Contents

Foreword xxi
Preface xxv
Author Bios xxvii
List of Contributors xxxi
List of Abbreviations xxxvii

Introduction 1

Part I Physical Layer for 5G Radio Interface Technologies 13

1 Emerging Technologies in Software, Hardware, and Management Aspects Toward the 5G Era: Trends and Challenges 15
Ioannis-Prodromos Belikaidis, Andreas Georgakopoulos, Evangelos Kosmatsos, Stavroula Vassaki, Orestis-Andreas Liakopoulos, Vassilis Foteinos, Panagiotis Vlachias, and Panagiotis Demestichas
1.1 Introduction 15
1.2 5G Requirements and Technology Trends 17
1.3 Status and Challenges in Hardware and Software Development 20
1.3.1 Problem Statement 21
1.3.2 Solution 22
1.3.2.1 Functions Definition (LTE, 3GPP-Based PHY Functions) 22
1.3.2.2 Parameters (KPIs)/ Constraints Definition 23
1.3.2.3 Functional Graph (Dataflow Graph) Provision 24
1.3.3 Optimization Problem Formulation 25
1.3.4 Evolutionary Multiobjective Algorithmic Solution 26
1.3.5 Testbed Setup 26
1.3.6 Preliminary Test Results 28
1.3.7 Status and Challenges in 5G Wireless Communications 29
1.3.7.1 Novel Physical Layer Aspects 29
1.3.7.2 Novel Frame Design Based on Service Requirements 30
1.3.7.3 Support of Different Numerologies 32
1.3.8 Enhanced Radio Resource Management (RRM) and MAC Adaptation for 5G 34
1.4 5G Network Management Aspects Enhanced with Machine Learning 38
1.4.1 Machine Learning for Service Classification in 5G Networks 38
1.4.2 State-of-the-Art Machine Learning Mechanisms for Traffic Classification 39
1.4.3 Classification Approach and Evaluation Metrics 40
1.4.4 Evaluation Performance of Classification Mechanisms 43
1.5 Conclusion 45
References 45

2 Waveform Design for 5G and Beyond 51
Ali Fatih Demir, Mohamed Elkourdi, Mostafa Ibrahim, and Huseyin Arslan
2.1 Introduction 51
2.2 Fundamentals of the 5G Waveform Design 52
2.2.1 Waveform Definition 52
2.2.2 5G Use Cases and Waveform Design Requirements 53
2.2.3 The Baseline for 5G Waveform Discussion: CP-OFDM 54
2.3 Major Waveform Candidates for 5G and Beyond 58
2.3.1 Multicarrier Schemes 58
2.3.1.1 Windowing 58
2.3.1.2 Subcarrier-Wise Filtering 59
2.3.1.3 Subband-Wise Filtered MCM 63
2.3.2 Single-Carrier Schemes 66
2.3.2.1 CP-DFT-s-OFDM 66
2.3.2.2 ZT-DFT-s-OFDM 67
2.3.2.3 UW-DFT-s-OFDM 69
2.4 Summary 70
2.5 Conclusions 73
References 73

3 Full-Duplex System Design for 5G Access 77
Shu-ping Yeh, Jingwen Bai, Ping Wang, Feng Xue, Yang-seok Choi, Shilpa Talwar, Sung-en Chiu, and Vinod Kristem
3.1 Introduction 77
3.2 Self-Interference Cancellation 79
3.2.1 General SIC Architectures 79
3.2.2 Self-Interference Cancellation State of the Art 80
3.3 FD System Design: Opportunities and Challenges 82
3.3.1 New Interferences in FD Systems 82
3.3.1.1 BS-to-BS Interference 83
3.3.1.2 UE-to-UE Interference 83
3.3.2 Efficient Interference Measurement 84
3.3.3 Complexity and Latency Consideration 84
3.4 Designing the FD System 84
3.4.1 Overall Design for FD 85
3.4.2 Design to Mitigate BS-to-BS Interference 85
3.4.2.1 Elevation Beam Nulling 86
3.4.2.2 Uplink Power Control 88
3.4.3 Design to Mitigate UE-to-UE Interference 91
3.4.3.1 Joint Downlink–Uplink Scheduler 91
3.4.3.2 Channel Quality Indicator Feedback for Joint Scheduling 96
3.4.3.3 Interference Measurement and Reference Signal Design 104
3.4.3.4 IM-RS Signal 104
3.5 System-Level Performance Analysis 108
3.5.1 General Simulation Methodology and Assumptions 109
3.5.1.1 Deployment Models 109
3.5.1.2 Channel Models 114
3.5.2 Performance of BS-to-BS Interference Mitigation Schemes 114
3.5.3 System Performance for Schemes to Treat UE-to-UE Interference 118
3.5.3.1 System Performance of Joint Scheduler 118
3.5.3.2 Performance of Various CQI Feedbacks 119
3.5.4 System Performance for Various Operation Regimes 121
3.5.4.1 Performance for Various UE Densities and Bundle Scheduler 122
3.5.4.2 Performance of Various LPN Densities 123
3.6 Conclusions and Future Directions 125
3.6.1 Improvement to the Current Design 126
3.6.1.1 Intercell UE-to-UE Interference Handling 126
3.6.1.2 Traffic Asymmetry 127
3.6.1.3 MIMO Full-Duplex 127
3.6.2 More Scenarios and Future Work 128
3.6.2.1 Full-Duplex Self Backhaul (Relay) 128
3.6.2.2 Full-Duplex Wi-Fi System 129
3.6.2.3 Full-Duplex Application in LAA 129
3.6.3 References 130

4 Nonorthogonal Multiple Access for 5G 135
Linglong Dai, Bichai Wang, Ruicheng Jiao, Zhiguo Ding, Shuangfeng Han, and Chih-Lin I
4.1 Introduction 135
4.2 Basic Principles and Advantages of NOMA 137
Contents

4.2.1 Channel Capacity Comparison of OMA and NOMA 138
4.2.2 Advantages of NOMA Compared to OMA 141
4.3 Power-Domain NOMA 142
4.3.1 Basic NOMA Relying on a SIC Receiver 143
4.3.2 NOMA in MIMO Systems 146
4.3.3 Cooperative NOMA 149
4.3.4 Network-NOMA 151
4.3.5 User Grouping and Resource Allocation 151
4.3.6 mmWave Communications and Power-Domain NOMA 153
4.3.7 Application of Power-Domain NOMA 153
4.4 Code-Domain NOMA 155
4.4.1 Low-Density Spreading CDMA (LDS-CDMA) 155
4.4.2 Low-Density Spreading-Aided OFDM (LDS-OFDM) 160
4.4.3 Sparse Code Multiple Access 162
4.4.4 Multi User Shared Access 167
4.4.5 Successive Interference Cancellation Aided Multiple Access (SAMA) 169
4.5 Other NOMA Schemes 170
4.5.1 Spatial Division Multiple Access 170
4.5.2 Pattern Division Multiple Access 173
4.5.3 Signature-Based NOMA 173
4.5.4 Interleaver-Based NOMA 175
4.5.5 Spreading-Based NOMA 175
4.5.6 Bit Division Multiplexing 177
4.5.7 CS-Based NOMA 177
4.5.8 Miscellaneous NOMA Schemes 177
4.6 Comparison and Trade-Off Analysis of NOMA Solutions 178
4.7 Performance Evaluations and Transmission Experiments of NOMA 181
4.8 Opportunities and Future Research Trends 185
4.9 Conclusions 189
References 189

5 Code Design for Multiuser MIMO 205
Guanghui Song, Yuhao Chi, Kui Cai, Ying Li, and Jun Cheng
5.1 Introduction 206
5.2 Multiuser Repetition-Aided IRA Coding Scheme 207
5.3 Iterative Decoding and EXIT Analysis 209
5.3.1 MUD 210
5.3.2 LDPC-Like Decoding 213
5.3.2.1 Variable Node 213
5.3.2.2 Check Node 214
5.3.3 Turbo-Like Decoding 214
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.4</td>
<td>Decoding Complexity Computation</td>
<td>216</td>
</tr>
<tr>
<td>5.4</td>
<td>Code Optimization Procedure</td>
<td>217</td>
</tr>
<tr>
<td>5.5</td>
<td>Numerical Results and Comparisons</td>
<td>218</td>
</tr>
<tr>
<td>5.5.1</td>
<td>AWGN Channel</td>
<td>219</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Rayleigh Fading Channel</td>
<td>226</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusion</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>231</td>
</tr>
</tbody>
</table>

6 Physical Layer Techniques for 5G Wireless Security 237

Batu K. Chalise, Himal A. Suraweera, Gan Zheng, and Risto Wichman

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>237</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Information Theoretic Security</td>
<td>238</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Organization of the Chapter</td>
<td>240</td>
</tr>
<tr>
<td>6.2</td>
<td>5G Physical Layer Architecture</td>
<td>241</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Full-Duplex Communications</td>
<td>242</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Security in Full-Duplex Commun</td>
<td>244</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Prior Art</td>
<td>245</td>
</tr>
<tr>
<td>6.2.3.1</td>
<td>Bidirectional Topology</td>
<td>245</td>
</tr>
<tr>
<td>6.2.3.2</td>
<td>Base Station Topology</td>
<td>246</td>
</tr>
<tr>
<td>6.2.3.3</td>
<td>Relay Topology</td>
<td>247</td>
</tr>
<tr>
<td>6.3</td>
<td>Secure Full-Duplex Receiver J</td>
<td>247</td>
</tr>
<tr>
<td>6.3.1</td>
<td>System Model</td>
<td>249</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Transmit and Receive Designs f</td>
<td>250</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Results and Discussion</td>
<td>253</td>
</tr>
<tr>
<td>6.4</td>
<td>Secure Full-Duplex Bidirectional Communications</td>
<td>255</td>
</tr>
<tr>
<td>6.4.1</td>
<td>System Model</td>
<td>255</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Optimization for Secure Bidire</td>
<td>256</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Results and Discussion</td>
<td>258</td>
</tr>
<tr>
<td>6.5</td>
<td>Secure Full-Duplex Relay Commun</td>
<td>259</td>
</tr>
<tr>
<td>6.5.1</td>
<td>System Model</td>
<td>259</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Proposed Optimization Solution</td>
<td>262</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Results and Discussion</td>
<td>265</td>
</tr>
<tr>
<td>6.6</td>
<td>Future Directions and Open I</td>
<td>266</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusion</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>269</td>
</tr>
</tbody>
</table>

7 Codebook-Based Beamforming Protocols for 5G Millimeter Wave Communications 275

Anggrit Dewangkara Yudha Pinangkis, Kishor Chandra, and R. Venkatesha Prasad

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>275</td>
</tr>
<tr>
<td>7.2</td>
<td>Beamforming Architecture</td>
<td>278</td>
</tr>
</tbody>
</table>
8.3.5.3 How to Jointly Optimize the CAPEX and OPEX 319
8.3.5.4 Use of Self-Organized Networking for Rural Coverage 320
8.4 Conclusions 320
References 321

9 Network Slicing for 5G Networks 327
Xavier Costa-Pérez, Andrés Garcia-Saavedra, Fabio Giust, Vincenzo Sciancalepore, Xi Li, Zarrar Yousaf, and Marco Liebsch
9.1 Introduction 327
9.2 End-to-End Network Slicing 328
9.2.1 Architecture for End-to-End Network Slicing 330
9.2.2 Deployment of Virtual Infrastructure 331
9.2.3 Deployment of Network Services 333
9.2.4 E2E Network Slicing Implementations 334
9.3 Network Slicing MANO 334
9.3.1 Management and Orchestration Architecture 336
9.3.2 Network Slicing MANO Tasks 339
9.3.3 Run Time Management of Network Slices 341
9.3.3.1 Generic QoS/QoE Slice MANO Algorithm 341
9.4 Network Slicing at the Mobile Edge 343
9.4.1 Enabling Solutions for Mobile Edge Slicing 345
9.4.2 Slice Requests Brokering 346
9.4.3 Managing Mobile Edge Slice Resources 348
9.5 Network Slicing at the Mobile Transport 349
9.5.1 Enabling Mobile Transport Slicing Technologies 351
9.5.2 Enabling Slicing Technologies for the Crosshaul MANO 356
9.5.3 Multi-tenancy Application for Slice Management and Orchestration 357
9.6 Network Slicing at the Mobile Cloud 358
9.6.1 Control Plane Modularization to Support Network Slicing 361
9.6.2 User Plane Simplification for Lean Packet Slices 363
9.7 Acknowledgment 364
References 365

10 The Evolution Toward Ethernet-Based Converged 5G RAN 371
Jouni Korhonen
10.1 Introduction to RAN Transport Network 372
10.1.1 Backhaul Network 374
10.1.2 Midhaul Network 375
10.1.3 Fronthaul Network 375
10.1.4 Network Synchronization and Latency in RAN 380
10.2 Evolving RAN Toward 5G Requirements 384
10.2.1 New Radio Functional Splits 388
10.2.2 New RAN Network Architecture 392
10.2.3 5G RAN Migration Concerns 395
10.2.4 Low-Latency Applications and Edge Computing 395
10.2.5 RAN Slicing 397
10.3 Ethernet-Based 5G RAN 399
10.3.1 Ethernet Tools for Time-Sensitive Networking 400
10.3.2 NGFI and XHaul Deployment and Implementation Considerations 407
10.3.3 Radio over Ethernet 409
10.3.4 Next-Generation Ethernet-Based Base Stations 416
10.4 Summary 418
References 418

11 Energy-Efficient 5G Networks Using Joint Energy Harvesting and Scheduling 427
Ahmad Alsharoa, Abdulkadir Celik, and Ahmed E. Kamal
11.1 Introduction 427
11.1.1 Sleeping Strategy 428
11.1.2 Energy Harvesting 429
11.1.3 Related Works 430
11.1.4 Contributions 431
11.1.5 Organization 432
11.2 System Model 432
11.2.1 Base Station Power Model 433
11.2.2 Energy Harvesting Model 435
11.3 Problem Formulation and Solution 436
11.3.1 Zero Knowledge Case 436
11.3.2 Perfect Knowledge Case 437
11.3.3 Cost Utility 438
11.3.4 Special Case 438
11.4 Low-Complexity Algorithm 439
11.4.1 Binary Particle Swarm Optimization (BPSO) 439
11.4.2 Genetic Algorithm (GA) 440
11.5 Simulation Results 441
11.6 Chapter Summary 445
11.6.1 Conclusion 445
11.6.2 Possible Future Works 445
11.6.2.1 Massive MIMO 445
11.6.2.2 NOMA 446
References 446
Part III 5G Network Interworking and Core Network Advancements 453

12 Characterizing and Learning the Mobile Data Traffic in Cellular Network 455
Rongpeng Li, Zhifeng Zhao, Chen Qi, and Honggang Zhang

12.1 Understanding the Traffic Nature: A Revisiting to \(\alpha \)-Stable Models 455
12.1.1 MIM Working Mechanisms and Dataset Description 456
12.1.2 Background on \(\alpha \)-Stable Models 458
12.1.3 The Statistical Pattern and Inherited Methodology of MIM Services 459
12.1.3.1 IML Traffic 459
12.1.3.2 Aggregated Traffic 462
12.1.4 The Extension to Other Services 464
12.1.5 Section Summary 470

12.2 The Traffic Predictability in Cellular Networks 470
12.2.1 Prediction Dataset Description and Analysis Methodology 470
12.2.2 Prediction Analysis: To What Extent Is the Prior Information Required? 473
12.2.2.1 Temporal Dimension 474
12.2.2.2 Spatial Dimension 474
12.2.2.3 Interservice Relationship 475
12.2.3 Section Summary 476

12.3 The Prediction of Application-Level Traffic 476
12.3.1 Sparse Representation and Dictionary Learning 477
12.3.2 The Traffic Prediction Framework 478
12.3.2.1 Problem Formulation 478
12.3.2.2 Optimization Algorithm 482
12.3.3 Performance Evaluation 485
12.3.4 Section Summary 489

12.4 Related Works 490

12.5 Conclusion 493
References 493

13 Network Softwarization View of 5G Networks 499
Takashi Shimizu, Akihiro Nakao, and Kohei Satoh

13.1 Introduction 499
13.2 Key Concept of 5G 500
13.3 Network Softwarization View of 5G Networks 501
13.4 Brief History of Network Softwarization and Slicing 503
13.5 Issues for Slicing Towards 5G 504
13.5.1 Horizontal Extension of Slicing 504
13.5.2 Vertical Extension of Slicing: Data Plane Enhancement 505
13.5.3 Considerations for Applicability of Softwarization 506
13.5.4 End-to-End Reference Model for Scalable Operation 506
13.5.5 Coordinated APIs 508
13.6 Information-Centric Network (ICN) Enabled by Network Softwarization 509
13.6.1 General Characteristics 509
13.6.1.1 Overview 509
13.6.1.2 Content Access by Its Name 509
13.6.1.3 Traffic Reduction by In-Network Caching 510
13.6.1.4 Provisioning of In-Network Data Processing 510
13.6.1.5 Content Security 511
13.6.1.6 Robustness to Network Failures by Multipath Routing 511
13.6.2 Applications of ICN 511
13.6.2.1 Networking in a Disaster Area 511
13.6.2.2 Advanced Metering Infrastructure (AMI) on a Smart Grid 512
13.6.2.3 Proactive Caching 512
13.6.2.4 Migration Scenario 513
13.6.2.5 Starting Network 514
13.6.2.6 Phased Deployment: Intermediate Phase 514
13.6.2.7 Target Network 514
13.7 Studies in ITU-T SG13 Focus Group on IMT-2020 515
13.8 Conclusion 515

14 Machine-Type Communication in the 5G Era: Massive and Ultrareliable Connectivity Forces of Evolution, Revolution, and Complementarity 519
Renaud Di Francesco and Peter Karlsson
14.1 Overview 519
14.2 Introduction 520
14.3 Demand Analysis 522
14.3.1 Machines Serving Humans 522
14.3.2 Eyes and Hands to Control Industrial Systems: SCADA 523
14.3.2.1 Description of SCADA 524
14.3.2.2 Mobile Networks Support for SCADA 524
14.3.2.3 Data Processing in SCADA Systems 525
14.3.2.4 National Electricity Grid Example 525
14.3.3 Machines and 5G 526
14.3.3.1 Digital Transformation of the Machines 526
14.3.3.2 Cyber-Physical System Requirements 527
14.3.3.3 Vertical Use Case Examples 528
14.3.3.4 Machines and Humans 532
14.4 Reviewing the Standardization Path So Far 532
14.4.1 Overview: From 3G to 4G 532
14.4.1.1 From “Voice-Mainly” to “IP Focus” 533
14.4.1.2 Machine-Type Communication 533
14.4.2 The 5G Path Ahead 534
14.4.3 5G Candidate Solution Space 536
14.5 Conclusion on Machine-Type 5G 537
References 538

Part IV Vertical 5G Applications 543

15 Social-Aware Content Delivery in Device-to-Device Underlay Networks 545
Chen Xu, Caixia Gao, Zhenyu Zhou, Shahid Mumtaz, and Jonathan Rodriguez
15.1 Introduction 545
15.2 Related Works 548
15.3 System Model 552
15.3.1 Physical Layer Model 553
15.3.2 Social Layer Model 555
15.3.2.1 Estimation of Probability Distribution 555
15.3.2.2 Intensity of Social Relationship 557
15.4 Problem Formulation 557
15.5 Social Network-Based Content Delivery Matching Algorithm for D2D Underlay Networks 558
15.5.1 Matching Concepts 559
15.5.2 Preference Establishment 559
15.5.3 Three-Dimensional Matching Algorithm 561
15.5.4 Properties of the Three-Dimensional Matching Algorithm 562
15.5.4.1 Convergence 562
15.5.4.2 Stability 564
15.5.4.3 Optimality 564
15.5.4.4 Complexity 564
15.6 Numerical Results 565
15.6.1 Convergence 566
15.6.2 Weighted Sum Rate 567
15.6.3 User Satisfaction 568
15.7 Conclusions 569
References 570
16 Service-Oriented Architecture for IoT Home Area Networking in 5G

Mohd Rozaini Abd Rahim, Rozeha A. Rashid, Ahmad M. Rateb, Mohd Adib Sarijari, Ahmad Shahidan Abdullah, Abdul Hadi Fikri Abdul Hamid, Hamdan Sayuti, and Norsheila Fisal

16.1 Introduction 577
16.2 Service-Oriented Architecture 579
16.3 Related Work 581
16.4 Service-Oriented Architecture for Home Area Network (SoHAN) 584

16.4.1 SoHAN Network 584
16.4.2 Proposed SoHAN Architecture 586
16.4.3 The Proposed SoHAN Middleware Framework 588
16.4.3.1 Sensor-Dependent Sublayer 589
16.4.3.2 Service-Dependent Sublayer 590
16.5 Performance Evaluation 591
16.5.1 Network Model 591
16.5.2 Simulation Setup 591
16.5.3 Results 593
16.6 Conclusion 596

References 597

17 Provisioning Unlicensed LAA Interface for Smart Grid Applications

Saba Al-Rubaye and John Cosmas

17.1 Introduction 603
17.2 Smart Grid Architecture-Based 5G Communications 605
17.2.1 Control Center Architecture 606
17.2.2 Home Area Network 606
17.2.3 Neighborhood Area Network 607
17.2.4 Wide Area Network 607
17.3 Bandwidth Utilization Method 608
17.3.1 Bandwidth Detection 610
17.3.2 Interference Avoidance 610
17.3.3 Spectrum Access 611
17.3.4 Bandwidth Utilization 613
17.4 System Implementation and Simulation Platform 615
17.4.1 Enable Career Detection for LAA Unlicensed Interface 615
17.4.2 System Performance and Analysis 616
17.5 Summary and Conclusions 620

References 621
Part V R&D and 5G Standardization 625

18 5G Communication System: A Network Operator Perspective 627
 Bruno Jacobfeuerborn and Frank H. P. Fitzek
 18.1 Introduction 627
 18.2 Softwarization for the 5G Communication System 634
 18.2.1 Network Coding as a Service 637
 18.2.1.1 Point to Point 637
 18.2.1.2 Point to Multipoint 638
 18.2.1.3 Multi-Hop 638
 18.2.2 The Mobile Edge Cloud 640
 18.2.3 Distributed Edge Caching and Computing 641
 18.2.3.1 Block Codes versus Replication 641
 18.2.3.2 Network Coding in Distributed Storage Systems 642
 18.2.3.3 Security Aspects: Algebraic and Light Weight 642
 18.3 5G Holistic Testbed 642
 18.4 5G as Game Changer in the Value Chain 647
 18.5 Conclusion 647
 18.6 Acknowledgments 648
 References 649

19 Toward All-IT 5G End-to-End Infrastructure 653
 Alex Jinsung Choi, Jinhyo Park, Sungho Jo, and Sangsoo Jeong
 19.1 Introduction 653
 19.1.1 Background and Purpose 653
 19.1.2 Evolution Trend of Telco Infrastructure 654
 19.1.2.1 Telco Infrastructure Virtualization 654
 19.1.2.2 Open Software and Hardware 654
 19.1.2.3 Evolution into Platform to Allow “As-a-Service” 654
 19.1.3 Intelligence and Operation Efficiency 654
 19.2 Development Status and Lesson Learned 655
 19.2.1 Radio Access Network 656
 19.2.1.1 RAN Virtualization 656
 19.2.1.2 Mobile Edge Service (MEC) 656
 19.2.2 Core Network 657
 19.2.2.1 Virtualized EPC/IMS Commercialization 657
 19.2.2.2 NFV MANO (Management and Orchestration) Commercialization 658
 19.2.2.3 Service Orchestration PoC 658
 19.2.2.4 SDN-based vEPC PoC 658
 19.2.3 Transport Network 658
19.2.3.1 Unified Control Function of ROADM/OTN on Commercial Network 659
19.2.3.2 Common Hardware Platform-based POTN 659
19.2.3.3 PTN/POTN Unified Control in Multi-Vendor Environment 659
19.2.4 M-CORD 660
19.2.4.1 Integration of SDN/NFV Technology 661
19.2.4.2 RAN Virtualization/Disaggregation 661
19.2.4.3 EPC Virtualization/Disaggregation 661
19.2.4.4 Mobile Edge Services 662
19.2.5 Operational Intelligence 662
19.2.5.1 Intelligence for Network Big Data Collection/Analytics 663
19.2.5.2 Telco-defined Network Management Indicators 663
19.2.5.3 Big Data-based Automated Operation 663
19.2.5.4 Monitoring and Management of Virtual Resources 663
19.3 Infrastructure Evolution of SK Telecom for 5G: ATSCALE 664
19.3.1 Evolution Direction 664
19.3.1.1 Scalable 664
19.3.1.2 Cognitive 664
19.3.1.3 Automated 665
19.3.1.4 Lean 665
19.3.1.5 End-to-End 665
19.3.2 Telco Functions on COSMOS 665
19.3.3 ATSCALE Architecture 667
19.4 Detailed Architecture and Key Enabling Technology 668
19.4.1 Software-defined RAN 668
19.4.1.1 Fronthaul Enhancement 668
19.4.1.2 CP/UP Separation 669
19.4.1.3 Open Hardware and Software 670
19.4.1.4 MEC 671
19.4.1.5 Analytics (SON) Agent 671
19.4.2 Virtualized Core (vCore) 671
19.4.2.1 Decomposed Control Plane 672
19.4.2.2 Simple User Plane 673
19.4.2.3 Centralized Service Functions (CSF) 673
19.4.3 Unified and Converged Transport Network (uCTN) 673
19.4.3.1 Transport Physical Network Functions 674
19.4.3.2 Virtualized Transport Network Functions 675
19.4.3.3 Transport Infrastructure Orchestrator 675
19.4.4 Unified Orchestration (Unified-O) 676
19.4.4.1 Standardized NFV MANO Framework 676
19.4.4.2 End-to-End Network Orchestration 677