adapted stochastic processes, 2, 303
admissible trading strategy, 186
American options, 53
appendices, 1, 331–63
arbitrage, 53, 185–7, 232, 322–30
arithmetic Brownian motion, 128–9, 222–3, 229–30
see also Bachelier model
 stock price with continuous dividend yield, 229–30
arithmetic series, formulae, 332
arrival time distribution, Poisson process, 256–8
see also stock...
 fundamental theories, 232–5
attainable contingent claim, 186–7
Bachelier model
see also arithmetic Brownian motion
definition and formulae, 128–9
backward Kolmogorov equation, 97, 98–102, 149–50, 153–4, 180–1
see also diffusion; parabolic...
definition, 97, 98–9, 149–50, 153–4, 180–1
multi-dimensional diffusion process, 99–102, 155–83
one-dimensional diffusion process, 87–8, 123–55
one-dimensional random walk, 153–4
two-dimensional random walk, 180–1
Bayes’ Formula, 7
Bayes’ rule, 341
Bernoulli differential equation, 357–8
Bernoulli distribution, 11, 12, 13, 14–15, 349
Bessel process, 163–6
beta function, 338
binomial distribution, 12–14, 349–50
bivariate continuous random variables, 345–7
see also continuous...
bivariate discrete random variables, 343–4
see also discrete...
bivariate normal distribution, 27–9, 34–40, 60–2, 158, 165, 352–3
see also normal distribution
covariance, 28–9, 57–9, 158, 165
marginal distributions, 27
Black equation, 362
Black model, 362
Black–Scholes equation, 54, 96, 236–8, 361
see also partial differential equations
reflection principle, 54–5, 361
Black–Scholes model, 129–30, 185, 236–8, 361
see also geometric Brownian motion
Bonferroni’s inequality, 7
Boole’s inequality, 6, 7, 10
Borel–Cantelli lemma, 10–11
Brownian bridge process, 137–8
see also arithmetic...; diffusion...
 geometric...; random walks; Wiener processes
definitions and formulae, 51, 128–32, 138–9, 221–4, 227–30
càdlàg process, 246
Cauchy–Euler equation, 358–9
cdf see cumulative distribution function
central limit theorem, 12, 13, 57, 355
CEV see constant elasticity of variance model
change of measure, 43, 185–242, 249–51, 301–30
see also Girsanov’s theorem
definitions, 185–92, 249–51
Chebyshev’s inequality, 40–1, 75
chi-square distribution, 24–6, 352
CIR see Cox–Ingersoll–Ross model
Clewlow–Strickland 1-factor model, 141–4
compensated Poisson process, 245, 262–3, 266–7, 323–6, 330
see also Poisson...
complement, probability concepts, 1, 4–5, 341
complete market, 187, 233, 322–30
see also Poisson...
decomposition, 268–9, 306–8
Girsanov’s theorem, 249–51
martingales, 265–7, 323–5
concave function, 339
conditional, probability concepts, 341
conditional Jensen’s inequality, properties of conditional expectation, 3, 48–9, 75–6, 192–4
conditional probability
density function formulae, 346
mass function formulae, 343
properties of conditional expectation, 3, 43–5
conditional variance, 343, 346
constant elasticity of variance model (CEV), 145–6
contingent claims, 185–92, 245
see also derivatives
continuous distributions, 350–3
convergence of random variables, 10–11, 209–11, 353–4
covariance function, 3, 42, 48–9, 75–6, 192–4, 338–9
covariance formulae, 25–6, 348
countable unions, 1–2
counting process, 243–330
see also Poisson...
definition and formulae, 243–4
covariance, 28–9, 57–60, 64–8, 117–18, 157–8, 165–6, 251–2, 344, 347
matrices, 59, 64–8
covariance of bivariate normal distribution, 28–9, 57–60, 158, 165–6
covariance of two standard Wiener processes, 57–60, 64–8
Cox process (doubly stochastic Poisson process), 243, 245
see also Poisson process
Cox–Ingersoll–Ross model (CIR), 135–7, 171–4, 178
cumulative distribution function (cdf), 16–20, 22–4, 30–2, 37–40, 214–18, 342, 343, 345, 361–3
cumulative intensity, 245
see also intensity...
de Moivre’s formula, 333
de Morgan’s law, 4, 7, 10
decomposition of a compound Poisson process, 268–9, 306–8
see also ordinary...; partial...; stochastic...
differential-difference equations, 253–5
Dirac delta function, 339
see also Heaviside step function
discounted portfolio value, 187–92, 224–7, 228–32, 242, 324–30
discrete distributions, 349–50
discrete-time martingales, 53
dominated convergence theorem, 354
Donsker theorem, 56–7
Doob’s maximal inequality, 76–80
elementary process, 96
equivalent martingale measure, 185, 188–9, 209–11, 222–5, 230–1, 234–5, 238–42, 325–30
see also risk-neutral...
Euler’s formula, 333
events, definition, 1, 243–51
exclusion for probability, definition, 7–10
exponential martingale process, 263–4
see also martingales
Feynman–Kac theorem, 97–102, 147–9, 178–80
see also diffusion
Kolmogorov equation
folded normal distribution, 22–4, 72
see also normal distribution
foreign exchange (FX), 51, 54, 192, 238–42, 362
foreign-denominated stock price under
domestic risk-neutral measure, 241–2
risk-neutral measure, 238–42
forward curve from an asset price following a
geometric Brownian motion, 138–9
forward curve from an asset price following a
geometric mean-reverting
process, 139–40, 169–71
forward curves, 138–44
forward Kolmogorov equation, 97, 98–102,
150–3, 154–5, 181–3
see also diffusion; parabolic...
multi-dimensional diffusion process, 102
one-dimensional diffusion process, 150–3
do two-dimensional random walk, 154–5
Fubini’s theorem, 339
FX see foreign exchange

Gabillon 2-factor model, 169–71
gamma distribution, 16–17, 257, 352
Garman–Kohlhagen equation/model, 362–3
general probability theory, concepts, 1–49,
185–92, 341–55
generalised Brownian motion, 130–2
generalised Itô integral, 118–19
geometric average, 146–7
geometric Brownian motion, 70–1, 129–32,
138–9, 146–7, 221–2, 227–8, 361, 362–3
see also Black–Scholes options pricing
model; Brownian motion
definition and formulae, 129–32, 138–9,
146–7, 221–2, 227–8
forward curve from an asset price, 138–9
Markov property, 70–1
stock price with continuous dividend
yield, 227–8
geometric distribution, 349
geometric mean-reverting process, 134–5,
139–40, 169–71, 291–5
definition and formulae, 134–5, 139–40,
169–71, 291–5
forward curve from an asset price, 139–40,
169–71
jump-diffusion process, 291–5
general series, formulae, 332
Girsanov’s theorem, 185, 189–92, 194–242,
249–51, 298–322
see also real-world measure; risk-neutral
measure
corollaries, 189–90
definitions, 185, 189–92, 194–225, 249–51,
298–322
formulae, 189–92, 194–225, 249–51,
298–322
jump processes, 298–322
Poisson process, 249–51, 298–322
running maximum and minimum of a Wiener
process, 214–18
hazard function, 245
see also intensity...
hazard process, 245
heat equations, 359–60
Heaviside step function, 339
see also Dirac delta function
Heston stochastic volatility model, 175–8
Hölder’s inequality, 41–2, 72–4, 79, 193,
204–5
homogeneous heat equations, 359–60
homogeneous Poisson process see Poisson
process
hyperbolic functions, 74, 333
inclusion and exclusion for probability,
definition, 7–10
incomplete markets, 187, 324–30
independence, properties, 3, 11, 47–8, 163–6,
210, 259–61
independent events, probability
concepts, 259–61, 341, 344, 347
integrable random variable, 3, 44, 45–9, 353
see also random variables
integral calculus, definition, 95–6
integrated square-root process, 171–4
integration by parts, 19–20, 115–18, 147, 151,
174, 257–8, 337
Itô integral, 102–7, 108–116, 118–20, 144,
148–9, 163–6, 177–8, 187–92, 195–6, 205–7
Itô isometry, 113–14
Itô processes, 54, 95–123, 360–1
Itô’s formula see Itô’s lemma
Itô’s lemma, 96–7, 99–100, 102–27, 129–33,
134–7, 139–46, 147–53, 155–62, 166–8,
170–80, 196, 203–5, 212–13, 220–7,
234–41, 246–51, 278–80, 283–98,
307–8, 314–22
see also stochastic differential equations;
Taylor series
multi-dimensional Itô formulae for
jump-diffusion process, 247–9
one-dimensional Itô formulae for
jump-diffusion process, 246–7
Jensen’s inequality, properties of conditional
expectation, 3, 48–9, 75–6, 192–4
joint cumulative distribution function, 16–17, 32, 212–13, 343, 345
joint distribution of standard Wiener processes, 58–60, 64, 158, 165–6
joint moment generating function, 122–3, 280–1, 344, 347
joint probability density function, 16–17, 27–34, 86–9, 211–18, 345–6, 352
joint probability mass function, definition, 343
see also diffusion; Poisson...; Wiener... concepts, 246–51, 281–98, 325–30
geometric mean-reverting process, 291–5
Merton’s model, 285–8, 327–30
multi-dimensional Itô formulae, 247–9
one-dimensional Itô formulae, 246–7
pure jump process, 281–5, 325–30
simple jump-diffusion process, 325–7
jumps, 95, 243–330
see also Poisson process
Girsanov’s theorem, 298–322
risk-neutral measure, 322–30
Kou’s model, 295–8
Laplace transform of first passage time, 83–4
laws of large numbers, formulae, 354–5
Lebesgue–Stieltjes integral, 246
Lévy processes, 55, 119–23, 207, 209
L’Hospital rule, formulae, 336
linearity, properties of conditional expectation, 3, 44, 45
Maclaurin series, 335
marginal distributions of bivariate normal distribution, 27
marginal probability density function, 27–9, 346
marginal probability mass function, 343
Markov property of a geometric Brownian motion, 70–1
Markov property of Poisson process, 244–5, 261–2, 268–9
Markov property of Wiener processes, 52, 68–71, 97
definition and formulae, 51–2, 68–71
Markov’s inequality, definition and formulae, 40
martingale representation theorem, 187–8, 190, 192–4, 219–26
see also equivalent...; stochastic processes; Wiener processes
compound Poisson process, 265–8, 322–4
continuous processes property, 53
discrete processes property, 53
theorems, 53–5, 187–92
maximum of two correlated normal distributions, definition, 29–32
mean value theorem, 105–6
mean-reversion, 134–5, 139–44, 169–71, 288–95
see also geometric mean-reverting process
measurability, properties of conditional expectation, 3, 43–4, 45, 46, 199–200
measurable space, definition, 2
measure theory, definition, 2
measures, 2, 185–242, 249–51, 301–30
see also Girsanov’s theorem; real-world...; risk-neutral...
change of measure, 185–242, 249–51, 301–30
Merton’s model, definition and formulae, 285–8, 327–30
minimum and maximum of two correlated normal distributions, 29–32
Minkowski’s inequality, 42
monotone convergence theorem, 354
monotonicity, properties of conditional expectation, 3, 44–45
multi-dimensional diffusion process see also diffusion
backward Kolmogorov equation, 101–2
definition and formulae, 99–102, 155–83
Feynman–Kac theorem, 178–80
forward Kolmogorov equation, 101
problems and solutions, 155–83
multi-dimensional Girsanov theorem, 190–1, 208–9, 249–51
multi-dimensional Itô formulae, 99–100
multi-dimensional Itô formulae jump-diffusion process, 247–9
multi-dimensional Lévy characterisation theorem, 121–3, 209
multi-dimensional martingale representation theorem, 191–2
multi-dimensional Novikov condition, 207–8
multi-dimensional Wiener processes, 54, 64–8, 99–102, 163–6
multiplication, probability concepts, 341
multivariate normal distribution, 353
see also normal distribution
mutually exclusive events, probability concepts, 12, 341
negative binomial distribution, 350
see also bivariate...; folded...; log...; multivariate...
minimum and maximum of two correlated normal distributions, 29–32
Novikov’s conditions, 194–6, 207–8
numéraire, definition, 191–2
one-dimensional diffusion process, 97–9, 123–55, 178
see also diffusion
backward Kolmogorov equation, 149–50
definition and formulae, 97–9, 147–53
Feynman–Kac formulae, 147–9, 178
forward Kolmogorov equation, 150–53
one-dimensional Girsanov theorem, 189–90, 205–7
one-dimensional Itô formulae for jump-diffusion process, 246–7
one-dimensional Lévy characterisation theorem, 119–21, 207
one-dimensional martingale representation theorem, 187–8, 190
one-dimensional random walk see also random walks
backward Kolmogorov equation, 153–4
forward Kolmogorov equation, 154–5
optional stopping (sampling) theorem, 53, 80–4, 218–19, 232
ordinary differential equations, 125–6, 357–9
parabolic partial differential equations, 97
see also backward Kolmogorov...; Black–Scholes...; diffusion...; forward Kolmogorov...
partial averaging property, 3, 43, 45, 46–7, 201–3
partial differential equations (PDEs), 52, 97–102, 149–53, 178–80
see also backward Kolmogorov...; Black–Scholes...; forward Kolmogorov...; parabolic...
partition, probability concepts, 341
PDEs see partial differential equations
pdf see probability density function
physical measure see real-world measure
Poisson distribution, 13–14, 350
Poisson process, 95, 243–330
see also compensated...; compound...; Cox...; jump...
Girsanov’s theorem, 249–51, 298–322
Markov property, 244–51, 261–3, 268
positivity, properties of conditional expectation, 3, 44
principle of inclusion and exclusion for probability, definition, 7–10
probability mass function, 11–13, 250, 257–8, 306–30, 342, 348, 349
probability spaces, 2–3, 4–11, 43–9, 52–93, 187–242
definition, 2
probability theory, 1–49, 185, 189–92, 341–55
formulae, 341–55
properties of characteristic function, 348
properties of conditional expectation, 3, 41–9, 192–4, 197–202, 269–72, 284–5
properties of expectation, 3, 40–9, 75–6, 192–4, 197–202, 270–2, 284–5, 347
definition and formulae, 40–9, 347
problems and solutions, 40–9
properties of moment generating, 348
properties of normal distribution, 17–20, 34–40
properties of the Poisson process, problems and solutions, 243–51, 251–81
properties of variance, 347
pure birth process, 255–6
pure jump process, definition and formulae, 281–85, 323–5
random walks, 51–93, 95, 153–5, 180–3
see also Brownian motion; continuous-time processes; symmetric...; Wiener processes
definition, 51–5, 153–5, 180–3
real-world measure, 185, 189–242
see also Girsanov’s theorem
definition, 185
reflection principle, 53–5, 84–9, 361–3
Black equation, 362
Black–Scholes equation, 54, 361
definition, 53–4, 60, 84–9
reflection principle (continued)

Garman–Kohlhagen equation, 362–3
Wiener processes, 53–5, 60, 84–9
risk-neutral measure, 53, 185, 188–242, 322–30
see also equivalent martingale...; Girsanov’s theorem
definition, 185, 188–9, 221–42, 322–30
FX, 238–42
jump processes, 322–30
problems and solutions, 221–42, 322–30
running maximum and minimum of a Wiener process, Girsanov’s theorem, 214–18

definition, 1, 4, 341–2
scaled symmetric random walk, 51–5
see also random walks
SDEs see stochastic differential equations
second fundamental theorem of asset pricing, definition, 233
second-order ordinary differential equations, 358–9
variation of parameters, 358–9
self-financing trading strategy, 186–8, 192, 225–7, 236–8, 326–30
sets, 1, 2–11
definition, 1
σ-sigma-algebra, 1–5, 43–9, 201–5, 261
simple jump process, 322–3
simple jump-diffusion process, 325–7
simple process see elementary process
skew, 54
speculation uses of derivatives, 185
square integrable random variable, 95–6, 353
covariance of two standard Wiener processes, 57–60, 64–8, 117–18
definition, 52, 54, 189–90, 250–1, 325–6
joint distribution of standard Wiener processes, 58–63, 64, 158–9, 165–6
stationary and independent increments, Poisson process, 259–81
stochastic differential equations (SDEs), 95–183, 237–42, 246–51, 315–30, 360–1
definition, 95–102, 246–9
integral calculus contrasts, 95–6
stochastic processes, 2, 51, 52, 185–242, 243–330
see also martingales; Poisson...; Wiener...
definitions, 2, 51, 52
stochastic volatility, 54, 95, 175–8
stopping times, Wiener processes, 53–5, 80–9, 218–19, 232
Stratonovich integral, 103–6
the strong law of large numbers, formulae, 355
strong Markov property, 52, 84–9
submartingales, 53, 75–80
supermartingales, 53, 76–9
symmetric random walk, 51–68, 88–9, 153–5, 180–3
see also random walks
time inversion, Wiener processes, 62–3
time reversal, Wiener processes, 63–4
time shifting, Wiener processes, 61
total probability of all possible values, formulae, 342–5
tower property, conditional expectation, 3, 46, 49, 192–4, 197–9, 270–4, 284–5
trading strategy, 186–8, 191–2, 225–7, 236–8, 326–30
transition probability density function, 98–102, 149–53
see also backward Kolmogorov...; forward Kolmogorov...
two-dimensional random walk see also random walks
backward Kolmogorov equation, 180–1
forward Kolmogorov equation, 181–3
uniform distribution, 350
union, probability concepts, 341
univariate continuous random variables, 344–7
see also continuous...
univariate discrete random variables, 342–4
see also discrete...
see also covariance...
constant elasticity of variance model, 145–6
see also local...; stochastic...
the weak law of large numbers, formulae, 354
see also Brownian motion; diffusion...; martingales; random walks
covariance of two standard Wiener processes, 57–60, 64–8, 115–18
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>first passage time</td>
<td>53, 76–89, 218–19</td>
</tr>
<tr>
<td>joint distribution of standard Wiener</td>
<td>58–60, 64, 158, 165–6</td>
</tr>
<tr>
<td>processes</td>
<td></td>
</tr>
<tr>
<td>Markov property</td>
<td>52, 68–71, 97–102</td>
</tr>
<tr>
<td>multi-dimensional Wiener processes</td>
<td>54, 64–8, 99–102, 163–6</td>
</tr>
<tr>
<td>reflection principle</td>
<td>54–5, 60, 84–9</td>
</tr>
<tr>
<td>running maximum and minimum of a Wiener</td>
<td></td>
</tr>
<tr>
<td>process</td>
<td>214–18</td>
</tr>
</tbody>
</table>