastern continental margin, 575
Florida barrier/lagoon, Plate 15
Green River Formation, 339
Lake Bonneville, 338
Lake Newark, 338–9
Mississippi River delta, 389, 392, 395–7, 400, 401, 402, Plate 13
see also under the names of specific states
Utah, USA, Blackhawk Formation, 437
valley glaciers, 335, Plate 12
Variegated Glacier, Alaska, USA, 354
varves, 361
vectors, 700–1
velocity potential lines, 664–5
Victoria, Lake, 618
Vietnam, Red River delta, 395
Virgin Islands coral reef, 491, 492
viscosity, 70, 669
as a function of applied shear stress, 127
variation with temperature, 72, 73
viscous flow, 87–8, 670, 672–3
viscous sublayer, 90, 92, 96, 675
volcanic arcs, 580–5
volcaniclastic sediment, 492, 502, 529, 581, 583
von Karman constant, 675
von Karman vortices, 114, 136
vortex bubbles, 99
vorticity, 77–8
Wabash River, Illinois, USA, 242, 256
Wahiba Sands, Oman, 310, 311
washload, 122
water budget, 4
water chemistry, 646–51
water flow see fluid dynamics
water flow bedforms, 132–47, 686–7
bedload sheets and low relief bed waves, 144, 147
combined flows: wave-current ripples, 158–9
cross-stratification, 135, 136, 139
hummocky, 153, 158–9
current ripples, 132–6, 135
bedform theory, 686–7
cross-lamination, 133–5, 135, 136, 687
development, 134, 136
form drag, 148
forms, 133, 135, 136
‘rogue’ ripples, 687, 688
skin-friction lines, 137
superimposed upon the backs of dunes, 137, 140
dunes, 136–41, 138
cross-stratification, 139
dimensions and flow depth, 139, 141
flow and turbulence over, 141, Plate 3
form drag, 148
height and flow depth, 687
‘lag’ effects, 685–6, 686
liquefaction, 200
scour pool and ripple fan, 140
symmetric or humback, 139
freshwater erosion types, 151–4
hydraulic-jump-related, 147
lower-stage plane beds and cluster bedforms, 136, 148
phase diagrams, 144, 147–51
river channel, 252, 253, 254
braided bars, 255–62, 260, 261, 262, 263, 264
point bars, 254–5, 257, 258, 259, 260
unit bars and dunes, 252, 253
supercritical flow bedforms, 141–4
turbulent flow boundary effect, 90, 99
upper-stage plane beds, 140, 141, 148
time series of elevation and velocity profiles, 142
water wave formed, 154–8
water properties
chemical bonding, 646–8, 647
compared with air, 124
Eh, 648, 653
mineral precipitation, 646–8
pH, 649, 653
physical properties, 648
see also aqueous environments; seawater
water transport see transport processes
water waves, 103–8, 109
beach processes and sedimentation, 418–21, 419, 420
bedform erosion, 154–8
deep spectrum, 678–9
equation for ocean wave motions, 103
energy spectrum for ocean wave motions, 103
internal waves, 108, 108
lakes, 322–3
orbital motions, 104, 105, 106
profiles of wave types, 104
radiation stress, 680, 680
shallow-water waves, 105, 106, 679–80, 679
solitary waves, 104, 107–8, 107, 108, 678–9, 679
standard parameters and definitions, 104
surface wave energy, 105
tsunami, 105, 107
wave group velocity and energy flux, 678–9
wave theory, 677–80, 677, 678
wave set-up, 446, 447
wave-current ripples, combined flows, 153, 158
wave-formed ripples, 147, 148, 149, 154
WBU (Western Boundary Undercurrent), 543–4, 545
weathered rinds, 15
weathering, 3–22
see also chemical weathering; physical weathering
West Siberian Basin, 616
Western Boundary Undercurrent (WBU), 543–4, 545
White Sands, New Mexico, USA, 161
William River delta, Canada, 397
wind drift currents, 323, 446, 447
wind formed bedforms, 159–69
ballistic ripples and ridges, 155, 156, 157, 159–61
dunes, 160, 161–9, 161–2 see also dunes
energized, 167–8, 167
flow-transverse, 163–4
granular flow avalanches, 174–5, 176
linear, 164–7, 164–5
morphological classification, 158
star-shaped, 166, Plate 4
vegetated parabolic, 168–9, 168
windflow and streamflow bedform theory, 169
see also dunes
wind formed ripples, 155, 156, 157, 159–61
wind generated waves, 104, 322
wind shear, 100, 322, 323
Coriolis effects, 322, 692
lakes, 322–3
siliciclastic shelves, 446
wind transport, 122
transport capacity, 297
vs. water flows, 122, 124, 124
wind-blown bedload
transport, 683–4
see also aeolian sediments

Windemere, Lake, Cumbria, UK, 323

yardangs, 297, 299
Yellow River, China, 271, 398
Yellow Sea, 451–3
Yucatan, Mexico

reef development, 639
shelf ramp, 473, 478
Zaire levee sediment waves, 539
Zeeeland banks, Netherlands, 453
Zurich, Lake, Switzerland, 325