Contents

About the Editors xi
List of Contributors xiii
Preface xv
Acknowledgments xvii

1 Computational Techniques 1
 C. Richard A. Catlow, Alexey A. Sokol, and Aron Walsh

1.1 Introduction 1
1.2 Atomistic Simulations 1
 1.2.1 Basic Concepts 1
 1.2.2 Parameterization 3
 1.2.3 Parameter Sets 3
 1.2.4 Implementation 4
1.3 Electronic Structure Techniques 6
 1.3.1 Wavefunction Methods 8
 1.3.1.1 Hartree–Fock Theory 9
 1.3.1.2 Post-Hartree–Fock Approaches 10
 1.3.1.3 Semi-empirical Wavefunction Methods 11
 1.3.2 Density Functional Theory 12
 1.3.2.1 Exchange–Correlation Functionals 12
 1.3.3 Excited States 15
1.4 Multiscale Approaches 15
 1.4.1 Hybrid QM/MM Embedding Techniques 16
 1.4.2 Beyond Atomistic Models 17
1.5 Boundary Conditions 19
1.6 Point-Defect Simulations 21
 1.6.1 Mott–Littleton Approach 21
 1.6.2 Periodic Supercell Approach 24
1.7 Summary 25
References 25
Contents

2 Energy Generation: Solar Energy
Silvana Botti and Julien Vidal

2.1 Thin-Film Photovoltaics

2.2 First-Principles Methods for Electronic Excitations
 2.2.1 Hedin’s Equations and the GW Approximation
 2.2.2 Hybrid Functionals
 2.2.3 Bethe–Salpeter Equation
 2.2.4 Model Kernels for TDDFT

2.3 Examples of Applications
 2.3.1 Cu-Based Thin-Film Absorbers
 2.3.2 Delafossite Transparent Conductive Oxides

2.4 Conclusions

References

3 Energy Generation: Nuclear Energy
Dorothy Duffy

3.1 Introduction

3.2 Radiation Effects in Nuclear Materials
 3.2.1 Fission
 3.2.1.1 Structural Materials
 3.2.1.2 Fuel
 3.2.1.3 Cladding
 3.2.2 Fusion
 3.2.2.1 Structural Materials
 3.2.2.2 Plasma-Facing Materials
 3.2.3 Waste Disposal

3.3 Modeling Radiation Effects
 3.3.1 BCA Modeling
 3.3.2 Molecular Dynamics
 3.3.2.1 Cascade Simulations
 3.3.2.2 Sputtering Simulations
 3.3.3 Monte Carlo Simulations
 3.3.3.1 Kinetic Monte Carlo
 3.3.3.2 Object Kinetic Monte Carlo
 3.3.3.3 Transition Rates
 3.3.3.4 Examples
 3.3.4 Cluster Dynamics
 3.3.4.1 Examples
 3.3.4.2 Comparison with OKMC
 3.3.5 Density Functional Theory
 3.3.5.1 Interatomic Potentials
 3.3.5.2 Transition Rates

References
3.4 Summary and Outlook
References

4 Energy Storage: Rechargeable Lithium Batteries
M. Saiful Islam and Craig A.J. Fisher

4.1 Introduction
4.2 Overview of Computational Approaches
4.3 Li–Ion Batteries
4.4 Cell Voltages and Structural Phase Stability
4.5 Li–Ion Diffusion and Defect Properties
4.6 Surfaces and Morphology
4.7 Current Trends and Future Directions
4.8 Concluding Remarks
References

5 Energy Storage: Hydrogen
Viet-Duc Le and Yong-Hyun Kim

5.1 Introduction
5.2 Computational Approach in Hydrogen Storage Research
5.3 Chemisorption Approach
5.4 Physisorption Approach
5.5 Spillover Approach
5.6 Kubas-Type Approach
5.7 Conclusion
References

6 Energy Conversion: Solid Oxide Fuel Cells
E.A. Kotomin, R. Merkle, Y.A. Mastroikov, M.M. Kuklja, and J. Maier

6.1 Introduction
6.2 Computational Details
6.3 Cathode Materials and Reactions
6.3.1 Surfaces: LaMnO$_3$ and (La,Sr)MnO$_3$ Perovskites
6.3.1.1 Surface Termination, Surface Point Defects
6.3.1.2 Oxygen Adsorption and Diffusion
6.3.1.3 Rate-Determining Step of the Surface Reaction
6.3.2 Bulk Properties of Multicomponent Perovskites
6.3.2.1 Oxygen Vacancy Formation in (Ba,Sr)(Co,Fe)O$_{3-δ}$
References
Contents

6.3.2.2 Oxygen Vacancy Migration in (Ba,Sr)(Co,Fe)O$_{3-\delta}$ 167
6.3.2.3 Disorder and Cation Rearrangement in (Ba,Sr)(Co,Fe)O$_{3-\delta}$ 170
6.3.3 Defects in (La,Sr)(Co,Fe)O$_{3-\delta}$ 173
6.4 Ion Transport in Electrolytes: Recent Studies 175
6.5 Reactions at SOFC Anodes 176
6.6 Conclusions 177
Acknowledgments 178
References 178

7 Energy Conversion: Heterogeneous Catalysis
Rutger A. van Santen, Evgeny A. Pidko, and Emiel J.M. Hensen
7.1 Introduction 187
7.1.1 Particle Size Dependence of Catalytic Reactivity 191
7.1.2 Activity and Selectivity as a Function of the Metal Type 192
7.1.3 Reactivity as a Function of State of the Surface 193
7.1.4 Mechanism of Acid Catalysis: Single Site versus Dual Site 193
7.2 Basic Concepts of Heterogeneous Catalysis 195
7.3 Surface Sensitivity in CH Activation 198
7.3.1 Homolytic Activation of CH Bonds 198
7.3.2 Heterolytic Activation of CH Bonds 203
7.3.2.1 Brønsted Acid Catalysis 204
7.3.2.2 Lewis Acid Catalysis 206
7.4 Surface Sensitivity for the C–C Bond Formation 209
7.4.1 Transition Metal Catalyzed FT Reaction 209
7.4.2 C–C Bond Formation Catalyzed by Zeolitic Brønsted Acids 213
7.5 Structure and Surface Composition Sensitivity: Oxygen Insertion versus CH Bond Cleavage 217
7.5.1 Silver-Catalyzed Ethylene Epoxidation 217
7.5.2 Benzene Oxidation by Iron-Modified Zeolite 221
7.6 Conclusion 223
References 224

8 Energy Conversion: Solid-State Lighting
E. Kioupakis, P. Rinke, A. Janotti, Q. Yan, and C.G. Van de Walle
8.1 Introduction to Solid-State Lighting 231
8.2 Structure and Electronic Properties of Nitride Materials 234
Contents ix

8.2.1 Density Functional Theory and Ground-State Properties 234
8.2.2 Electronic Excitations: GW and Exact Exchange 236
8.2.3 Electronic Excitations: Hybrid Functionals 240
8.2.4 Band-gap Bowing and Band Alignments 240
8.2.5 Strain and Deformation Potentials 241
8.3 Defects in Nitride Materials 243
 8.3.1 Methodology 244
 8.3.2 Example: C in GaN 246
8.4 Auger Recombination and Efficiency Droop Problem of Nitride LEDs 248
 8.4.1 Efficiency Droop 248
 8.4.2 Auger Recombination 249
 8.4.3 Computational Methodology 251
 8.4.4 Results 252
8.5 Summary 254
Acknowledgments 255
References 255

9 Toward the Nanoscale 261
Phuti E. Ngoepe, Rapela R. Maphanga, and Dean C. Sayle

9.1 Introduction 261
9.2 Review of Simulation Methods 263
 9.2.1 Established Computational Methods 263
 9.2.2 Evolutionary Methods 263
 9.2.2.1 GM Methods 263
 9.2.2.2 Amorphization and Recrystallization 264
9.3 Applications 266
 9.3.1 Nanoclusters 266
 9.3.1.1 ZnO 266
 9.3.1.2 ZnS 268
 9.3.1.3 MnO₂ 269
 9.3.1.4 TiO₂ 271
 9.3.2 Nanoarchitectures 272
 9.3.2.1 MnO₂ Nanoparticle (Nucleation and Crystallization) 272
 9.3.2.2 MnO₂ Bulk 275
 9.3.2.3 MnO₂ Nanoporous 278
 9.3.2.4 TiO₂ Nanoporous 284
 9.3.2.5 ZnS and ZnO Nanoporous 286