INDEX

a
access network (AN) 360
accuracy 42
score for each classification mechanism 44
acknowledgement (ACK) packets 616
active-assisted living (AAL) 529
active networks (AN). 633
AdaBoost–Adaptive Boosting 43
additive white Gaussian noise (AWGN) 138, 554
channel 138–140, 219
fading channels 140, 141
MIMO–NOMA and MIMO-OMA 141
adjacent channel interference (ACI) 56, 71
advanced coding 20
advanced metering infrastructure (AMI) 607
aggregated traffic 457
Akaike information criterion (AIC) test 459
Alamouti code 247
algorithmic procedure 41
Alice–Bob model
main channel 240
point-to-point 246
Alice-Eve channels 240
allocation retention priority (ARP) 38
alternating direction method (ADM) framework
algorithm progresses 482
different sparse signal recovery algorithms 487
always-online service 456
analog beamforming architecture 279
analog cancellation 243
analog-to-digital converter (ADC) 79, 311–312, 589
Analytics Platform for Intelligent Operation (APOLLO) 663
application-level cellular network traffic density 469
application programmer interface (API) 633
Aquila 634
architectural complexity 237
ARIMA model 492
artificial noise 244
covariances 247
asymmetric uplink 242
asynchronous transfer mode (ATM) 374
ATSCALE architecture 655, 664, 667–668
directional architecture 667
evolution direction 665
automated 665
cognitive 664–665
end-to-end 665
lean 665
scalable 664
NFV/SDN 655
AT&T 654
attenuation 245
augmented reality (AR) 334
authentication 237
automated action 681
automated guided vehicles 693
automatic repeat query (ARQ) 389
automatic repeat request (ARQ) 637
backhaul (BH) 275, 373
capacity 656
converged 392
4G E-UTRAN 395
network 349
optimal 392
bad-grid 429
bandwidth 55, 56, 276, 277
assumptions
dense urban area 5G cell site 386
detection mechanism 611
and spectrum decision procedure 612
utilization method 608, 613–615
bandwidth detection 610
interference avoidance 610–611
spectrum access 611–613
Baran, Paul 628
base station (BS) 470
active mode (AM) 433
beamforming nulling 78
BS-to-BS interference 78, 83, 88
design to mitigate 85, 86
elevation beam nulling 125
mitigation schemes 114
performance 114–118
uplink open-loop power control 125, 126
candidate distributions
to empirical aggregated traffic 462
cellular access networks 456
energy-efficient 5G networks 427
harvested energy 435
on/off switching 430
radiated power 434
sleeping strategy 428
sleep mode (SM) 433
α-stable models to empirical aggregated traffic 463
topology 245, 246, 247
basis pursuit (BP) 477
Bayesian model 555
nonparametric 547, 555
B2C/B2B products 678
beam codebook 278
beamforming
architecture 278
analog beamforming 278–279
digital beamforming 279
hybrid beamforming 279–281
based on FSM-KW beamforming 290
DFT-based 287–288
evaluation 290–291
field pattern 292
N-phase 286–287
technique 278
beam patterns based on FSM-KW 282
beam searching algorithm 278, 280–282
hierarchical beamsearching 285
IEEE 802.11.ad beam searching 283–284
IEEE 802.15.3c beam searching 282–283
bidirectional topology 245
binary linear programming (BLP) problem 431
binary particle swarm optimization (BPSO) algorithm 432, 439, 440 and GA 444
bit-division multiplexing (BDM) 136, 177
bit error rate (BER) performance 614 thresholds 605
bit errors 406
block error ratio (BLER) 164, 176
bluetooth low energy (BLE) 578 technology 578
boundary clocks (BC) 381
broadcast services 16
call session control function (CSCF) 658
capacity loss 207
capital expenses (CAPEX) network operators 633
carrier aggregation (CA) 381
carrier sense multiple access with collision avoidance (CSMA/CA) technique 616, 617
Cat-0 peak data rate 533
cell-specific power boosting 90, 91
cells’ traffic in week, with different entropies 471
cellular features, and accelerator functions 409
cellular networks 237
cellular access networks base station (BS) of 456
downlink communication 430 traffic 455
cellular operators 604
cellular user equipment (CUEs) 552
centimeter wave (cmWave) band 305
centralized RAN (C-RAN) architecture 377
centralized service functions (CSF) 671
channel assignment policy structure 616
channel bonding 276
channel code 207
channel conditions 240
channel decoding 206
channel estimation errors 206
channel impulse response (CIR) 138 dispersive 138
channel-induced impairments 136
channel quality indicator (CQI) 91, 94 conventional feedback schemes 97 feedback for joint scheduling 96, 97 feedback methods comparison 100, 101 feedback signaling 84 low-overhead feedback 78 subband per DL-UL pair CQI feedback 97, 98 wideband DL-UL pairability feedback 98
channel state information (CSI) 140, 240, 267, 280, 304
channel station interference information measurement (CSI-IM) design 105, 106
China, custom solutions 690
China Mobile 457
Chinese Restaurant Process (CRP), 550
Chipset Shann’swork 239
Circuit Switch Fall-Back (CSFB) transferring 533
classification approach 40 Claude Shannon’s work 239
cloud and fog/mobile edge computing 18
cloud-based radio 45
cloud computing platform (CCP) 349
cloud radio access network (CRAN) architecture 276
Cloud-RAN (C-RAN) 349
centralization 350
Codebook Design 186, 286
 based beamforming 278
DFT-based beamforming 287–289
Fourier series method with Kaiser Window (FSM-KW)
 beamforming 289–290
IEEE 802.15.3c Codebook 286
N-Phase Beamforming 286–287
code design 205
code-division multiple access (CDMA) 135
code-domain NOMA 155, 180
 low-density spreading-aided OFDM
 (LDS-OFDM) 160–162
 low-density spreading CDMA
 (LDS-CDMA) 155–160
multi user shared access 167, 168
 schemes, comparison of 179
sparse code multiple access 162-167
 successive interference cancellation
 aided multiple access (SAMA)
 169, 170
code optimization procedure 217, 218
code optimizations, numerical results
 for 218
AWGN channel 218–226
 achievable sum rates 222
BERs of repetition-aided IRA codes
 223–225
EXIT curves of repetition-aided IRA 220
 number of operations per iteration
 per information bit 226
 optimal message node degree
 sequence 221, 226
Rayleigh fading channels 226–230
 BERs of repetition-aided IRA codes
 227, 228, 230
 optimal message node degree
 sequence 229, 230
coding 276
cognitive
 and intelligent automation workflow
 680–681
radio 238, 245
 inspired NOMA 188, 189
combined multipoint (CoMP) 374
commercial off-the-shelf (COTS)
 hardware-based virtualized
 network functions 661
common control network functions
 (CCNF) 360
common master (CM) 381
common public radio interface (CPRI)
 349, 376
aggregation scenarios 394
 basic frames (BF) 411
CPRI/OBSAI 656
 enabled cell sites
 aggregation of multiple legacy 408
 to structure-aware RoE mapping,
 410
 trunking 408
version 386
common spectrum control channel
 (CSCC) 615
communication networks 239
 communication rate 206
communications systems 15, 16
communication stack 241
communication time 23
composable, open, scalable,
 mobile-oriented system
 (COSMOS) 665, 668
 Telco and IT functions running 666
 Telco functions 665–667
compressive sensing (CS) techniques
 142, 166
NOMA 177
 random access 177
computation 278
 computational power 237
confusion matrices, of different
 classifiers 44
connectivity density 135
constrained Markov decision process
 (CMDP) 549
content centric networking (CCN)
 505, 511, 515
 content delivery networks (CDN) 628
contention transmission unit (CTU),
 definition of 166
context cognition-decision-action-
improvement 664
countrol and management (C&M) 376
conventional CQI feedback schemes 97
conventional IRA encoder 207
conventional OMA schemes 138, 141,
channel capacity comparison 138
conventional OQAM-FBMC
channel capacity comparison 138
receiver 61
convolitional encoding 23
cooperative communications 245
cooperative NOMA 179
Cooper’s law 241
coordinated multipoint (CoMP)
solution 166
core network (CN) 328, 360, 697
core terminals (CT) 697
cosine modulated multitone (CMT) 60
cost-efficient manner 328
cross-validation phase 41
cryptographic security mechanisms 238
cumulative density functions 473
cumulative distribution function (CDF)
preciseness error 467, 468
customer experience index (CEI) 663
cut-through 406
cyclic prefix (CP) 55, 389
CP-OFDM systems 55
block diagram 56
conventional transmitter 55
UP separation 670
cyclic redundancy check (CRC) 23
decision tree 43
decoding complexity computation 206,
216, 217
BCJR processor complexity 216
complexity of turbo-like decoding
216
decoding complexity computation
207
dedicated core networks (DCN) 359
degree distribution optimization 205
de-jitter buffers 407
description language 411
design of spreading sequences 186
Deutsche Telekom end-to-end low
latency robotic demonstrator
646
device-to-device (D2D)
communications 241, 301
device-to-device (D2D) underlay
networks 545
auction-based energy-efficient
resource 549
base station (BS) of cellular network
545, 546
Bayesian nonparametric models 547
cellular user equipment (CUEs) 552
channel state information (CSI) 561
content satisfactions, distribution of
570
energy efficiency (EE)
performance of users 549
resource allocation scheme 549
Gale-Shapley (GS) algorithm 551
numerical analysis 565
convergence 566–567
user satisfaction 568–569
weighted sum rate 567–568
preference establishment algorithm
562
preference establishment, graphical
expressions of 560
problem formulation 557
quality of service (QoS) 546
receiver (RX) 552
resource allocation 550
resource blocks (RBs) 547
device-to-device (continued)
simulation parameters 565
social-aware peer discovery scheme 550
social-aware resource allocation schemes, classifications of 551
social layer model 555
estimation of probability distribution 555–557
intensity of social relationship 557
social network-based content delivery 553
matching algorithm 558
matching concepts 559
preference establishment 559–560
system model 553
three-dimensional matching algorithm 561–562, 562–565
social ties 546
spectrum efficiency (SE) 548
three-dimensional matching algorithm 563–564
transmitter (TX) with receiver (RX) 552
TX-RX-CUE pair 566
uplink (UL) resource blocks (RBs) 553
user locations for single cellular network 566
weighted sum rate 567, 568, 569
diagnostic on device (DoD) 663
dictionary learning-based alternating direction method 486
digital baseband cancellation 243
digital beamforming 292
architecture 279
digital domain 80
digital-to-analog converters (DACs) 312
Discovery Analytics and Verification (PilotAnalytics) 682
distortion 55
distributed coordination function (DCF) mode 615
distributed radio access network (D-RAN) 349
distribution automation (DA) 607
domains as “resources” 136
downlink (DL) 78, 275
UL scheduler 78
downlink communication 430
downlink traffic ratios 242
dual connectivity (DC) 389, 698
dump classifier 43
dynamic channel assignment (DCA) 36
dynamic channel conditions 278
dynamic dictionary learning (DDL-OMP) algorithm 280
e
edge windowing block diagram 60
E2E autonomous network slicing 334
E2E quality 500
efficient interference measurement 84
e-health 238, 693
EH HetNets system model 432, 441
element managers (EM) 337
elevation beam nulling 86–88
encryption 237
derend-to-end hybrid resource management 680
architecture 683
derend-to-end infrastructure 653
As-a-Service 654
ATSCALE architecture 667–668
background/purpose 653
development status/lesson learned 655
intelligence/operation efficiency 654
M-CORD (Mobile-Central Office rearchitected as a data center) 660
EPC virtualization/disaggregation 661–662
mobile edge services 662
RAN virtualization/disaggregation 661
SDN/NFV technology, integration of 661
NFV/SDN, SK Telecom’s perspective 655
open-source hardware and software technologies 654
Index

operational intelligence 662
big data-based automated operation 663
network big data collection/analytics, intelligence 663
telco-defined network management indicators 663
virtual resources, monitoring/management of 663–664
radio access network 656
core network 657
mobile edge service (MEC) 656–657
NFV MANO (management and orchestration) commercialization 658
RAN virtualization 656
SDN-based vEPC PoC 658
service orchestration PoC 658
virtualized EPC/IMS commercialization 657–658
Telco infrastructure virtualization 654
transport network 658
common hardware platform-based POTN (Packet Optical Transport Network) 659
PTN/POTN unified control in multi-vendor environment 659–660
ROADM/OTN on commercial network 659
end-to-end network slicing 328–330
architecture for 330–331
control plane 331
data plane 330
deployment of network services 333
deployment of virtual infrastructure 331–333
E2E network slicing implementations 334
MANO system 331
multi-tenancy application (MTA) 331
unified orchestration (Unified-O) 676
end-to-end operational intelligence 662
end-to-end quality management 507
end-to-end service assurance 682
energy aware radio and network technologies (EARTH) model 441
energy consumption 21, 23
energy-efficient 5G networks 427
contributions 431–432
energy harvesting 429–430
future works 445
heterogenous networks 429
information and communication technologies (ICT) 427
low-complexity algorithm 439
binary particle swarm optimization (BPSO) 439–440
genetic algorithm (GA) 440–441
massive (multi-input multi-output) MIMO technology 445–446
nonorthogonal multiple access (NOMA) 446
organization 432
problem formulation/solution 436
cost utility 438
perfect knowledge case 437–438
zero knowledge case 436–437
related works 430–431
simulation results 441–445
sleeping strategy 428–429
system model 432
base station power model 433–435
energy harvesting model 435
tactile internet 427
energy-efficient resource allocation scheme 552
energy harvesting (EH) 429
enhanced Inter-cell interference coordination (eICIC) 380
enhanced mobile broadband (eMBB) 17, 51, 334, 385, 696
bandwidth-consuming and throughput-driving requirements 476
enhanced MTC (efeMTC) 534
eNodeB LTE PHY layer 23
function 23
entropy 239, 470
conditional vs. number of
conditioned adjacent cells 475
shrinks, voice’s conditional 474
values 472
equipment cost reduction 684
ergodic secrecy capacity 240
ethernet
based base station 416
based distributed unit 409
based/IEEE 1588-enabled fronthaul
network
network synchronization 383
based NGFI transport 396
based XHaul 400
next-generation base station
architecture 416
ethernet-based converged 5G
radio access network 371, 399
next-generation ethernet-based
base stations 416–417
NGFI/XHaul
deployment/implementation
407–409
radio over ethernet (RoE) 409–416
time-sensitive networking
400–406
RAN evolving toward 5G
requirements 384
fronthaul/backhaul, convergence
of 388
low-latency applications/edge
computing 395–397
migration concerns 395
network architecture 392–395
network slicing 397–399
new radio functional splits
388–392
radio functional splits 387–388
softwarization of 388
RAN transport network 372
backhaul network 374–375
fronthaul network 375–380
midhaul network 375
network synchronization and
latency 380–384
ETSI Industry Specification Group
(ISG) 523, 691
E-UTRAN protocol stacks 373
Eve’s channel 246
evolutionary multiobjective algorithmic
solution 26
evolved Node-Bs (eNB) 372
evolved packet core (EPC) 372
eV2X applications 701
execution time 23
extreme mobile broadband (eMBB) 693
extrinsic information transfer function
(EXIT)
analysis 209
charts 171
f
Facebook 647
fading 238
fair, reasonable, and nondiscriminatory
(FRAND) 690
fan-in delay 407
reordering of frames 407
FARIMA model 492
fault tolerance 508
fifth-generation (5G) communication
system 16, 238, 627
application areas 18, 37
cellular networks, application-level
traffic 476
data integrity in distributed storage
system 643
data transmission, in networks 629
deVICES 690
distributed edge caching/computing
641
block codes vs. replication 641
network coding, in distributed
storage systems 642
security aspects 642
ecosystem 636, 694
end-to-end infrastructure 686
game changer in value chain 647
5G atom 629
4G, comparison 648
5G CONFIG project 362
5G Infrastructure Association 692
5G Lab Germany 644, 646
5GMF 500, 692
5G network management
aspects enhanced with machine learning 38
5G-NORMA project 346
3GPP documented functional splits 387
5G waveform design, fundamentals 52
5G use cases 53
high energy efficiency 54
high reliability 54
high spectral efficiency 53, 54
low device complexity 54
low latency 54
massive asynchronous transmission 54
waveform definition 52
waveform design requirements 53
holistic testbed 642–646
Lab Germany holistic testbed 645
mobile communication technology, progression of 628
mobile edge cloud (MEC) 640
networks 276
coded-based systems 642
coding protocols 636
next-generation system 384
physical layer architecture 241
full-duplex communications 242–244
prior art 245
base station topology 246, 247
bidirectional topology 245, 246
relay topology 247
proof of concept (PoC) system 644
requirements 17
SDN/NFV 636
security 238
full-duplex communications 244, 245
services 694
softwarization 634–637
multi-hop 638–639
network coding as a service 637
point to multipoint 638
point to point 637–638
quality of service (QoS) 635
standardization landscape 692
standardization process 692–695
status and challenges 29
novel frame design based on service requirements 30–32
novel physical layer aspects 29, 30
support of different numerologies 32–34
technology 20
use cases 693
verticals 627
waveform candidates 71
wireless communication systems 17, 135
filter bank multicarrier (FBMC) 59
filtered-OFDM (f-OFDM) 65
first-in-first-out (FIFO) method 590
flexibility 51
flexible frame structure 241
flexible internal guard interval 68
forward error correction (FEC) 175
fourth-generation (4G) 371
4G-5G Interworking 669
4G systems 51, 647
long term evolution (LTE) technology 237
mobile communication system 15, 238
fractional frequency reuse (FFR) 126
frame aggregation 276
frame delay variation (FDV), 400
frame replication and elimination for reliability (FRER) 405
frequency-division multiple access (FDMA) 135
frequency-domain equalization (FDE) 55
frequency-domain spreading (FDS) 177
frequency selective channels 55
fronthaul 373
F1 score 43
FULCRUM codes 635
full-duplex (FD) 77, 78
application in LAA 129
communications 242
networks 82
operation 78, 245
radios 245
system
design 82, 84, 85
new interferences in 82
transceiver architecture 243
transmissions 301
Wi-Fi system 129
wireless 238
functional graph (dataflow graph)
provision 24
functional splits 387

g
Gale-Shapley (GS) algorithm 551
gateway core network (GWCN) 345
Gaussian distribution 459, 481, 554
Gaussian noise 149, 206, 479
4G Core Network (EPC) 698, 699
generalized frequency division
multiplexing (GFDM) 62
gen-3, purpose processors (GPP) 387
server 656
遗传 algorithm (GA) 171, 173, 432
geometric approach algorithm,
280
2G/3G cellular networks 464
3G/4G traffic 514
Global Certification Forum (GCF)
691
global mobile wireless 15
global navigation satellite system
(GNSS)-based systems 381, 537
global positioning system (GPS) 51, 381
Google 647
Google Fiber 634
GPRS tunneling protocol (GTP) 373
grand master (GM) 383
grant-freeNOMA 187
graphical user interface 24
green grid (GG) 432
group orthogonal coded access (GOCA)
176
with SIC receiver 176
guaranteed bit rate (GBR) 38
guard band period 402
Gurobi/CVX interface 438

h
haptic Internet 328
hardware setup of the in-lab SCMA
demo system group 183
HARQ loop 377
Hermitian transpose 238
heterogeneous market 16
heterogeneous networks (HetNets) 15,
428
hybrid EH 433
hybrid-powered 431
heterogeneous requirements 328
high-definition video on demand
(HD-VoD) service 636
high-voltage electrical grid 528
home area network (HAN) 605
hot spots 468
HTTP protocol 464
HTTP Web Browsing 464
HW/SW partitioning 21, 22

cognitive and dynamic 21
Hybrid Automatic Retransmit reQuest
(HARQ) protocol loop 377
hybrid beamforming 280. see also
beamforming
approaches 280
architectures 281
hybrid networks 654

i
IEEE 1588
SyncE, combination 382
IEEE 802.3br 401
IEEE 802.3 EthernetMAC 402
IEEE 802.14.5 MAC parameters setting
592
IEEE P1914.3
 Radio over Ethernet (RoE) 409
IEEE P802.1CM 382
IEEE P802.1Qbu 401
IEEE P802.1Qbv TAS 402
IEEE 1588 Precision Time Protocol (PTP) 381
IEEE 802.1Q 400, 401
 XHaul network 402
IEEE 802.1Qch 405
IEEE 802.1Qci 405
IEEE 802.1Q queuing 403
IEEE 802.1TSN toolbox 406
IETF 691
IMT-2020 696
 in ITU-R 696
IMT Systems 695
IMT-2020 vision 51
in-band full-duplex (IBFD) techniques 77, 82
individual message level (IML) traffic 457
industrial, scientific, and medical (ISM)
 radio band 606
information and communication
 technologies (ICT) 427
information centric networking (ICN)
 502, 505, 509, 515, 628, 633
 nodes 512
 routing/forwarding 511
information theoretic security 238–240
infrastructure capacity utilization 327
in-phase and quadrature (I/Q) 376
instantaneous messaging (IM) services 455, 477
 algorithms 78
 IM-RS signal 104, 105
 messages 463
 GoF statistics 480
 mobile IM (MIM) services 456
Intellectual Property Right (IPR) 690
intelligent scheduling exploiting
 channel 78
intercarrier interference (ICI) 55, 57
intercell interference 276
interference
 channels 240
cross relay nodes 128
due to frequency reuse 128, 129
measurement 611
 and reference signal design 104
 mitigation 78
interleave-grid multiple access (IGMA) 175
transmitter 175
interleaver division multiple access
 (IDMA) 175, 177, 207
International Electrotechnical
 Committee (IEC) 529
International Telecommunications
 Union (ITU) 51
Internet 628
Internet of Things (IoT) 135, 238, 301,
 312, 427, 522, 523, 644, 700
application development 578–579
existing service-oriented middleware
 features 582–583
gateways 640
HERA 581
home area network (HAN), in 5G 577
inefficient utilization/management of
 sensor nodes 578
interoperability in heterogeneous
 networks 578
knowledge-aware and
 service-oriented (KASO) 583
OASIS 583
services 658
 service-oriented architecture
 579–581
smart cities and health monitoring 577
state-of-the-art contributions 579
TinySOA 584
USEME 581
A Web Service Middleware for
 Ambient Intelligence
 (aWESoME) 581
internet protocol (IP)
 performance 533
 protocol 691
inter-RAT handover procedure 35
interspersing express traffic (IET) 402
intersymbol interference (ISI) 55
intersystem coordination architecture 507
inverse fast Fourier transform (IFFT) algorithm 55
IPsec encapsulated security payload (ESP) tunneling 375
irregular convolutional codes (IrCCs) 172
irregular repeat accumulate (IRA) code 205, 207
decoding 220
encoder 205
ISP network 634
iterative decoding 209
IT functions 665
ITU-R defined 695–697
ITU-R members 697

j
jamming signals 246
joint A scheduler 101, 102
joint B-mCQI scheduler 103
 reduced scheduler 103, 104
joint B-sCQI scheduler 102
joint B-sCQI-WbDiff scheduler 102, 103
joint DL-UL scheduler 78
 scheduling metric 91–93
joint downlink-uplink scheduler 91
joint processing (JP) 389
joint scheduling, channel quality indicator feedback for 96, 97

k
Kalman filtering algorithms 487, 492
keep-alive (KA) cycles 461
 mechanisms 456
message 457
key performance indicators (KPIs) 51, 346, 534
 constraints 22
5G use cases 694
k-nearest neighbor classifier 43
knowledge-aware and service-oriented (KASO) 583
Kolmogorov-Smirnov (K-S) test 480
goodness-of-fit (GoF) 466
k-user repetition-aided IRA coded MIMO system 208

l
label distribution protocol (LDP) 355
lack of standards 690
Lagrangian function 483
Lagrangian multipliers 482
LAN parties 632
LARS-Lasso algorithm 484, 488, 489
latency vs. utility services request 619
layered division multiplexing (LDM) 154
leading operators and vendors 37
lean packet system (LeaPS) 363, 364
licensed assisted access (LAA) interface, for smart grid applications 603
demands and automation signaling 604
Long-Term Evolution-Advanced (LTE-A) 603
 bandwidth utilization 609
 smart grid infrastructure 604
load balancing 36
locally tree-like factor graphs 186
logarithmic-domain message passing algorithm (Log-MPA) 163
logically isolated network partitions (LINP) 501
logistic regression 43
long term evolution (LTE) 276
 assisted approach 699
 cell 656
 functions 23
 LTE eNB 699
 networks 22
 radio system 381
 security architecture 237
 technology 372, 644, 657, 689, 691, 699
Loon 634
low code rate and signature-based shared access (LSSA) 173
transmitter structure 174
low code rate spreading (LCRS) 177
low density parity check (LDPC) code-based design methods 186
like decoding 209, 213
check node 214
variable node 213
low-density spreading (LDS) 136
low-density spreading-aided OFDM (LDS-OFDM) 160–162
comparison of LDS-OFDM, SC-FDMA, and OFDMA 162
low-density spreading CDMA (LDS-CDMA) 155–160
vs. DS-CDMA 161
low-density spreading sequences (LDS) 179
low-density spreading-signature vector extension (LDS-SVE) 177
low-noise amplifier (LNA) 79, 244
low power wide area networks 524

m
machine learning
for service classification in 5G networks 38
techniques, overview 39
machine to machine (M2M) 631
communication 579
with humans 630
machine type communication (mMTC) 17, 176, 694, 696
cyber-physical system requirements 527
granularity requirements 527
physical resource need 527
demand analysis 522
eyes/hands to control industrial systems 523–526
machines serving humans 522–523
digital transformation 526–527

5G candidate solution space 536–537
critical communication/public safety 536
energy efficiency improvement 536
location 537
ultra-reliable communication 537
5G golden triangle of use 520
5G path ahead 534–535
3GPP, standardization path 532–534
and humans 532
machines operating in real-time/mission-critical 520–521
massive connectivity 520
overview 519
problem-solving approach 519
supervisory control and data acquisition (SCADA) 523–526
data processing 525
description of 524
mobile networks support 524–525
national electricity grid example 525–526
vertical use case examples
communication 530
energy 528, 530
health 528–529
smart cities 529
transport 530
maintenance cost reduction 684
management and orchestration (MANO)
framework
across multiple 5G network infrastructure domains 338
for network slices, categories 335
man-machine interface 689
many-to-one issue 407
Markov chain discrete-time 431
massive machine-type communication (mMTC) 17, 38, 41, 44, 176, 334, 385, 693
massive multiple-input multiple-output (massive MIMO) 19, 153, 301
master data management 682
matching theory 547
maximizing a posterior (MAP) criterion 477
maximum a posteriori probability (MAP) detector 155
maximum-ratio combining (MRC) 206
mean-time-between-failure (MTBF) 507
measured SW memory utilization 23
medium access control (MAC) adaptation 34
client interface packet-based interface 406
layer techniques 276, 608
message passing algorithm (MPA) 155
factor graph representation 159
metrics evaluation, for selected classification mechanisms 45
microcell BSs (MSBs) 427
micro-subscription management system (µ-SMS) 583
midhaul network 375
millimeter communications 238
millimeter wave (mmWave) communications 245, 278, 301, 305
band 305
communication, analysis of 306
blockage models 308–309
coverage and rate performance 309–311
propagation characteristics 306–308
introduction/background 305–306
as new paradigm in communications 311–312
radio access 276
utilization of 19
minimum bit error rate (MBER) 171
mission critical communications (MCC) 38, 41, 44
MLE-estimated candidate distribution functions 461
MMC service 43
MMSE-SIC receiver 149
Mobile BackHaul (MBH) 501
mobile broadband (MBB) 38, 41, 44, 328, 658
access 276
communication 41
data 522
Mobile-Central Office rearchitected as a data center (M-CORD)
proto-type 660, 661
mobile communication systems 276
mobile data traffic Cisco forecasts 49 exabytes per month 428
mobile data usage 276
mobile edge cloud (MEC) 632
mobile edge computing (MEC) 388, 523, 685
ETSI, M-CORD of ON.Lab 654
mobile edge slicing 346
Mobile FrontHaul (MFH) 501
mobile IM (MIM) services 456
activities’ message length by candidate distribution functions 460
IML traffic nature 459
message 463
messaging activities 457
PDF of inter arrival time 461
service-oriented protocols 456
transmitting (TX)/receiving (RX) packets 457
WeChat/Weixin 456
mobile network operators (MNOs) 327
mobile (virtual) network operators, M(V)NOs 330
mobile offloading 275
mobile packet 501
mobile robots 693
mobile switching centers (MSCs) 470
Mobile World Congress (MWC) 645
2014 demonstration 656
mobility management entity (MME) 238, 345, 658
multi-access edge computing 523
multicarrier CDMA (MC-CDMA) 138
multicarrier schemes 58
comparison of 72, 73
subband-wise filtered MCM 63
filtered-OFDM (f-OFDM) 65, 66
universal filtered multicarrier (UFMC) 63, 64
subcarrier-wise filtering 59
filter bank multicarrier (FBMC) 59–62
generalized frequency division multiplexing (GFDM) 62, 63
windowing 58, 59
multicarrier system 55
multicell/multi-UE-based mobile environment 656
multi-Gbps wireless access 275
multihop, multipath, and multicast (3M) 644
multi-interfaces technology 606
multiobjective algorithm 22
Multi operatorCore Network (MOCN) 345
multiple access technique 137
developments 137
multiple-input multiple-output (MIMO) 57, 238, 267
compatibility 67
extension to 188
full-duplex 127, 128
technology 280
transmission scheme 66
multiple-input multiple-output (MUMIMO) 276
multiple radio access technology (RAT) 5G mobile edge 343
multiple receive antennas 206
multiple transmit antennas 206
multiprotocol label switching (MPLS) 416
multi-protocol label switching-transport profile (MPLS-TP) 355
header 356
multi-RAT (radio access technology) 669
multi tenancy application (MTA) 357
multiuser detection (MUD) 137, 206
209–213, 446
algorithms 142
multiuser equalizers 136
multiuser iterative decoding 207
multiuser multiple-input multiple-output (MIMO) 205, 206
schemes 205, 276
multiuser repetition-aided IRA coding scheme 207–209
multiuser SCMA (MU-SCMA) concept 166
multiuser shared access (MUSA) 136
performance of 168
uplink of 167
multiuser wireless systems 138
n
naive Bayes classifier 43
naive scheduler 101
named data networking (NDN) 511
Narrow Band IoT Cat NB1 533
neighborhood area network (NAN) 605
network function virtualization (NFV) 628, 633, 657
MANO operation workflow 679
NFV infrastructure (NFVI) 351
NFV orchestrator (NFVO) 337
NFV/SDN 654
networking 16
access 237
architecture 16
carriers 689
coding, advantages of 639
life cycle management 683
management and orchestration, 502
management operators 508
Network Coding as a Service (NCaaS) 639
network function (NF) 635
networking (Continued)

network function virtualization (NFV) 501, 628
principles 19
network function virtualization infrastructure (NFVI) 634
network function virtualization management and orchestration architectural framework (NFV–MANO) 634
network management index (CEI) 663
network service (NS) 329, 337
network virtualization substrate (NVS) concept 345
network with mix of FD/HD UE 95, 96
resource management 682
sharing among slices 328
softwarization and slicing 499, 500
synchronization 381, 401, 402
vendors 689
network service (NS) NS Descriptor (NSD) 678
network slicing 18, 328, 503. see also other entries starting as network slicing
defined 328
5G networks 328, 329
life cycle, management phases 340
in mobile crosshaul for multi-tenancy support 352
network slice instance layer (NSIL) 328
network slice instances (NSIs) 360
network slice management and orchestration (MANO) overview 336
network slice selection assistance information (NSSAI) 360
network slicing at mobile Cloud 358–361
control plane modularization additional features 362–363
to support network slicing 361–363
user plane simplification for Lean Packet slices 363–365

network slicing at mobile edge 343–345
enabling solutions for mobile edge slicing 345–346
exploiting spatial slicing 344
managing mobile edge slice resources 348–349
mobile edge slice brokerage 344–345
mobility and user attachment 344
multiple radio access technology (RAT) 5G mobile edge 343
security issues while exposing sharing information 343–344
slice requests brokering 346–348
mobile edge resource utilization 347
overall revenue 347, 348
spectrum and radio resource constraints 343
network slicing at mobile transport 349–351
enabling mobile transport slicing technologies 351–355
enabling slicing technologies for CrosshaulMANO 356–357
multi-tenancy application for slice management and orchestration 357–358

network slicing management and orchestration (MANO) 334–336
management and orchestration architecture 336–339
run time management of network slices 341
generic QoS/QoE slice MANO algorithm 341–343
tasks 339–341

network softwarization 499, 501
brief history and slicing 503–504
concept of 500
considerations for applicability 506
coordinated APIs 508–509
end-to-end reference model for scalable operation 506–508
of 5G networks 502
horizontal extension of slicing 504–505
information-centric network (ICN) 509
advanced metering infrastructure (AMI) on smart grid 512
content access 509–510
content security 511
in-network data processing, provisioning of 510–511
migration scenario 513
networking in a disaster area 511–512
phased deployment, intermediate phase 514
proactive caching 512–513
robustness to network failures by multipath routing 511
starting network 514
target network 514
traffic reduction by in-network caching 510
ITU-T SG13 Focus Group on IMT-2020 515
network softwarization view 501–502
vertical extension of slicing
data plane enhancement 505–506
new radio (NR) 373, 384, 697
new waveform 20
next-generation core (NGC) 360, 384
network 698
next-generation ethernet-based base stations 416–417
next-generation fronthaul interface (NGFI) 350
applications 404
based RAN 396
transport 394
next-generation 5G V-RAN base stations 416
Next-GenerationMobile Networks (NGMN) Alliance 275, 503
NGMN White Paper 692
Next-Generation OSS (NG-OSS) 668
architecture 678–683, 679
next-generation wireless access 77
Node B Frame Numbers (BFN), 414
noise 238
component 479
nonlinear region 55
nonorthogonal coded access (NOCA) 176
transmitter structure 176
nonorthogonal coded multiple access (NCMA) 175
nonorthogonal multiple access (NOMA) 19, 136, 206, 245, 267
advantages 137, 138, 141, 142
basic principles 137, 138
channel capacity comparison 138
AWGN channel 138–140, 146
fading channels 140, 141
MIMO-NOMA and MIMO-OMA 141
code-domain 138
comparison and trade-off analysis 178–181
limitation 138
miscellaneous schemes 177
performance evaluations, and transmission experiments 181–185
power-domain 138, 142, 143
application of 153, 154
basic NOMA relying on a SIC receiver 143–146
comparison of schemes 178
cooperative 149–151
in MIMO systems 146–149
spatial filtering vector 148
mmWave communications and 153
network-NOMA 151
user grouping and resource allocation 151, 152
prototype transmission equipment 182
serves power-domain 446
non-zero secrecy capacity 239
normalized mean absolute error (NMAE) 486
vs. iteration no. 490
vs. λ^1 for web browsing 491
novel multiple access schemes 19

O
octave source code 23
off-grid 429
OMA schemes 138, 691
OpenAirInterface 22
open base station architecture initiative (OBSAI) 376
interface 349
Open Compute Project (OCP) 654
OpenDaylight-based T-SDN platform 660
OpenDaylight VirtualTenantNetwork (VTN) project 356
OpenLTE 22
Open ROADM MSA 654
OpenStack 654
operating expenses (OPEX) network operators 633
operations, administration, and maintenance (OAM) functions 355
data 662
operation supporting functions (OSF) 671
operation supporting system (OSS) 654, 678
optimization goals 22
optimization problem formulation 25
input 25
output 25
process 25
orchestration
architectural extension 342
original equipment manufacturers (OEMs) 689
orthogonal frequency-division multiple access (OFDMA) 19, 51
orthogonal frequency-division multiplexing (OFDM) 54
discrete signal on baseband 55
systems 57
waveforms 241
orthogonal matching pursuit (OMP) 477
algorithm 280
OTN services 659
out of band emissions (OOBE) 55, 56
problem in multicarrier schemes 57
over the top (OTT) application 330, 634, 647
P
packet data convergence protocol (PDCP) 389
packet delivery 656
packet loss rate 603
packet optical transport network (POTN) 659
parallel interference cancellation (PIC) 173, 176
particle swarm optimization (PSO) 172, 173
partitioning algorithm
functionality and communication 22
pattern-division multiple access (PDMA) 136, 173
peak-to-average power ratio (PAPR) 55
problem in multicarrier schemes 56
performance evaluation 591
network model 591
simulation setup 591-593
phased migration 513
physical downlink control channel 23
physical (PHY) layer 608
functions 390
processing 390
security 239
techniques 238
physical network function (PNF) 336
physical network infrastructure platform 327
point-to-point link 242
Poisson distribution 603, 617
Poisson point process (PPP) 432
polarization 243
policy enforcement points (PEP) 363
power-domain NOMA 144
basic NOMA relying on a SIC receiver 144
MIMO systems 144
network-NOMA 144
schemes, comparison of 178
precision 43
precoding matrix indicator (PMI) 94
preliminary test results 28, 29
primary reference time clock (PRTC) 383
prioritization 36
probability density function (pdf) 555
problem statement 21
Proof-of-Concept (PoC) projects 655
protocol oblivious forwarding (POF) 505
provider backbone bridge traffic engineering (PBB-TE) header 354
pseudorandom sequence generation 23

QQLive Video 464
quality-of-service (QoS) 246, 428
profile 38
QoS class identifier (QCI) 38
QoS/QoE-aware management 336, 341
architectural extension 342
QoS/QoE degradation 342

radio access network (RAN) 500, 628, 640, 697
aggregation and many-to-one issues 406
aggregation ring 393
central office (CO) 378
multiple-input multiple-output (MIMO) 379
RAN architecture (Cloud RAN) 702
RAN network
 high-level architecture 392
 slicing 397
simplified centralized RAN architecture 379
slicing process efficiency 343
technologies 45
transport 398
 network 388, 391

radio access technologies (RATs) 16, 501
radio conditions 20
radio frequency (RF) 243, 608
components 691
radio-frequency identification (RFID) networks 239
radio functional splits 387
radio interface technologies (RIT) 237, 696
radio network layer (RNL) 373
Radio over Ethernet (RoE) technology 409–416, 417
controlwords 412–413
IEEE 802.1CM network profile 410
native mapper 412
port 415
structure agnostic mapper 411
structure-aware mapper 411–412
tunneling mapper 412
radio resource management (RRM) 34
RAID-6 systems 641
random forests 43
classifier 43
random linear network coding (RLNC) 637, 638
conventional end-to-end communication 638
randomly selected cells
 traffic variations of applications 466
rank indicator (RI) 94
rate matching 23
Rayleigh channel coefficient 554
Rayleigh fading channels 218
3rd Generation Partnership Project (3GPP) 358, 605, 697-703
eDECOR of 654
evolved packet system (EPS)
simplified distributed RAN architecture 372
5G system 695
LAA physical layer 605
LTE evaluation methodology 78
NextGen 700
PHY functions 22
radio functional split summary, 390
radio KPIs for new radio 702
release-14 388
S-GW/P-GW/TDF in core network 673
workplan 698
Real-time Customer Experience Index (CEI) 681
recall 43
receiver (RX)
 decoder 79
 receiver 79
 signals 79
receiver design 187
Reed-Solomon codes 641
relay topology 245, 247
Release 14 Study Item SMARTER, technical reports on
 TR 22.861 700
 TR 22.862 700
 TR 22.863 700
 TR 22.864 700
 TR22.891 504
 TR 28.800 702
 TR 28.801 702
 TR 28.802 702
reliability 206
Rel-13 MTC 533
renewable energy (RE)
 based EH technique 430
 sources 429
repeated weighted boosting search (RWBS) 172
repetition 207
repetition division multiple access (RDMA) 177
resource allocation 187
resource blocks (RBs) 91, 553
 signal to interference plus noise ratio (SINR) 554
resource management 34
resource spreadmultiple access (RSMA) 174
 multi carrier 174
 single carrier 174
ROADM/OTN unified control 660
root cause analysis (RCA) 680
root mean square error (RMSE) 459
 accuracy measured 460
rural areas, providing access to 312–320
airborne 5G backhaul solutions 317
application-specific design for 318
backhaul/access solutions for rural areas 315
cost-effective solutions to enable rural 5G 318
 jointly optimize CAPEX and OPEX 319–320
 reduce CAPEX 318–319
 reduce OPEX 319
 use of self-organized networking 320
5G technologies thrusts and universal coverage 314–315
 joint optimization of access and backhaul 317
 motivation for aiming at coverage through 5G 312–313
terrestrial 5G backhaul solutions 315–316
 traditional approaches notwork for 312
s
scalable technology 16
scheduling FD-capable UE 95
 network with mix of FD/HD UE 95, 96
 network with pure FD-UE 95
second-generation (2G) systems 51
 secrecy capacity 240
secure full-duplex bidirectional communications 255
 future directions 266
MRC/maximum ratio transmission (MRT) 258–259
MRC/transmit ZF (TZF) schemes 258–259
optimization 256–258
system model 255, 256
secure full-duplex receiver jamming 247–249
advantage of secrecy rate
performance of 253
benchmark schemes 253–255
effect of SI channel strength 254
secrecy rate vs. total transmit
power 254
future directions 266
system model 249–250
transmit and receive designs 250–253
secure full-duplex relay
communications 259
future directions 266
proposed optimization solution 262–265
antenna conserved scheme 263, 264
applying Sherman-Morrison formula 263
secrecy rate vs. power 265, 266
system model 259–262
security 239
in full-duplex communications 244, 245
issues 343
mechanisms 238
self-driving car 690
self-interference (SI) 128, 242
cancellation techniques 243
self-interference cancellation (SIC) 77, 79
receiver 176
state of the art 80–82
semidefinite programming (SDP) 246
sensor node 585
separation of control, and user plane 19
service agility, enhancement
recombinable/reusable software modules with virtualization 686
service classification process, proposed mechanism 41
service function chaining (SFC) 636
service instance layer (SIL) 328
service instance(s) 328
service-level agreement (SLA) 332, 346, 357
service orchestration 678

service-oriented architecture 580
service-oriented architecture for home area network (SoHAN) 584, 587
average packet latency over time 595
drop packet vs time 594
general network model 591
home area network (HAN) 584–586
middleware structure 588, 589
QoS manager 590
sensor acquisition manager 589
sensor aggregation manager 590
sensor-dependent sub-layer 589
sensor task manager 589–590
service composition manager 590
service-dependent sublayer, 590
service discovery manager 591
service registry manager 590
service scheduling manager 590
network 588
model for simulation 592
solution 585
normalized energy consumption vs. time 596
packet drop rate 595
packet generated vs time 594
performance evaluation 596
proposed architecture 586–588
service-oriented middleware 580
features 582
service oriented network auto creation (SONAC) 334
service provides 689
service quality monitoring (SQMon) 342
services and markets technology enablers (SMARTER) 527
serving GPRS switching nodes (SGSNs) 470
Set of Radio Interface Technologies (SRIT) 696
signal power 536
signal-to-interference and noise ratio (SINR) 79, 145, 206, 209, 304, 554
degradation 91
signal-to-noise ratio (SNR) 240, 267, 268
vs. number of utility services request 619
signature-based NOMA 173, 174
simultaneous wireless information and power transfer (SWIPT) 246
single-carrier schemes 66
CP-DFT-s-OFDM 66, 67
UW-DFT-s-OFDM 69, 70
ZT-DFT-s-OFDM 67-69
single-carrier transmission schemes 55
SK Telecom 655
SliceQoS/QoEMANO(SQMO) 343
smallcell BSs (SBSs) 427
during multiple time slots 443
SMARTER (New Services and Markets Technology Enablers) 699, 700
smart grid applications
average traffic vs. connection time 620
bandwidth utilization scheme 614
smart grid communications
architecture-based 5G 605
control center architecture 606
home area network 606-607
neighborhood area network (NAN) 607
system implementation/simulation platform, LAA unlicensed interface, enable career detection for 615–616
system performance/analysis 616–620
wide area network (WAN) 607–608
characteristics 618
infrastructure 607
smart grid networks 238
data demands and automation signaling requirements 604
smart meters (SMs) 605
smartphones 15
social-aware resource allocation schemes
classifications of 551
software-based virtual appliances 655
software-defined networking (SDN) 16, 19, 301, 628
architecture 636
OpenDaylight 644
SDN classifies network functions 628, 633, 655
SDN/NFV-based virtualization technology 653
SDN OpenFlow 661
technology 504
software-defined protocol (SDP) 334
software-defined radio (SDR) 628, 633
software-defined RAN (SDRAN) 667, 668
analytics (SON) agent 671
architecture 668, 669
CP/UP separation 669–670
fronthaul enhancement 668–669
MEC 671
open hardware and software 670–671
software-defined resource allocation (SDRA) 334
software-defined topology (SDT) 334
software-define radio (SDR) 644
solar-powered mobile smallcells 430
solution 22
sparse code multiple access (SCMA) 136, 162
encoding and multiplexing 163
field test, cases of 185
and LDS, performance comparison 164
prototype, specification for 183
throughput gain over OFDM in field testing 185
uplink SCMA demo system 182
sparse signal recovery algorithm 485
Sparsity & Dictionary Learning, 478
spatial-division multiple access (SDMA) 136, 170–173
spatial separation 243
spatial sparse component 480
spectral efficiency 56
degradation in 55
spectral spreading 55
spectrum decision 613
spreading-based NOMA 175
srsLTE 22
\(\lambda\)-Stable Model and Prediction 478
staggered modulated multitone (SMT) 60
Standard Development Organizations (SDOs) 695
standardization
3GPP 697–703
5G process (see 5G standardization process) ITU-R 695–697
main bodies 691–692
role of 689–691
state-of-the-art machine learning mechanisms
for traffic classification 39, 40
steering and control (S&C) 635
storage resources 16
store-and-forward (SAF) architecture 400
subband per DL-UL pair CQI feedback 97, 98
subscriber identity module (SIM) card 237
subscriber privacy 237
successive interference
cancellation-amenable multiple access (SAMA) 136
successive interference cancellation (SIC) 138, 206
algorithms 63
supervisory control and data acquisition (SCADA) 521, 523–526
controller and filed sites 526
expert processing 525
input signals 525
output commands 525
support vector machines 43
SyncE 381, 414
system aspects (SA) 697
WG1 project 699
system-level performance analysis 108, 109
basic simulation settings 110
channel models 114
LAA channel model 114
summary 114
deployment models 109
indoor deployment 110, 111
outdoor cluster deployment 111, 112
outdoor uniform deployment 112, 113
general simulation methodology and assumptions 109
system model
with full-duplex receiver jamming 248
system performance
for various operation regimes 121, 122
performance of UE density
for mixed FD and HD UE 123
for pure FD UE 122, 123
for pure HD UE 122
performance of various LPN densities 123–125
various UE densities and bundle scheduler, performance for 122
tactile internet 427, 694
technology trends 17
Telco function 655, 666
Telco infrastructure 654, 671
Telco networks 665
Telco’s central 657
Telcos network 655
Telecom Infrastructure Project (TIP) 654
temporal modeling component, 479
tenant 329
TETErrestrial Trunked RAdio (TETRA) 535
testbed setup 26–28
theoretical analysis 186
third-generation (3G) cellular systems 237
Third-Generation Partnership Project (3GPP) 689
Index

time alignment error (TAE) 376
time-aware shapers (TAS) 399
 with frame preemption 404
time division duplexing (TDD) 242, 374
 circuit-switched deployment 406
 TDD-LTE
 radio 380
 time synchronization 382
time-division multiple access (TDMA)
 135
time division multiplexing (TDM)
 stream from RoE packets using
de-jitter/play-out buffer 415
 transports 374
time-frequency localization 57
time-frequency resource 241
time-sensitive networking (TSN)
 capabilities 399
TinySOA 584
total cost of ownership (TCO) efficiency
 653
touchscreen vs. keyboard 689
T-Packet Analysis & Network
 Intelligence (T-PANI) 663
trade-off analysis of power-domain
 NOMA 180
traditional grid (TG) 432
traffic asymmetry 127
traffic characterization, in cellular
 network 455
MIM working mechanisms
 aggregated traffic 462–464
 dataset description 456–458
 extension to other services
 464–470
 IML traffic nature 459–462
 statistical pattern/inherited
 methodology 459
 -stable models
 background 458–459
 revisiting 455–456
traffic dataset description
 for characteristics analyses 465
traffic learning framework 478
traffic models 41
traffic predictability, in cellular network
 application–level traffic 476
 optimization algorithm 482–485
 performance evaluation 485–489
 problem formulation 478–482
 sparse representation/dictionary
 learning 477–478
 dataset description/analysis
 methodology 470–473
 interservice relationship 475–476
 prior information 473–474
 related works 490–492
 spatial dimension 474–475
 temporal dimension 474
traffic steering 34, 35
transformation 16
transmission and reception points
 (TRP) 380
transmission control protocol (TCP)
 connection 457
 IP application protocol 617
transmission control protocol/internet
 protocol (TCP/IP) 457
transmission time interval (TTI) 343, 396
 length-bound MAC scheduler 391
transmitter (TX)
 echo cancellation 79
 leakage signal power 79
 with receiver (RX) 552
 signal 80
transparent clock (TC) 381
transport network layer (TNL) 373
tree classifier 43
T-SDN platform 658
turbo-Hadamard code 218
turbo-like decoding 209, 214–216
two stages in canceling self-interference 80

u
ultradense infrastructures 15, 19
ultrareliable and low latency
 communications (URLLC) 17,
 51, 334, 385, 395, 476, 527, 534,
 693
 applications 343
ultra reliable low latency service
 (URLLC) 696
ultra-wideband (UWB) schemes 150
unified and converged transport network (uCTN) 667, 668, 673–676
architecture 674
transport infrastructure orchestrator 675
backhaul/fronthaul unified control architecture 675
control components 675
intelligent engineering/operation components 675
management components 675
transport physical network functions 674–675
IP/MPLS
supports OpenConfig/IETF L3 network model 675
NG-fronthaul (T-PON) 674
open network control and management model 675
open NG-ROADM 674
open PON allows 674–675
POTN 674
virtualized transport network functions 675
unified-O architecture 676
unified orchestration (unified-O) 668, 676
end-to-end network orchestration 677–678
service orchestration features functions 678
standard data model 678
standardized NFV MANO framework 676–677
uniform power boosting 89, 90
unity rate code (URC) 171
universal access (UA) 301
universal integrated circuit card (UICC) 237
unmanned aerial vehicles (UAV) 302
uplink (UL) 78, 275
uplink data transmission
fronthaul maximum round-trip latency 377
uplink-down link traffic ratios 242
uplink power control 88, 89
urban environments, access for 302
massive MIMO 302–305
millimeterwave technologies 305–312
USEME middleware 581
user equipment (UE) 372
device 501
end-to-end system coordination 507
UE-to-UE interference 78, 79, 83, 118
design to mitigate 91, 126
impact on joint scheduling metric 93–95
measurement with UE-UE IM-RS 106–108
performance of various CQI feedbacks 119–121
system performance for schemes to treat 118
system performance of joint scheduler 118, 119
user plane abstractions
for different slice instances 365
users’ behaviors 555
USIM applications 691

V
value proposition 683
operation automation 685
analytics/verification with data analytics capabilities 685
intelligent/automated network operation 685
operator-specific functions, deployment of 685–686
TCO reduction 683
cost savings, optimization 684
open-source hardware/software delivers cost savings 683–684
Telco Infrastructure, platformization of 684
Analytics as a Service (AaaS) 685
mobile edge computing as a service (MECaaS) 685
Policy as a Service (POaaS) 685
vendor-specific devices 16
Verband der Automobilindustrie (VDA) 537
verilog code (HW function) 23
Verizon 654
video conferencing 275
video streaming traffic (YouTube) 41
video traffic 467
virtual infrastructure manager (VIM) 333
virtual infrastructures (VI) 329, 331
virtualization 18, 21, 23
networking functions 19
virtualized core (vCore) 667–668, 671
architecture 672
decomposed control plane 672
centralized service functions (CSF) 673
core network user plane 673
next-generation protocol and interface 672–673
recomposed control plane 672
unlimited capacity/scalability, provisioning of 673
user plane programmability 673
virtualized and decomposed control plane functions 672
virtualized EPC (vEPC) 656
virtualized network functions (VNF) 634
virtualized RAN architecture for supporting network slicing 347
virtual links (VL) 334
virtual machines (VMs) 332
scaling 656
virtual network embedding (VNE), 358
virtual network function (VNF) 328, 329, 634, 662, 664
VNF Descriptor (VNFD) 678
VNF forwarding graphs (VNF-FGs) 329
virtual resource handling 507
VNode architecture 503
vRAN server 656
Walsh-Hadamard spreading sequences 170
waveform candidates 57
for 5G and beyond 58
wavelength-division multiplexing (WDM) 374
web browsing 477
Weixin/Wechat 464
White Papers 692
wide area network (WAN) 605
wideband DL-UL pairability CQI feedback 98–100
wideband per DL-UL pair differential CQI feedback 100
Wi-Fi 578, 605, 691
access point 609, 610, 615, 640
Windows Live Messenger 491
wired network 237
wireless capacity 241
wireless communications 237, 239
systems 135
wireless fronthauling 275
wireless local area networks (WLANs) 276, 277
wireless network trends 19, 20
wireless personal area networks (WPANs) 276
wireless sensor nodes 584
wireless technologies 15
wireless transmissions 237
wiretap channel 239
word error rate (WER) performance 219
World Economic Forum 531
World Radiocommunication Conferences (WRCs) 691
X
XHaul 388, 394, 404
aggregation network 393
frame loss ratio (FLR) 405
XON/OFF type sender policy 398
Z
zero-forcing (ZF) beamforming 246
ZigBee 604
technologies 606